Reference
Baldos, A.P., Corre, M.D. & Veldkamp, E. (2015). Response of N cycling
to nutrient inputs in forest soils across a 1000-3000 m elevation
gradient in the Ecuadorian Andes. Ecology, 96, 749-761.
Bonde,T.A., Schnürer, J. & Rosswall, T. (1988). Microbial biomass as a
fraction of potentially mineralizable nitrogen in soils from long-term
field experiments, Soil Biol. Biochem., 20, 447-452.
Borken, W., Beese, F., Brumme, R. & Lamersdorf, N. (2002). Long-term
reduction in nitrogen and proton inputs did not affect atmospheric
methane uptake and nitrous oxide emission from a German spruce forest
soil. Soil Biol. Biochem., 34, 1815-1819.
Bradley, K., Drijber, R.A. & Knops, J. (2006). Increased N availability
in grassland soils modifies their microbial communities and decreases
the abundance of arbuscular mycorrhizal fungi. Soil Biol. Biochem., 38,
1583-1595.
Canfield, D.E., Glazer, A.N. & Falkowski, P.G. (2010). The evolution
and future of Earth’s nitrogen cycle. Science, 330, 192-196.
Chen, Y. & Hogberg, P. (2006). Gross nitrogen mineralization rates
still high 14 years after suspension of N input to a N-saturated forest.
Soil Biol. Biochem., 38, 2001-2003.
Clark, C.M., Hobbie, S.E., Venterea, R. & Tilman, D. (2009).
Long-lasting effects on nitrogen cycling 12 years after treatments cease
despite minimal long-term nitrogen retention. Glob. Chang. Biol., 15,
1755-1766.
Coskun, D., Britto, D.T., Shi, W. & Kronzucker, H.J. (2017). Nitrogen
transformations in modern agriculture and the role of biological
nitrification inhibition. Nature Plants, 3, 17074.
Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen,
M., et al. (2015). Complete nitrification by Nitrospira bacteria.
Nature, 528, 504-509.
Daebeler, A., Bodelier, P.L.E., Hefting, M.M. & Laanbroek, H.J. (2015)
Ammonia-limited conditions cause of Thaumarchaeal dominance in volcanic
grassland soil. FEMS Microbiology Ecology, 91, fiv014.
Di, H.J., Cameron, K.C., Shen, J.P., Winefield, C.S., O’Callaghan, M.,
Bowatte, S. & He, J.Z. (2009). Nitrification driven by bacteria and not
Archaea in nitrogen‐rich grassland soils. Nature Geoscience, 2, 621-624.
Galloway, J.N. (2008). Transformation of the nitrogen cycle: Recent
trends, questions, and potential solutions. Science, 320, 889-892.
Geisseler, D., Lazicki, P.A. & Scow, K.M. (2016). Mineral nitrogen
input decreases microbial biomass in soils under grasslands but not
annual crops. Applied SoilEcology, 106, 1e10.
Gruber, N. & Galloway, J.N. (2008). An Earth-system perspective of the
global nitrogen cycle. Nature, 451, 293-296.
Habteselassie, M.Y., Xu, L. & Norton, J.M. (2013). Ammonia-oxidizer
communities in an agricultural soil treated with contrasting nitrogen
sources. Frontiers in Microbiology 4, 326.
Hajari, E., Snyman, S.J. & Watt, M.P. (2014). Inorganic nitrogenuptake
kinetics of sugarcane (Saccharum spp.) varieties underin vitro
conditions with varying N supply. Plant Cell Tiss. Org., 117, 361-371.
Johnson NC (1993) Can fertilization of soil select less mutualistic
mycorrhizae? Ecological Applications, 3, 749-757
Kits, K.D., Sedlacek, C.J., Lebedeva, E.V., Han, P., Bulaev, A., Pjevac,
P., Daebeler, A., et al. (2017). Kinetic analysis of a complete
nitrifier reveals an oligotrophic lifestyle. Nature, 549, 269-272.
Koch, H., van Kessel, M.A.H.J., & Lücker, S. (2019). Complete
nitrification: insights into the ecophysiology of comammox Nitrospira.
Appl. Microbiol. Biot., 103, 177-189.
