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Abstract

In this paper, a new (3+1)-dimensional integrable Kadomtsev–Petviashvili equation is developed. Its

integrability is verified by the Painlevé analysis. The bilinear form, multiple-soliton, breather and lump

solutions are obtained via using the Hirota bilinear method. Furthermore, the abundant dynamical

behaviors for these solutions are discovered. It is interesting that there are splitting and fusing phenomena

when the lumps interact.
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1. Introduction

As we know, nonlinear evolution equations have exerted considerable influence promoting the progress

of science and technology. The Kadomtsev–Petviashvili (KP) equation is a well-known nonlinear model

which was developed to describe long wave propagation of small amplitude propagating in plasma physics

under the effect of long transverse perturbations in dispersion fluids [1]. Since then, this model has been

thoroughly studied in a various fields, such as plasma physics, solid state physics, fiber optics, water

engineering, oceanography, and many other areas [2–10]. Mathematically, the KP equation is used to

study the stability of the celebrated Korteweg-de Vries equation in a two-dimensional setting [11–16]. The

KP equation can also depict weakly two-dimensional dust acoustic waves [17], weakly nonlinear quasi-

unidirectional waves [18], shallow water waves with weakly nonlinear restoring forces [19, 20]. Besides, it

is integrable in the sense it exhibits multiple solitons solutions and infinite conservation laws [21, 22].

Recently, the great interest on the KP equation has led to the construction and the study of many

extensions to the KP equation [23–29]. These new extended models propelled greatly the research that

directly resulted in many promising findings and gave an insight into some novel physical features of

scientific and engineering applications. Moreover, lump solutions, and interaction solutions between
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lumps and solitons, have attracted a great amount of attentions aiming to make more progress in solitary

waves theory.

Lump solutions, sometimes also called rational function solutions or rogue wave solutions, have been

widely studied by researchers for their significant features in physics and many other nonlinear fields,

such as, oceanography, fiber optics, water waves, and biophysics. Lumps are different from the solitons

because of its locality with high amplitude and fast attenuation [5, 30–35].

The standard Kadomtsev–Petviashvili (KP) equation reads [20–22]

(ut ++6uux + uxxx)x + uyy = 0, (1)

which admits weakly dispersive waves, with quadratic nonlinearity term (uux)x and a weak dispersion

term uxxxx.

Very recently, an extended KP (eKP) equation was proposed [23]

(ut + 6uux + uxxx)x − uyy + λutt + µuty = 0, (2)

where λutt and µuty are added to the standard KP equation (1), u = u(x, y, t) is a differentiable function

and λ and µ are non-zero constants. This equation can model the surface waves and internal waves

in straits or channels. Moreover, although the eKP equation (2) is not integrable, the multiple-soliton

solutions were computed analytically. Furthermore, mixed solutions consisting of first-order breathers

and solitons were also derived [25].

In the previous work, we in Ref. [36] developed a new extension to the standard KP equation (1),

given in the form

(ut + 6uux + uxxx)x − uyy + λutt + µuty + νuxt = 0, (3)

where an additional term, namely νuxt is added to Eq. (2). This new equation can describe more

dispersion effect in a standard KP system than the eKP equation (2). In Ref. [36], we showed that these

terms will preserve the integrability of the standard KP equation. In addition, multiple soliton solutions,

lump, breather and interaction solutions were analytically derived. For the ease of reference, henceforth

we will quote Eq. (3) as the (2+1)-dimensional Ma–Wazwaz–Li (MWL) equation.

In this article, we first develop a new (3+1)-dimensional KP model based on the MWL equations (3).

Then, the Painlevé integrability, multiple-soliton, breather and lump solutions will be formally derived

for this new equation.

