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Summary

In this paper, we propose an inertial algorithm for solving split equality of mono-
tone inclusion and f -fixed point of Bregman relatively f -nonexpansive mapping
problems in reflexive real Banach spaces. Using the Bregman distance function, we
prove a strong convergence theorem for the algorithm produced by the method in
real reflexive Banach spaces. As an application, we provide several applications of
our method. Furthermore, we give a numerical example to demonstrate the behavior
of the convergence of the algorithm.
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1 INTRODUCTION

Let E be a reflexive real Banach space with its dual E∗. Let f ∶ E → (−∞,+∞] be a function. We denote the domain of
f by domf , that is, domf = {x ∈ E ∶ f (x) < ∞}. A function f is said to be proper if domf ≠ ∅. It is said to be lower
semi-continuous if the set {x ∈ E ∶ f (x) ≤ r} is closed for all r ∈ ℝ. The function f is called convex if f (�x + (1 − �)y) ≤
�f (x) + (1 − �)f (y) for all x, y ∈ E and � ∈ [0, 1]. The function f is called uniformly convex if there exists a continuous
increasing function  ∶ [0,+∞)→ ℝ,  (0) = 0, such that f (tx + (1 − t)y) ≤ tf (x) + (1 − t)f (y) − t(1 − t) (‖x − y‖), for all
x, y ∈ domf . The function  is called a modulus of convexity of f . It is called strongly convex if f is uniformly convex with
the modulus of convexity  (t) = ct2, c > 0. A function f is said to be strongly coercive if lim

‖x‖→+∞
f (x)
‖x‖

= +∞.
For a proper, lower semi-continuous and convex function f ∶ E → (−∞,+∞], the subdifferential of f at x is defined by

)f (x) = {x∗ ∈ E∗ ∶ f (y) − f (x) ≥ ⟨y − x, x∗⟩ ,∀y ∈ E}.

The Fenchel conjugate of f is a function f ∗ ∶ E∗ → (−∞,+∞] defined by

f ∗(x∗) = sup{⟨x, x∗⟩ − f (x) ∶ x ∈ E}.
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For any x ∈ int(domf ) and any y ∈ E, we denote by f 0(x, y) the right-hand derivative of f at x in the direction of y, that is,

f 0(x, y) = lim
t→0+

f (x + ty) − f (x)
t

. (1)

The function f is called Gâteaux differentiable at x if the limit (1) exists for any y ∈ E. In this case, the gradient of f at x,
∇f (x), coincides with f 0(x, y) for all y ∈ E. It is called Gâteaux differentiable if it is Gâteaux differentiable at every point
x ∈ int(domf ). We note that if the subdifferential of f is single-valued, then )f = ∇f . The function f is said to be Fréchet
differentiable at x if the limit (1) is attained uniformly for every y ∈ E with ‖y‖ = 1 and f is said to be uniformly Fréchet
differentiable on a subset C of E if the limit (1) is attained uniformly for x ∈ C and ‖y‖ = 1. If f is a uniformly convex and
Gâteaux differentiable function in (domf ) with modulus of convexity  , then ⟨x− y,∇f (x) − ∇f (y)⟩ ≥ 2 (‖x− y‖),∀x, y ∈
domf , or equivalently, f (y) ≥ f (x) + ⟨y − x,∇f (x)⟩ +  (‖x − y‖),∀x, y ∈ domf . If a function f is strongly convex with
constant � > 0 and Gâteaux differentiable in (domf ), then ⟨x−y,∇f (x)−∇f (y)⟩ ≥ �‖x−y‖2,∀x, y ∈ domf , or equivalently,
f (y) ≥ f (x) + ⟨y − x,∇f (x)⟩ + �

2
‖x − y‖2,∀x, y ∈ domf . Note that, if f is strongly convex with constant �, then f ∗ has

a Lipschitz gradient with parameter 1
�
and if f has a Lipschitz gradient with parameter L, then f ∗ is strongly convex with

parameter 1
L
(see,34). If E is a smooth and strictly convex Banach space, the function f (x) = ‖x‖2,∀x ∈ E is strongly convex

with constant � ∈ (0, 1] (see, Phelps13).
A function f ∶ E → (−∞,+∞] is called Legendre if it satisfies the following two properties:

