Reference
Baldos, A.P., Corre, M.D. & Veldkamp, E. (2015). Response of N cycling to nutrient inputs in forest soils across a 1000-3000 m elevation gradient in the Ecuadorian Andes. Ecology, 96, 749-761.
Bonde,T.A., Schnürer, J. & Rosswall, T. (1988). Microbial biomass as a fraction of potentially mineralizable nitrogen in soils from long-term field experiments, Soil Biol. Biochem., 20, 447-452.
Borken, W., Beese, F., Brumme, R. & Lamersdorf, N. (2002). Long-term reduction in nitrogen and proton inputs did not affect atmospheric methane uptake and nitrous oxide emission from a German spruce forest soil. Soil Biol. Biochem., 34, 1815-1819.
Bradley, K., Drijber, R.A. & Knops, J. (2006). Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem., 38, 1583-1595.
Canfield, D.E., Glazer, A.N. & Falkowski, P.G. (2010). The evolution and future of Earth’s nitrogen cycle. Science, 330, 192-196.
Chen, Y. & Hogberg, P. (2006). Gross nitrogen mineralization rates still high 14 years after suspension of N input to a N-saturated forest. Soil Biol. Biochem., 38, 2001-2003.
Clark, C.M., Hobbie, S.E., Venterea, R. & Tilman, D. (2009). Long-lasting effects on nitrogen cycling 12 years after treatments cease despite minimal long-term nitrogen retention. Glob. Chang. Biol., 15, 1755-1766.
Coskun, D., Britto, D.T., Shi, W. & Kronzucker, H.J. (2017). Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nature Plants, 3, 17074.
Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., et al. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528, 504-509.
Daebeler, A., Bodelier, P.L.E., Hefting, M.M. & Laanbroek, H.J. (2015) Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic grassland soil. FEMS Microbiology Ecology, 91, fiv014.
Di, H.J., Cameron, K.C., Shen, J.P., Winefield, C.S., O’Callaghan, M., Bowatte, S. & He, J.Z. (2009). Nitrification driven by bacteria and not Archaea in nitrogen‐rich grassland soils. Nature Geoscience, 2, 621-624.
Galloway, J.N. (2008). Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science, 320, 889-892.
Geisseler, D., Lazicki, P.A. & Scow, K.M. (2016). Mineral nitrogen input decreases microbial biomass in soils under grasslands but not annual crops. Applied SoilEcology, 106, 1e10.
Gruber, N. & Galloway, J.N. (2008). An Earth-system perspective of the
global nitrogen cycle. Nature, 451, 293-296.
Habteselassie, M.Y., Xu, L. & Norton, J.M. (2013). Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Frontiers in Microbiology 4, 326.
Hajari, E., Snyman, S.J. & Watt, M.P. (2014). Inorganic nitrogenuptake kinetics of sugarcane (Saccharum spp.) varieties underin vitro conditions with varying N supply. Plant Cell Tiss. Org., 117, 361-371.
Johnson NC (1993) Can fertilization of soil select less mutualistic mycorrhizae? Ecological Applications, 3, 749-757
Kits, K.D., Sedlacek, C.J., Lebedeva, E.V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., et al. (2017). Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 549, 269-272.
Koch, H., van Kessel, M.A.H.J., & Lücker, S. (2019). Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biot., 103, 177-189.
Langfelder, P., & Horvath, S. (2012). Fast R functions for robust correlations and hierarchical clustering. J. Stat. Softw., 46, 1-17.
Li, C., Hu, H.W., Chen,Q.L., Chen, D. & He, J.Z. (2019). Comammox Nitrospira play an active role in nitrification of agricultural soils amended with nitrogen fertilizers. Soil Biol. Biochem., 138, 107609.
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H.Y.H., Xu, X., et al. (2019). Microbes drive global soil nitrogen mineralization and availability. Glob. Chang. Biol., 25, 1078-1088.
Liu, J.G., You, L.Z., Amini, M., Obersteiner, M., Herrero, M., Zehnder, A.J.B. & Yang, H. (2010). A high-resolution assessment on global nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA, 107, 8035-8040.
Lu, L., Han, W., Zhang, J., Wu, Y., Wang, B., Lin, X., Zhu, J., et al. (2012). Nitrification of archaeal ammonia oxidizers in acid soils is supported by hydrolysis of urea. ISME J., 6, 1978-1984.
Liu, X.J., Vitousek, P., Chang, Y.H., Zhang, W.F., Matson, P. & Zhang, F.S. (2016). Evidence for a historic change occurring in China. Environmental Science & Technology, 50, 505-506.
Liu, L. & Greaver, T.L. (2010). A global perspective on belowground carbon dynamics under nitrogen enrichment. Ecol. Lett., 13, 819-828.
Lu, M., Yang, Y., Luo, Y., Fang, C., Zhou, X., Chen, J., Yang, X. & Li, B. (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis.New Phytologist, 189, 1040-1050.
Martens-Habbena, W., Berube, P., Urakawa, H., de la Torre, J.R., Stahl, D.A. (2009). Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature, 461, 976-979.