2. Formulation of a new (3+1)-dimensional KP equation

To formulate a new (3+1)-dimensional integrable KP equation, we will use the sense we used in our

earlier work [36], where we add a new term γuxz to the MWL equation (3). In view of this, we present

(ut + 6uux + uxxx)x − uyy + λuttutt + µuty + νuxt + γuxz = 0, (4)
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where u = u(x, y, z, t) is a differentiable function with respect to the spatial variable x, y, z and the

temporal variable t; and λ, µ, ν and γ are non-zero arbitrary parameters. It is obvious that this equation

involves four more terms, of second-order derivatives, added to the standard KP (1) equation. Eq. (4)

also portraits a new dispersion effect with respect to the variables x with z, by comparing Eq. (3). As a

result, the dimension is extended to (3+1) case. It is more meaningful and useful than the standard KP

equation (1), eKP equation (2) and MWL equation (3) in applications. In this work, we will illustrate

this new equation possesses novel feature that the MWL equation (3) does not have.

We plan in this article to employ the Painlevé test to show that the equation (4) possesses the

integrability, for specific values of the parameters λ, µ, ν and γ, provided upon using the compatibility

conditions. Hence it is integrable. Most importantly, unlike the KP dispersion relations, we will show

that the phase shifts of this new equation gives distinct shifts that differ from the standard KP equation

phase shifts. As will be shown later, the integrability of this equation permits us to derive multiple

soliton, breather, and lump solutions for the non-zero parameters λ, µ, ν and γ.

3. Painlevé Analysis to Eq. (4)

The complete integrability of nonlinear evolution equations has been an important feature in nonlin-

ear solitary wave theory. There are many significant properties, such as Lax pair, Hamiltonian structure,

infinitely many symmetries and infinite conservation laws, that can characterize the integrability of non-

linear evolution equations. To emphasize the integrability of Eq. (4), we follow the Painlevé analysis

method presented in [21, 37, 38] and the some of the references therein. We get a characteristic equation

for resonances at k = −1, 4, 5, and 6. We also find explicit expressions for u1, u2, u3, and we found that

u4, u5, u6 turn out to be arbitrary functions, provided that the compatibility conditions, for k = 4, 5, 6,

are satisfied for λ = −α2

4
, µ = α, and ν = β, where α and β are non-zero constants, and γ is left free

parameter. In view of this, the (3+1)-dimensional KP equation (4) takes the form

(ut + 6uux + uxxx)x − uyy −
α2

4
utt + αuty + βuxt + γuxz = 0. (5)

4. Bilinear form and general solution of Eq. (5)

First of all, it is necessary to construct the bilinear form of Eq. (5) according to the Hirota bilinear

theory [39, 40]. By introducing a transformation as

u = 2(ln f)xx, (6)

where f is an auxiliary function to be determined later, we can get the following bilinear form of Eq. (5)

(

D4
x + (β + 1)DtDx + αDtDy + γDxDz −D2

y −
α2

4
D2

t

)

(f · f) = 0, (7)
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where D is a bilinear operator whose definition can be found in the existing literatures such as Refs.

[41–43]

From (6), we give the generalized solution of Eq. (5)

u = 2
ffxx − f2

x

f2
. (8)

To construct the high-order solutions, we introduce a series of travelling transformations

ξi = ki (x+ siy + riz + wit) + ξi0, (9)

where ki, si, ri, wi and ξi0 are non-zero constants, and si = ki, ri = wi

γ

(

α2

4
wi − αsi − (β + 1)

)

, i ∈

{1, 2, 3, · · · , n}, and n is a positive integer.

5. Soliton, breather and their interaction solutions

In this section, we will seek for the exponential function solution of Eq. (5). Those solution can

generate multiple-solitons and multiple-breather, even mixed soliton and breather.

5.1. The first-order exponential function solution

Lets start from a simple exponential function. Taking the auxiliary function f in the bilinear equation

(7) as

f = f1 = 1 + eξ1 . (10)

It is easy to get

fx = f1x = k1e
ξ1 , (11)

fxx = k21e
ξ1 . (12)

The substitution of (10), (11) and (12) into (8) will generate the first-order exponential function solution

that has a bright soliton.