(L1) the interior of the domain of f , int(domf ), is nonempty, f is Gâteaux differentiable and dom(∇f ) = int(domf );

(L2) the interior of the domain of f ∗, int(domf ∗), is nonempty, f ∗ is Gâteaux differentiable and dom(∇f ∗) = int(domf ∗);

One of the important and interesting Legendre function in a smooth and strictly convex Banach space is f (x) = 1
p
‖x‖p (1 < p <

+∞) with its conjugate function f ∗(x∗) = 1
q
‖x∗‖q (1 < q < +∞) (see, for example, Bauschke2 and Bauschke et al.3), where

1
p
+ 1

q
= 1. In this case, the gradient of f ,∇f , coincides with the generalized duality mapping, Jp, of E, that is,∇f = Jp, where

Jp ∶ E → 2E∗ is defined by

Jp(x) = {y∗ ∈ E∗ ∶ ⟨x, y∗⟩ = ‖x‖p, ‖f‖ = ‖x‖p−1},∀x ∈ E.

If p = 2, we write J2 = J , called the normalized duality mapping and if E = H , a real Hilbert space, then J = I , where I is
the identity mapping onH . If the function f is a Legendre function and E is a reflexive Banach space, then ∇f ∗ = (∇f )−1(see,
Bonnans and Shapiro4).
Let f ∶ E → (−∞,∞] be a Gâteaux differentiable convex function. A mapping T ∶ E → E∗ is said to be f -nonexpansive if

‖Tx − T y‖ ≤ ‖∇f (x) − ∇f (y)‖,

for all x, y ∈ E. The set of f -fixed points of a mapping T denoted by Ff (T ) is defined by Ff (T ) = {p ∶ T p = ∇f (p)}.
A point x ∈ E is called an f -asymptotic fixed point31 of T if E contains a sequence {xn} which converges weakly to x and
limn→∞ ‖T (xn) − ∇f (xn)‖ = 0. We denote the set of asymptotic fixed points of T by F̃f (T ).
Let f ∶ E → (−∞,+∞] be a Gâteaux differentiable convex function. The function Df ∶ domf × int(domf ) → [0,+∞),

defined by
Df (y, x) = f (y) − f (x) − ⟨y − x,∇f (x)⟩,∀x, y ∈ E. (2)

is called the Bregman distance with respect to f (see, Bregman5).
The Bregman distance has the following two important properties (see, Reich and Sabach15), called the three-point identity: for
any x ∈ domf and y, z ∈ int(domf ),

Df (x, y) +Df (y, z) −Df (x, z) = ⟨x − y,∇f (z) − ∇f (y)⟩, (3)

and the four-point identity: for any y,w ∈ domf and x, z ∈ int(domf ),

Df (y, x) −Df (y, z) −Df (w, x) +Df (w, z) = ⟨y −w,∇f (z) − ∇f (x)⟩. (4)

Note that if E is a smooth and strictly convex Banach space and f (x) = 1
2
‖x‖2 for all x ∈ E, then we have that ∇f = J , where

J is the normalized duality mapping from E into 2E∗ and the Bregman distance with respect to f ,Df , reduces to the Lyapunov
functional � ∶ E × E → [0,+∞) defined by

�(y, x) = ‖y‖2 − 2⟨y, Jx⟩ + ‖x‖2,∀x, y ∈ E. (5)
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Definition 1. (Wega and Zegeye31) A mapping T is called a Bregman relatively f -nonexpansive if

Df (p,∇f ∗(Tx)) ≤ Df (p, x),∀x ∈ E, p ∈ F̃f (T ) and Ff (T ) = F̃f (T ) ≠ ∅.