Langfelder, P., & Horvath, S. (2012). Fast R functions for robust
correlations and hierarchical clustering. J. Stat. Softw., 46, 1-17.
Li, C., Hu, H.W., Chen,Q.L., Chen, D. & He, J.Z. (2019). Comammox
Nitrospira play an active role in nitrification of agricultural soils
amended with nitrogen fertilizers. Soil Biol. Biochem., 138, 107609.
Li, Z., Tian, D., Wang, B., Wang, J., Wang, S., Chen, H.Y.H., Xu, X., et
al. (2019). Microbes drive global soil nitrogen mineralization and
availability. Glob. Chang. Biol., 25, 1078-1088.
Liu, J.G., You, L.Z., Amini, M., Obersteiner, M., Herrero, M., Zehnder,
A.J.B. & Yang, H. (2010). A high-resolution assessment on global
nitrogen flows in cropland. Proc. Natl. Acad. Sci. USA, 107, 8035-8040.
Lu, L., Han, W., Zhang, J., Wu, Y., Wang, B., Lin, X., Zhu, J., et al.
(2012). Nitrification of archaeal ammonia oxidizers in acid soils is
supported by hydrolysis of urea. ISME J., 6, 1978-1984.
Liu, X.J., Vitousek, P., Chang, Y.H., Zhang, W.F., Matson, P. & Zhang,
F.S. (2016). Evidence for a historic change occurring in China.
Environmental Science & Technology, 50, 505-506.
Liu, L. & Greaver, T.L. (2010). A global perspective on belowground
carbon dynamics under nitrogen enrichment. Ecol. Lett., 13, 819-828.
Lu, M., Yang, Y., Luo, Y., Fang, C., Zhou, X., Chen, J., Yang, X. & Li,
B. (2011). Responses of ecosystem nitrogen cycle to nitrogen addition: a
meta-analysis.New Phytologist, 189, 1040-1050.
Martens-Habbena, W., Berube, P., Urakawa, H., de la Torre, J.R., Stahl,
D.A. (2009). Ammonia oxidation kinetics determine niche separation of
nitrifying Archaea and Bacteria. Nature, 461, 976-979.
Niu, S., Classen, A.T., Dukes, J.S., Kardol, P., Liu, L., Luo, Y.,
Rustad, L., et al. (2016).Global patterns and substrate‐based mechanisms
of the terrestrial nitrogen cycle. Ecol. Lett., 19, 697-709.
O’Sullivan, O.S., Horswill, P., Phoenix, G.K., Lee, J.A. & Leake, J.R.
(2011). Recovery of soil nitrogen pools in species-rich grasslands after
12 years of simulated pollutant nitrogen deposition: a 6-year
experimental analysis. Glob. Chang. Biol., 17, 2615-2628.
Ouyang, Y., Norton, J.M., Stark, J.M., Reeve, J.R. & Habteselassie,
M.Y. (2016). Ammonia-oxidizing bacteria are more responsive than archaea
to nitrogen source in an agricultural soil. Soil Biol. Biochem., 96,
4-15.
Ouyang, Y., Norton, J.M. & Stark, J.M. (2017). Ammonium availability
and temperature control contributions of ammonia oxidizing bacteria and
archaea to nitrification in an agricultural soil, Soil Biol. Biochem.,
113, 161-172.
Ouyang, Y., Evans, S.E., Friesen, M.L. & Tiemann, L.K. (2018). Effect
of nitrogen fertilization on the abundance of nitrogen cycling genes in
agricultural soils: A meta-analysis of field studies. Soil Biol.
Biochem., 127, 71-78.
Riggs, C.E., Hobbie, S.E., Bach, E.M., Hofmockel, K.S. & Kazanski, C.E.
(2015). Nitrogen addition changes grassland soil organic matter
decomposition. Biogeochemistry, 125, 203-219.
Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C.W., van Kessel,
M.A.H.J., Daebeler, A., Steinberger, M., et al. (2017). AmoA-targeted
polymerase chain reaction primers for the specific detection and
quantification of comammox Nitrospira in the environment. Frontiers in
Microbiology, 8, 1508.