The profile of the solution (8) with the auxiliary function (10) exhibits bright single-soliton under all

the six different coordinates. The graphs for the single-soliton are shown in Fig. 1.

5.2. The second-order exponential function solution

For the second auxiliary function, we take

f = f2 = 1 + eξ1 + eξ2 + a12e
ξ1+ξ2 , (13)

where a12 is the dispersion coefficient to be determined later. Substituting (13) into the bilinear form (7)

will reach

a12 =
16(k1 − k2)

2
+ α (w1 − w2) [α (w1 − w2)− 4 (k1 − k2)]

16 (k21 + k1k2 + k22) + α (w1 − w2) [α (w1 − w2)− 4 (k1 − k2)]
. (14)
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Further, we can verify the following proposition.

Proposition 1. For the auxiliary function composing of three exponential functions

f = 1 + eξi + eξj + aije
ξi+ξj , (15)

the dispersion coefficient aij satisfies the relationship

aij =
16(ki − kj)

2
+ α (wi − wj) [α (wi − wj)− 4 (ki − kj)]

16
(

k2i + kikj + k2j
)

+ α (wi − wj) [α (wi − wj)− 4 (ki − kj)]
, 1 ≤ i < j ≤ n. (16)

Through computation, it yields

fx = f2x = k1e
ξ1 + k2e

ξ2 + (k1 + k2) a12e
ξ1+ξ2 , (17)

fxx = f2xx = k21e
ξ1 + k22e

ξ2 + (k1 + k2)
2
a12e

ξ1+ξ2 . (18)

The substitution of (13), (17), (18) and (13) into (8), can derive the second-order exponential function

solution of Eq. (5), which may appear as two-solitons or single-breather.

Because of the inherent nonlinear properties of the equation, the interaction between waves can

emerge interesting and important characteristics. As the two-solitons interact, there exist engrossing

dynamics. Firstly, all the interactions between the solitons are elastic, namely, the spreading speeds and

amplitudes of these solitons will remain unchanged before and after the collisions. Secondly, their phases

may shift during the interaction process. Besides, there may exist the amplitude resonances when the

solitons collide. Fig. 2 demonstrates three typical examples: (i) Amplitude superposition resonance (see

Fig. 2(a)); (ii) Amplitude collapse resonance (see Fig. 2(b)); (iii) Collision without contact and without

amplitude variant (see Fig. 2(c)).

Especially, as the dispersion coefficients k1 and k2, w1 and w2 are taken as a pair of conjugate complex

numbers, namely, k2 = k∗1 , w1 = w∗
1 , here

∗ stands for the conjugate complex number of the indicated

constants, the solution (8) with (13) appears as single-breather (see Fig. 3).

Remark 1: For the sake to save space, we just give the graphs of the solution (8) with (13) under

the x− z− u with y = t = 0. In fact, the graphs of the solution under other five types of coordinates are

like this case. For the next higher-order solutions, we also do the same thing.

5.3. The third-order exponential function solution

In order to construct the third-order solution, it is sensible to take the auxiliary function f as

f = f3 = 1 +
3
∑

i=1

eξi +
∑

1≤i<j≤3

aije
ξi+ξj + a123e

3
∑

i=1

ξi
, (19)

where aij , 1 ≤ i < j ≤ 3 satisfies the relationship expression (16). More, the dispersion coefficient a123

can be verifies to satisfy the following constrain

a123 = a12a13a23. (20)
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Fig. 1: The single-soliton. The plots are given by the solution (8) with the auxiliary function (10), and the settings:

α = 1, β = 1, γ = 1, ξ10 = 0, k1 = 0.7, w1 = 1. (a) y = z = 0 under x − t − u coordinate; (b) z = t = 0 under x − y − u

coordinate; (c) y = t = 0 under x− z−u coordinate; (d) x = z = 0 under y− t−u coordinate; (e) x = t = 0 under y− z−u

coordinate; (f) x = y = 0 under z − t− u coordinate.