We remark that if f (x) = 1
2
‖x‖2, for all x ∈ E, then ∇f = J and Df (y, x) = �(y, x) for all x, y ∈ E and hence

the f -nonexpansive and Bregman relatively f -nonexpansive mappings reduce to the semi-nonexpansive and �-relatively J -
nonexpansive mappings, respectively. Moreover, f -fixed point and f -asymptotic fixed point of T reduce to semi-fixed point and
semi-asymptotic fixed point of T , respectively. If, in addition, E = H , a real Hilbert space, then f -nonexpansive and Bregman
relatively f -nonexpansive mappings become nonexpansive and relatively nonexpansive mappings, respectively.
A mapping A ∶ E → E∗ is called monotone if

⟨x − y, A(x) − A(y)⟩ ≥ 0,∀x, y ∈ E.

It is called �-inverse strongly monotone if

⟨x − y, A(x) − A(y)⟩ ≥ �‖Ax − Ay‖2,∀x, y ∈ E.

A multi-valued mapping B ∶ E → 2E∗ with domain domB ∶= {x ∈ E ∶ B(x) ≠ ∅} is said to be (i) monotone if, for every
x, y ∈ E, we have ⟨x−y, u−v⟩ ≥ 0,∀u ∈ B(x),∀v ∈ B(y); (ii) maximal monotone if it is monotone and if, for (x, u) ∈ E×E∗,
⟨x−y, u−v⟩ ≥ 0 for all (y, v) ∈ grℎ(B) implies u ∈ B(x), where the set grℎ(B) ∶= {(x, y) ∈ E×E∗ ∶ y ∈ B(x)} is graph ofB.
Let f ∶ E → ℝ be a convex and smooth function and g ∶ E → ℝ be a convex and lower semicontinuous function. Consider

the following minimization problem:

min
x∈E

{f (x) + g(x)}. (6)

By Fermat’s rule, problem (6) is equivalent to the problem of finding a point p ∈ E such that

0 ∈ (∇f + )g)(p), (7)

where ∇f is the gradient of f and )g is the subdifferential of g.
The general form of problem (7) is called monotone inclusion problem (MIP) which is to find an element x ∈ E such that

0 ∈ (A + B)x, (8)

where A ∶ E → E∗ is a monotone mapping and B ∶ E → 2E∗ is a maximal monotone mapping. We denote the solution set of
(8) by (A + B)−10, that is, (A + B)−10 = {x ∈ E ∶ 0 ∈ A(x) + B(x)}.
We define the resolvent of a maximal monotone mapping B for � > 0 by

JB� (x) = (∇f + �B)
−1∇f (x),∀x ∈ E, (9)

where f ∶ E → (−∞,+∞] is a Gâteaux differentiable convex function. We note that, F (JB� ) = B
−1(0).

Moudafi12 introduced and studied a new generalization of the monotone inclusion problem in Hilbert spaces. It is called Split
Monotone Inclusion Problem (SMIP) which is defined as finding a point p ∈ H1 such that

(p, S(p)) ∈ (A + B)−10 × (C +D)−10, (10)

where A ∶ H1 → H1 and C ∶ H2 → H2 are inverse strongly monotone mappings, B ∶ H1 → 2H1 and D ∶ H2 → 2H2 are
maximal monotone mappings and S ∶ H1 → H2 is bounded linear mapping, where Hi, i = 1, 2 are Hilbert spaces. If S = I ,
then the SMIP reduces to the Common Solution Monotone Inclusion Problem (CSMIP). He proposed the following iterative
algorithm for approximating the solution of SMIP and proved its weak convergence. For x1 ∈ H1, the sequence {xn} generated
by

xn+1 = U (xn + 
S∗(T − I)Sxn), (11)
where S∗ is the adjoint mapping of S, T = JB� (I − �A), and U = JD� (I − �C), where � > 0.
The Split Monotone Inclusion and Fixed Point Problem (SMIFPP)24 is the generalization of SMIP which is defined as finding

a point (p, q) ∈ H1 ×H2 such that

p ∈ F (T ) ∩ (A + B)−10, q ∈ F (G) ∩ (C +D)−10 and S(p) = K(q), (12)