Pilkington, M.G., Caporn, S.J.M., Carroll, J.A., Cresswell, N., Lee,
J.A., Reynolds, B. & Emmett, B.A. (2005). Effects of increased
deposition of atmospheric nitrogen on an upland moor: nitrogen budgets
and nutrient accumulation. Environmental Pollution,138, 473-484.
Rotthauwe, J.H., Witzel, K.P. & Liesack, W. (1997). The ammonia
monooxygenase structural gene amoA as a functional marker: Molecular
fine‐scale analysis of natural ammonia‐oxidizing populations. Applied
and Environmental Microbiology, 63, 4704-4712.
Santoro, A.E. (2016). The do-it-all nitrifier. Science. 351, 342-343.
Schlesinger, W.H. (2009). On the fate of anthropogenic nitrogen. Proc.
Natl Acad. Sci., 106, 203-208. https://doi.org/10.1073/pnas.0810193105
Shcherbak, I., Millar, N. & Robertson, G.P. (2014). Global meta
analysis of the nonlinear response of soil nitrous oxide
(N2O) emissions to fertilizer nitrogen. Proc. Natl Acad.
Sci., 111, 9199–9204.
Shen, J.P., Zhang, L.M., Zhu, Y.G., Zhang, J.B. & He, J.Z. (2008).
Abundance and composition of ammonia-oxidizing bacteria and
ammonia-oxidizing archaea communities of an alkaline sandy loam.
Environmental Microbiology, 10, 1601-1611.
Shi, S., Yu, Z. & Zhao, Q. (2014). Responses of plant diversity and
species composition to the cessation of fertilization in a sandy
grassland. J. For. Res., 25, 337–342
Sillen, W.M.A. & Dieleman, W.I.J. (2012). Effects of elevated
CO2 and N fertilization on plant and soil carbon pools
of managed grasslands: a meta-analysis. Biogeosciences, 9, 2247-2258.
Storkey, J., Macdonald, A.J., Poulton, P.R., Scott, T., Kohler, I.H.,
Schnyder, H., Goulding, K.W.T. & Crawley, M.J. (2015). Grassland
biodiversity bounces back from long-term nitrogen addition. Nature, 528,
401-404.
Sutton, M.A., Howard, C.M., Erisman, J.W., Billen, G., Bleeker, A.,
Grennfelt, P., Van Grinsven, H. & Grizzetti, B. (Eds.), (2011). The
European Nitrogen Assessment: Sources, Effects and Policy Perspectives.
Cambridge University Press, Cambridge.
Stevens, C.J. (2016). How long do ecosystems take to recover from
atmospheric nitrogen deposition? Biological Conservation, 200, 160-167.
van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den
Camp, H.J. M., Kartal, B., Jetten, M.S.M., et al. (2015). Complete
nitrification by a single microorganism. Nature, 528, 555–559.
Vance, E.D., Brookes, P.C. & Jenkinson, D.S. (1987). An extraction
method for measuring soil microbial biomass C. Soil Biol. Biochem., 19,
703-707.
Verhamme, D.T., Prosser, J.I. & Nicol, G.W. (2011). Ammonia
concentration determines differential growth of ammonia-oxidising
archaea and bacteria in soil microcosms. ISME J., 5, 1067–1071.
Vinton, M.A. & Burke, I.C. (1995). Interactions between individual
plant species and soil nutrient status in shortgrass steppe. Ecology,
76, 1116-1133.
Wang, C., Wang, N., Zhu, J., Liu, Y., Xu, X., Niu, S., Yu, G., et al.
(2018). Soil gross N ammonification and nitrification from tropical to
temperate forests in eastern China. Functional Ecology, 32, 83-94.
Wang, Z., Cao, Y., Zhu-Barker, X., Nicol, GW.,Wright, AL., Jia, Z. &
Jiang, X. (2019). Comammox Nitrospira clade B contributes to
nitrification in soil, Soil Biol. Biochem., 135, 392-395.
Xiao, R., Qiu, Y., Tao, J., Zhang, X., Chen, H., Reberg-Horton, S.C.,
Shi, W., et al. (2020). Biological controls over the abundances of
terrestrial ammonia oxidizers. Global Ecol. Biogeogr., 29, 384-399.