Fig. 2: The two-solitons. The plots are given by the solution (8) with the auxiliary function (13) under the x−z-coordinate,

and the settings: y = 0, t = 0, α = 1, β = 1, γ = 1, ξ10 = ξ20 = 0, and (a) k1 = −0.7, k2 = 0.8, w1 = 0.8, w2 = −0.75, (a)

k1 = 1.2, k2 = 0.6, w1 = 1.1, w2 = 0.7, (a) k1 = 1.2, k2 = 1.4, w1 = 1.1, w2 = 0.7.

Fig. 3: The single-breather. The plot is given by the solution (8) with the auxiliary function (13) under the x − z-

coordinate, and the settings: y = 0, t = 0, α = 1, β = 1, γ = 1, ξ10 = ξ20 = 0, and k1 = 0.4+0.8I, w1 = 0.3−0.5I, I =
√

−1,

k2 = k∗
1
, w2 = w∗

1
.
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Fig. 4: The three-solitons. The plots are given by the solution (8) with the auxiliary function (19), and the settings: y =

0, t = 0, α = 1, β = 1, γ = 1, w1 = 0.5, w2 = 0.1, w3 = 0.2, and (a) ξ10 = 0, ξ20 = 5, ξ30 = −2, k1 = −1.8, k2 = 1, k3 = 1.7,

(b) ξ10 = ξ20 = ξ30 = 0, k1 = 0.9, k2 = 1.2, k3 = 1.6, (c) ξ10 = ξ20 = ξ30 = 0, k1 = −1.2, k2 = −0.6, k3 = 1.2.

Furthermore, we naturally think to extend the above third-order auxiliary function f3 and its disper-

sion coefficient a123 to the general form. Therefore, we give the following proposition.

Proposition 2. For the general third-order auxiliary function

f = 1 + eξi + eξj + eξl + aije
ξi+ξj + aile

ξi+ξl + ajle
ξj+ξl + aijle

eξi+e
ξj+eξl , (21)

where 1 ≤ i < j < l ≤ n, the third-order dispersion coefficient aijl satisfies

aijl = aijailajl. (22)

From (19), ones can get

fx = f3x =

3
∑

i=1

kie
ξi +

∑

1≤i<j≤3

(ki + kj) aije
ξi+ξj +

(

3
∑

i=1

ki

)

a123e

3
∑

i=1

ξi
, (23)

fxx = f3xx =

3
∑

i=1

k2i e
ξi +

∑

1≤i<j≤3

(ki + kj)
2
aije

ξi+ξj +

(

3
∑

i=1

ki

)2

a123e

3
∑

i=1

ξi
. (24)

Thus, the three-order solution can be obtained by substituting of (19), (23) and (24) into (8).

If all the dispersion coefficients k1, k2, k3, w1, w2 and w3 are set as real constants, the three-order

solution exhibits as the three-solitons.

As the tree-solitons interact, there exist still amplitude resonant at the collision points displayed

in Fig. 4. In addition, the three-solitons possess certain new characteristics, for example, triangle-like

intersection as the constants ξ10, ξ20 and ξ30 in the expression (9) are taken at different values (see Fig.

4(a)).

Especially, as the two of the dispersion coefficients ki (i = 1, 2, 3) and the two of wi (i = 1, 2, 3) are

taken as a pair of conjugate complex numbers, the solution (8) with (19) displays the mixed single-solitons

and single-breather (see Fig. 5).

5.4. The fourth-order exponential function solution

For the fourth-order auxiliary function f4, we choose

f = f4 = 1 +
4
∑

i=1

eξi +
∑

1≤i<j≤4

aije
ξi+ξj +

∑

1≤i<j<l≤4

aijle
ξi+ξj+ξl + a1234e

4
∑

i=1

ξi
, (25)
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Fig. 5: The mixed single-soliton and single-breather. The plots are given by the solution (8) with the auxiliary function

(19), and the settings: y = 0, t = 0, α = 1, β = 1, γ = 1, ξ10 = ξ20 = ξ30 = 0, k1 = 0.4 + 0.7I, k2 = k∗
1
, k3 = 1.2, w1 =

0.4− 0.6I, w2 = w∗

1
, w3 = 0.3.