where A ∶ H1 → H1 and C ∶ H2 → H2 are inverse strongly monotone mappings, B ∶ H1 → 2H1 and D ∶ H2 → 2H2

are maximal monotone mappings, T ∶ H1 → H1 and G ∶ H2 → H2 are demi-contractive mappings, S ∶ H1 → H3 and
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K ∶ H2 → H3 are bounded linear mappings, where Hi, i = 1, 2, 3 are Hilbert spaces. If C = 0 = D, T = G = I , and K = I ,
where I is identity mapping, the SMIFPP reduces to the Split Monotone Inclusion Problem (SMIP).
In 2021, Taiwo et al.24 studied the split equality problem for systems of monotone inclusions and fixed point problems of

set-valued demi-contractive mappings in real Hilbert spaces. They proposed a viscosity type algorithm and proved its strong
convergence under some mild assumptions.
The need to speed up the convergence of iterative algorithms has always been of great importance. In 1964, Polyak14 proposed
an inertial algorithm which can be seen as a discrete version of a second order time dynamical system to speed up convergence
rate of smooth convex minimization problem. The main idea of this method is to make use of two previous iterates in order to
update the next iterate, which results in speeding up the algorithm’s convergence. Very recently, some authors have proposed
viscosity-type algorithm with different inertial parameters for solving equilibrium and fixed point problems; see for example9,32.

In 2021, Yao et al.32 proposed the following iterative algorithm with inertial extrapolation step for approximating a solution
of SMIP in real Hilbert spaces and proved weak convergence of the sequence generated by the proposed algorithm under some
mild assumptions. Let A ∶ H1 → H1 and C ∶ H2 → H2 be inverse strongly monotone mappings, B ∶ H1 → 2H1 and
D ∶ H2 → 2H2 be maximal monotone mappings. For arbitrary x0, x1 ∈ H1, define the sequences {wn} and {xn} by

{

wn = xn + �n(xn − xn−1)
xn+1 = U (wn + 
S∗(T − I)Swn),

(13)

where S∗ is the adjoint mapping of S, T = JB� (I − �A), and U = JD� (I − �C), where � > 0, 0 ≤ �n ≤ �n,where �n = � if
xn = xn−1, otherwise �n = min{�,

"n
‖xn−xn−1‖

}, where � ∈ [0, 1) and {"n} ⊂ l1 and 
n = 
 > 0 if (T − I)Swn = 0, otherwise


n =
�n‖(T−I)Swn‖

2

‖S∗(T−I)Swn‖
2 , where 0 < �n < 1.

In 2020, Izuchukwu et al.9 proposed and studied a new inertial extrapolation method for solving the split feasibility problems
over the solution set of monotone inclusion problems in real Hilbert spaces. LetA ∶ H1 → H1 be Lipschitz monotone mapping,
T ∶ H1 → H1 be nonexpansive mappings, B ∶ H1 → 2H1 be maximal monotone mapping and S ∶ H1 → H3 be bounded
linear mapping such that ‖S‖ ≠ 0. For arbitrary x0, x1 ∈ H1, define the sequences {un}, {wn}, {yn} and {xn} by

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

un = xn + �n(xn − xn−1)
wn = un − 
nS∗(I − T )Sun
yn = (I + �nB)−1(1 − �nA)wn

zn = yn − �n(Ayn − Awn)
xn+1 = (1 − �n − �n)wn + �nzn,

(14)

where 0 ≤ �n ≤ �n,where �n =
n−1
n+�−1

if xn = xn−1, otherwise �n = min{ n−1
n+�−1

, "n
‖xn−xn−1‖

}, 0 ≤ b ≤ 
n ≤ c < 1
‖S‖2

, and
�n+1 = min{

�‖wn−vn‖
‖Awn−Ayn‖

, �n} ifAwn ≠ Ayn, otherwise �n, ∀n > 0 and {�n}, {�n}, and {"n} are sequence of positive real numbers.
They proved that the proposed method converges strongly to x∗, where x∗ ∈ (A + B)−1(0) and S(x∗) ∈ F (T ), under some
condition on the control parameters �n, �n, and "n, provided that {p ∈ (A + B)−1(0) ∶ S(p) ∈ F (T )} ≠ ∅.
All the results addressed above deal with either of the following: split monotone inclusion and fixed point problem or split

feasibility problems over the solution set of monotone inclusion problems in real Hilbert spaces. Based on these results, the
following important question arises:

Question 1. Can we obtain an inertial method for approximating a solution of split equality of monotone inclusion and f -fixed
point problems in real Banach spaces?