Niu, S., Classen, A.T., Dukes, J.S., Kardol, P., Liu, L., Luo, Y., Rustad, L., et al. (2016).Global patterns and substrate‐based mechanisms of the terrestrial nitrogen cycle. Ecol. Lett., 19, 697-709.
O’Sullivan, O.S., Horswill, P., Phoenix, G.K., Lee, J.A. & Leake, J.R. (2011). Recovery of soil nitrogen pools in species-rich grasslands after 12 years of simulated pollutant nitrogen deposition: a 6-year experimental analysis. Glob. Chang. Biol., 17, 2615-2628.
Ouyang, Y., Norton, J.M., Stark, J.M., Reeve, J.R. & Habteselassie, M.Y. (2016). Ammonia-oxidizing bacteria are more responsive than archaea to nitrogen source in an agricultural soil. Soil Biol. Biochem., 96, 4-15.
Ouyang, Y., Norton, J.M. & Stark, J.M. (2017). Ammonium availability and temperature control contributions of ammonia oxidizing bacteria and archaea to nitrification in an agricultural soil, Soil Biol. Biochem., 113, 161-172.
Ouyang, Y., Evans, S.E., Friesen, M.L. & Tiemann, L.K. (2018). Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem., 127, 71-78.
Riggs, C.E., Hobbie, S.E., Bach, E.M., Hofmockel, K.S. & Kazanski, C.E. (2015). Nitrogen addition changes grassland soil organic matter decomposition. Biogeochemistry, 125, 203-219.
Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C.W., van Kessel, M.A.H.J., Daebeler, A., Steinberger, M., et al. (2017). AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Frontiers in Microbiology, 8, 1508.
Pilkington, M.G., Caporn, S.J.M., Carroll, J.A., Cresswell, N., Lee, J.A., Reynolds, B. & Emmett, B.A. (2005). Effects of increased deposition of atmospheric nitrogen on an upland moor: nitrogen budgets and nutrient accumulation. Environmental Pollution,138, 473-484.
Rotthauwe, J.H., Witzel, K.P. & Liesack, W. (1997). The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine‐scale analysis of natural ammonia‐oxidizing populations. Applied and Environmental Microbiology, 63, 4704-4712.
Santoro, A.E. (2016). The do-it-all nitrifier. Science. 351, 342-343.
Schlesinger, W.H. (2009). On the fate of anthropogenic nitrogen. Proc. Natl Acad. Sci., 106, 203-208. https://doi.org/10.1073/pnas.0810193105
Shcherbak, I., Millar, N. & Robertson, G.P. (2014). Global meta analysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl Acad. Sci., 111, 9199–9204.
Shen, J.P., Zhang, L.M., Zhu, Y.G., Zhang, J.B. & He, J.Z. (2008). Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 10, 1601-1611.
Shi, S., Yu, Z. & Zhao, Q. (2014). Responses of plant diversity and species composition to the cessation of fertilization in a sandy grassland. J. For. Res., 25, 337–342
Sillen, W.M.A. & Dieleman, W.I.J. (2012). Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: a meta-analysis. Biogeosciences, 9, 2247-2258.
Storkey, J., Macdonald, A.J., Poulton, P.R., Scott, T., Kohler, I.H., Schnyder, H., Goulding, K.W.T. & Crawley, M.J. (2015). Grassland biodiversity bounces back from long-term nitrogen addition. Nature, 528, 401-404.
Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A., Grennfelt, P., Van Grinsven, H. & Grizzetti, B. (Eds.), (2011). The European Nitrogen Assessment: Sources, Effects and Policy Perspectives. Cambridge University Press, Cambridge.
Stevens, C.J. (2016). How long do ecosystems take to recover from atmospheric nitrogen deposition? Biological Conservation, 200, 160-167.
van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J. M., Kartal, B., Jetten, M.S.M., et al. (2015). Complete nitrification by a single microorganism. Nature, 528, 555–559.
Vance, E.D., Brookes, P.C. & Jenkinson, D.S. (1987). An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem., 19, 703-707.
Verhamme, D.T., Prosser, J.I. & Nicol, G.W. (2011). Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J., 5, 1067–1071.
Vinton, M.A. & Burke, I.C. (1995). Interactions between individual plant species and soil nutrient status in shortgrass steppe. Ecology, 76, 1116-1133.
Wang, C., Wang, N., Zhu, J., Liu, Y., Xu, X., Niu, S., Yu, G., et al. (2018). Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 32, 83-94.
Wang, Z., Cao, Y., Zhu-Barker, X., Nicol, GW.,Wright, AL., Jia, Z. & Jiang, X. (2019). Comammox Nitrospira clade B contributes to nitrification in soil, Soil Biol. Biochem., 135, 392-395.
Xiao, R., Qiu, Y., Tao, J., Zhang, X., Chen, H., Reberg-Horton, S.C., Shi, W., et al. (2020). Biological controls over the abundances of terrestrial ammonia oxidizers. Global Ecol. Biogeogr., 29, 384-399.