Fig. 6: The four-solitons. The plots are given by the solution (8) with the auxiliary function (25), and the settings:

y = 0, t = 0, α = 1, β = 1, γ = 1, and (a) ξ10 = −5, ξ20 = −8, ξ30 = 5, ξ40 = 15, k1 = −0.6, k2 = 0.5, k3 = −1.1, k4 = 0.8,

w1 = 1, w2 = 1.2, w3 = 1.3, w4 = 1.4, (b) ξ10 = ξ20 = ξ30 = ξ40 = 0, k1 = −0.6, k2 = 0.6, k3 = −1, k4 = 1, w1 = 1, w2 =

1.2, w3 = 1.3, w4 = 1.4, (c) ξ10 = ξ20 = ξ30 = ξ40 = 0, k1 = 0.4, k2 = 0.6, k3 = −1, k4 = 1, w1 = 0.1, w2 = 1.2, w3 =

−0.2, w4 = −0.1.
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Fig. 7: The mixed two-solitons and single-breather. The plots are given by the solution (8) with the auxiliary function (25),

and the settings: y = 0, t = 0, α = 1, β = 1, γ = 1, ξ10 = ξ20 = 0, ξ30 = −10, ξ40 = −16, k1 = 0.25 + 0.5I, k2 = k∗
1
, k3 =

0.9, k4 = −1.2, w1 = −0.4− 0.7I, w2 = w∗

2
, w3 = 0.6, w4 = 0.5, where I =

√

−1.

where aij and aijl satisfy the expression (16) and (22), respectively.

By calculation, we can find out that the forth-order dispersion coefficient a1234 must match the

relationship

a1234 = a12a13a14a23a24a34. (26)

From (25), we are able to calculate out

fx = f4x =

4
∑

i=1

kie
ξi +

∑

1≤i<j≤4

(ki + kj) aije
ξi+ξj

+
∑

1≤i<j<l≤4

(ki + kj + kl) aijle
ξi+ξj+ξl +

(

4
∑

i=1

ki

)

a1234e

4
∑

i=1

ξi
, (27)

fxx = f4xx =

4
∑

i=1

k2i e
ξi +

∑

1≤i<j≤4

(ki + kj)
2
aije

ξi+ξj

+
∑

1≤i<j<l≤4

(ki + kj + kl)
2
aijle

ξi+ξj+ξl +

(

4
∑

i=1

ki

)2

a1234e

4
∑

i=1

ξi
. (28)

By substituting (25), (27) and (28) into (8), the fourth-order solution can be attained for Eq. (5).

There are three types of combinations for the fourth-order solution: (i) The four-solitons as ki and

wi (i = 1, 2, 3, 4) taken as real numbers (see Fig. 6); (ii) The mixed two-solitons and single-breather as

one pair of ki (i = 1, 2, 3, 4) and one pair of wi (i = 1, 2, 3, 4) are taken complex numbers, and the others

as real numbers Fig. 7); (iii) The two-breathers as ki (i = 1, 2, 3, 4) taken as two pairs of conjugate

complex numbers Fig. 8).

Remark 2: Following the above schemes, the higher-order exponential function solutions (n > 4) of

Eq. (5) can be acquire. However, the computation complexity will increase exponentially as the order

increases.

6. Lump solutions

The lump solutions can be expressed by rational or semi-rational functions. So, to construct the

lump solution of Eq. (5), finding suitable rational auxiliary function f is critical. As the first step, we
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Fig. 8: The two-breathers. The plots are given by the solution (8) with the auxiliary function (25), and the settings:

y = 0, t = 0, α = 1, β = 1, γ = 1, ξ10 = ξ20 = ξ30 = ξ40 = 0, k1 = 0.3 + 0.6I, k2 = k∗
1
, k3 = 0.25 + 0.5I, k4 = k∗

3
,

w1 = w2 = 0.5, w3 = w4 = 1, where I =
√

−1.

now introduce a new series of transformations as

θi = x+ aiy + biz + cit+ θi0, (29)

where ai, bi, ci and θi0 are non-zero constants, and bi =
a2

i−ci

(

β+1+αai−
α2

4
ci

)

γ
, i ∈ {1, 2, 3, · · · , n}, n is a

positive integer.