The Split Equality of Monotone Inclusion and f -Fixed Point Problems (SEMIfFPP) is defined as finding a point (p, q) ∈
E1 × E2 such that

(p, q) ∈ (Ff (T ) ∩ (A + B)−10) × (Fg(G) ∩ (C +D)−10) and S(p) = K(q), (15)
where T ∶ E1 → E∗

1 and G ∶ E2 → E∗
2 are Bregman relatively f -nonexpansive and Bregman relatively g-nonexpansive

mappings, respectively, A ∶ E1 → E∗
1 and C ∶ E2 → E∗

2 are monotone mappings, and B ∶ E1 → 2E∗1 and D ∶ E2 → 2E∗2 are
maximal monotone mappings, S ∶ E1 → E3 and K ∶ E2 → E3 are bounded linear mappings with adjoints S∗ ∶ E∗

3 → E∗
1 and

K∗ ∶ E∗
3 → E∗

2 , respectively. If Ei = Hi, i = 1, 2, 3 are real Hilbert spaces, then the SEMIfFPP reduces to the split equality of
monotone inclusion and fixed point problems (SEMIFPP).
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Many mathematical models in the fields of machine learning, statistical regression, image processing and signal recovery are
reformulated as problem (15) (see,10,26,27,28,29). In addition, the problem includes the core of many mathematical problems, as
special cases, such as: split monotone inclusion and semi-fixed (J-fixed ) point problem, split monotone inclusion and fixed point
problem, common solutions of monotone inclusion and fixed point problems, split equality monotone inclusion problem, split
equality fixed point problem and many important optimization problems such as, split feasibility problems, split minimization
problems, split equilibrium problems, split saddle-point problems (see for example,8,10,20,23,24,25,26).
Motivated and inspired by the works of Moudaf12, Taiwo et al.23,24, Izuchukwu et al.9 and Sunthrayuth et al.22, we introduce

and study an inertial algorithm which converges strongly to a solution of split equality of monotone inclusion and f, g-fixed
point of Bregman relatively f, g-nonexpansive mapping problems (15) in reflexive real Banach spaces. In addition, we provide
several applications of our method and provide a numerical example to demonstrate the behavior of the convergence of the
algorithm to a solution of the indicated problems.

2 PRELIMINARIES

Let E be a reflexive real Banach space with its dual E∗. Let f ∶ E → (−∞,+∞] be a Gâteaux differentiable convex function.
The function �f ∶ int(domf ) ×ℝ+ → ℝ defined by

�f (x, t) = inf
y∈int(domf )

{Df (y, x) ∶ ‖x − y‖ = t}

is called the Modulus of total convexity of f at x ∈ int(domf ) and f is called totally convex if

�f (x, t) > 0, for all (x, t) ∈ int(domf ) ×ℝ+.

We remark that f is totally convex on bounded subsets of E if and only if f is uniformly convex on bounded subsets of E (see,
Butnariu and Resmerita7, Theorem 2.10, Page 9).
The Bregman projection of x ∈ int(domf ) onto the nonempty, closed and convex setC ⊂ domf is the unique vector P f

C (x) ∈ C
satisfying

Df (P
f
C (x), x) = inf{Df (y, x) ∶ y ∈ C}.