6.1. The single-lump solution

For the single-lump solution, we construct the auxiliary function f as

f = f1lump = θ1θ2 + h12, (30)

where θ1 and θ2 are given by (29) as i = 1 and 2, respectively, h12 is an undetermined dispersion

coefficient.

By putting (30) into the bilinear expression (7), we can derive

h12 =
−12

(β + 1) (c1 + c2) + α (a1c2 + a2c1)− 2a1a2 + γ (b1 + b2)−
α2

2
c1c2

. (31)

It is easy to get

fx = (f1lump)x = θ1 + θ2, (32)

fxx = (f1lump)xx = 2. (33)

By substituting (30), (32) and (33) into (8), the single-lump solution is obtained.

Subsequently, we are able to verify following proposition.

Proposition 3. For the auxiliary function

f = f1lump = θlθk + hlk, 1 < l < k ≤ n, (34)

where θl and θk are given by (29) with i = l, k, the dispersion coefficient hlk satisfies

hlk =
−12

(β + 1) (cl + ck) + α (alck + akcl)− 2alak + γ (bl + bk)−
α2

2
clck

. (35)

The Fig. 9 shows the profile of the single-lump solution (8) with (30) in all the six coordinates, which

is localized to all the variables with one peak and two troughs.
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Fig. 9: The single-lump. The plots are given by the solution (8) with the auxiliary function (36), and the settings:

α = 1, β = 1, γ = 1, θ10 = θ20 = 0, a1 = 1 − I, a2 = a∗
1
, c1 = 0.5 − 0.7I, c2 = c∗

1
, where I =

√

−1, (a) y = z = 0 under

x − t − u coordinate; (b) z = t = 0 under x − y − u coordinate; (c) y = t = 0 under x − z − u coordinate; (d) x = z = 0

under y − t− u coordinate; (e) x = t = 0 under y − z − u coordinate; (f) x = y = 0 under z − t− u coordinate.

6.2. The two-lump solution

In order to obtain the two-lump solution, we choose the auxiliary function f as

f = f2lump =

4
∏

i=1

θi + h34θ1θ2 + h24θ1θ3 + h23θ1θ4 + h14θ2θ3 + h13θ2θ4 + h12θ3θ4 + h1234, (36)

where θi is given by (29) with i = 1, 2, 3, 4, hlk (1 ≤ l < k ≤ 4) is given by (35), h1234 is the undetermined

second-order coefficient.

Through the substitution of (36) into (7), we find out h1234 have to satisfy

h1234 = h12h34 + h13h24 + h14h23. (37)

Then, we can attain

fx = (f2lump)x = θ2θ3θ4 + θ1 (θ2θ3 + θ2θ4 + θ3θ4) + (h23 + h24 + h34) θ1

+(h13 + h14 + h34) θ2 + (h12 + h14 + h24) θ3 + (h12 + h13 + h23) θ4, (38)

fxx = (f2lump)xx = 2 [θ1 (θ2 + θ3 + θ4) + θ2 (θ3 + θ4) + θ3θ4

+h12 + h13 + h14 + h23 + h24 + h34]. (39)

The two-lump solution can be obtained by substituting (36), (38) and (39) into (8).

We discover there are two types of interaction characteristics between two-lumps by taking the dis-

persion coefficients at the proper values: (i) Splitting behavior. The interaction between the two-lumps

start from two completely separated lumps (see Fig. 10(a)). Then, the two lumps are evolving into a
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Fig. 10: The splitting of the two-lumps. The plots are given by the solution (8) with the auxiliary function (36), and the

settings: y = 0, t = 0, α = 1, β = 1, γ = 1, θ10 = θ20 = θ30 = θ40 = 0, (a) a1 = 0.3 − 0.2I, a2 = a∗
1
, a3 = 0.4 + 0.8I, a4 =

a∗
3
, c1 = 0.5+0.5I, c2 = c∗

1
, c3 = 1.3+0.5I, c4 = c∗

3
, (b) a1 = 0.3−0.6I, a2 = a∗

1
, a3 = 0.4+0.8I, a4 = a∗

3
, c1 = 0.5+0.5I, c2 =

c∗
1
, c3 = 1.3+0.5I, c4 = c∗

3
, (c) a1 = 0.3−0.12I, a2 = a∗

1
, a3 = 0.4+0.8I, a4 = a∗

3
, c1 = 0.5+0.5I, c2 = c∗

1
, c3 = 1.1+1I, c4 =

c∗
3
, (d) a1 = 0.3− 0.6I, a2 = a∗

1
, a3 = 0.4 + 0.8I, a4 = a∗

3
, c1 = 0.5 + 0.2I, c2 = c∗

1
, c3 = 1.3 + 0.3I, c4 = c∗

3
, where I =

√

−1.

linked state (see Fig. 10(b) ). Subsequently, they are gradually generating two new lumps (see Fig. 10(c)

and (d)). (ii) Fusing behavior. The separated two-lumps may gradually merge into one lump. What’s

even more amazing is that the amplitude after the fusion is remained unchanged. The fusing process is

exhibited in Fig. 11.

The results are not only greatly different the amplitude resonance effect for the multiple-solitons

observed in the above section, but also different the two-lumps interaction of the (2+1)-dimensional

MWL equation (3), where the two-lumps do not split and fuse under the same settings.

Remark 3: Following the above schemes, the higher-order rational function or multiple lump solu-

tions (n > 2) of Eq. (5) can also be attained. This is secured for the integrability of Eq. (5) confirmed in

Section 3. However, the computation complexity will also increase exponentially as the order n increases.

7. Conclusions

In this work, a new (3+1)-dimensional KP equation was first proposed to portrait more dispersion

effect in nonlinear science. We used the Painlevé analysis method to study the compatibility conditions to

ensure the integrability. Then, its bilinear form was derived. By smart choices for the auxiliary function

in the bilinear form, higher-order exponential function solutions are obtained which can exhibit multiple-

solitons, multiple-breathers or their mixed forms. The rational function solutions for this equation also

attained which can display lumps. This work further proved the complete integrability of the newly

developed equation, as it admits the bilinear representation, and N-soliton solutions.
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Fig. 11: The fusion of the two-lumps. The plots are given by the solution (8) with the auxiliary function (36), and the

settings: y = 0, t = 0, α = 1, β = 1, γ = 1, θ10 = θ20 = θ30 = θ40 = 0, a1 = 0.3−0.2I, a2 = a∗
1
, a3 = 0.5+0.1I, a4 = a∗

3
, c1 =

0.5 + 0.5I, c2 = c∗
1
, and different c3 and c4 (a) c3 = 0.5 + 0.9I, (b) c3 = 0.5 + 0.6I, (c) c3 = 0.5 + 0.5I, (d) c3 = 0.5 + 0.4I,

and c4 = c∗
3
, where I =

√

−1.

Furthermore, some interesting interaction behaviors between these waves are observed, such as elastic

collision, phase transition, amplitude resonance effect.

It is very magical that the two-lumps may split into four and fuse into one. This result is also rare

in the previous literatures within our best knowledge. Actually, the MWL equation (3) does not possess

this novel property (also refer [36]).

We would like to think this new (3+1)-dimensional model and the research on it may be of favor

on opening a new insight for future nonlinear evolution systems. The more study on other integrable

properties and other exact solutions of this new integrable model is worthwhile in the future.
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