The well known Bregman projection properties are:

Lemma 1. (Bunariu and Resmerita7) Let f be a totally convex and Gâteaux differentiable function on the int(domf ) and
x ∈ int(domf ). Let C be a nonempty, closed and convex subset of int(domf ). Then,

(i) z = P f
C (x) if and only if ⟨y − z,∇f (x) − ∇f (z)⟩ ≤ 0, ∀y ∈ C;

(ii) Df (y, P
f
C (x)) +Df (P

f
C (x), x) ≤ Df (y, x), ∀y ∈ C .

Let f ∶ E → ℝ be a Legendre function. We make use of the function Vf ∶ E × E∗ → ℝ defined by

Vf (x, x∗) = f (x) − ⟨x, x∗⟩ + f ∗(x∗), for all x ∈ E and x∗ ∈ E∗.

We note that Vf is a nonnegative function which satisfies (see, Senakka and Cholamjiak19)

Vf (x, x∗) = Df (x,∇f ∗(x∗)) for all x ∈ E and x∗ ∈ E∗, (16)

and
Vf (x, x∗) + ⟨∇f ∗(x∗) − x, y∗⟩ ≤ Vf (x, x∗ + y∗), for all x ∈ E and x∗, y∗ ∈ E∗. (17)

Lemma 2. (Wega and Zegeye30) Let f be a strongly convex function with constant � > 0. Then, for all y ∈ domf and
x ∈ int(domf ),

Df (y, x) ≥
�
2
‖x − y‖2,

where Df (y, x) is a Bregman distance with respect to f .

Lemma 3. (Phelps13) If f ∶ E → (−∞,+∞] is a proper, lower semi-continuous and convex function, then f ∗ ∶ E∗ →
(−∞,+∞] is a proper, weak lower semi-continuous and convex function and for any x ∈ E, {yk}Nk=1 ⊆ E and {ck}Nk=1 ⊆ (0, 1)
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with
∑N
k=1 ck = 1 the following holds:

Df (x,∇f ∗
( N
∑

k=1
ck∇f (yk)

)

) ≤
N
∑

k=1
ckDf (x, yk). (18)

Lemma 4. (Reich and Sabach17) Let f ∶ E → ℝ be a Gâteaux differentiable function which is uniformly convex on bounded
subset of E. If {xn} and {yn} are bounded sequences in E, then limn→∞Df (xn, yn) = 0 if and only if limn→∞ ‖xn − yn‖ = 0.

Lemma 5. (Reich and Sabach17) Let f ∶ E → ℝ be a Gâteaux differentiable and totally convex function. If x ∈ E and the
sequence Df (xn, x) is bounded, then the sequence {xn} is also bounded.

Lemma 6. (Butnariu and Iusem6) Let f ∶ E → ℝ be a strongly coercive Legendre function. Then the following properties are
satisfied:

(i) ∇f ∶ E → E∗ is one-to-one, onto and norm-to-weak continuous;

(ii) the set {x ∈ E ∶ Df (x, y) ≤ r} is bounded for all y ∈ E and r > 0;

(iii) domf ∗ = E∗, f ∗ is Gâteaux differentiable and ∇f ∗ = (∇f )−1.

Lemma 7. (Reich and Sabach16) If f ∶ E → ℝ is a uniformly Fréchet differentiable and bounded function on bounded subsets
of E, then ∇f is norm-to-norm uniformly continuous on bounded subsets of E and hence both f and ∇f are bounded on
bounded subset of E.

Lemma 8. (Wega and Zegeye31) If T ∶ E → E∗ is a Bregman relatively f -nonexpansive mapping, then Ff (T ) is closed and
convex.

Lemma 9. (Saejung and Yotkaew18 ) Let {bn} ⊂ ℝ and let {an} be a sequence in (0, 1) such that
∞
∑

n=1
�n = ∞ and

an+1 ≤ (1 − �n)an + �nbn, n ≥ 1.

If for every subsequence {ank} of {an} such that lim infk→∞

(

ank+1 − ank
)

≥ 0 we have lim sup
k→∞

bnk ≤ 0, then limn→∞ an = 0.

Lemma 10. (Barbu1) LetA ∶ E → E∗ be a monotone, hemicontinuous and bounded mapping, andB ∶ E → 2E∗be a maximal
monotone mapping. Then A + B is maximal monotone.

Let E1 and E2 be reflexive real Banach spaces with duals E∗
1 and E

∗
2 , respectively. Let E = E1 ×E2 with dual E∗ = E∗

1 ×E
∗
2

and duality pairing
⟨x, y∗⟩ = ⟨x1, y

∗
1⟩ + ⟨x2, y

∗
2⟩,

where x = (x1, x2) ∈ E, y∗ = (y∗1, y
∗
2) ∈ E

∗.
Let ℎ ∶ E = E1×E2 → (−∞,+∞] be defined by ℎ(x1, x2) = f (x1)+g(x2), ∀(x1, x2) ∈ E1×E2, where f ∶ E1 → (−∞,+∞]

and g ∶ E2 → (−∞,+∞] are proper, lower semi-continuous and convex functions. Then ℎ is a proper, lower semi-continuous
and convex function and the subdifferential of ℎ at x = (x1, x2) is the convex set given by

)ℎ(x) = {x∗ ∈ E∗ ∶ ℎ(y) − ℎ(x) ≥ ⟨y − x, x∗⟩ ,∀y ∈ E}
= {(x∗1, x

∗
2) ∈ E

∗
1 × E

∗
2 ∶ x

∗
1 ∈ )f (x1) and x

∗
2 ∈ )g(x2)}.

If f ∶ E1 → (−∞,+∞] and g ∶ E2 → (−∞,+∞] are Gâteaux differentiable convex functions, then ℎ is Gâteaux differentiable
convex function and ∇ℎ(x1, x2) = (∇f (x1),∇g(x2)), ∀(x1, x2) ∈ E1 × E2.

3 MAIN RESULTS

In this section, we propose an inertial algorithm to solve the split equality of monotone inclusion and f, g-fixed point of Bregman
relatively f, g-nonexpansive mapping problems in reflexive real Banach spaces. The following assumptions will be used in the
sequel.
Assumptions
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(A1) Let Ei, i = 1, 2, 3 be reflexive real Banach spaces with their respective duals E∗
i , i = 1, 2, 3;

(A2) Let f ∶ E1 → ℝ and g ∶ E2 → ℝ be strongly coercive, lower semi-continuous, strongly convex, bounded and uniformly
Fréchet differentiable Legendre functions on bounded subsets with strongly convex conjugate f ∗ and g∗, respectively. Let
the strong convexity constants of f and g be �1 and �2, respectively, and let � = min

{

�1, �2
}

;

(A3) Let T ∶ E1 → E∗
1 and G ∶ E2 → E∗

2 be Bregman relatively f -nonexpansive and Bregman relatively g-nonexpansive
mappings, respectively;

(A4) Let A ∶ E1 → E∗
1 and C ∶ E2 → E∗

2 be uniformly continuous monotone mappings;

(A5) Let B ∶ E1 → 2E∗1 and D ∶ E2 → 2E∗2 be maximal monotone mappings;

(A6) Let S ∶ E1 → E3 and K ∶ E2 → E3 be bounded linear mappings with adjoints S∗ ∶ E∗
3 → E∗

1 and K∗ ∶ E∗
3 → E∗

2 ,
respectively;

(A7) Let Ω = {(a, b) ∈ (Ff (T ) ∩ (A + B)−1(0)) × (Fg(G) ∩ (C +D)−1(0)) ∶ S(a) = K(b)} ≠ ∅.

(A8) Let {�n} ⊂ (0, 1) be such that limn→∞ �n = 0 and
∑∞
n=1 �n = ∞;

(A9) Let {rn} be sequence in (0,
�
2
) such that limn→∞

rn
�n
= 0;

(A10) Let JE3 be a normalized duality mapping on E3.

Algorithm 3.1

Initialization: Choose (x,w), (x0, w0), (x1, w1) ∈ E1 × E2, � ∈ (0, 1), � ∈ (0, �), 0 < �, �, �, �1, �1. Define the algorithm as
follows:

Step 0: Choose �n such that 0 ≤ �n ≤ �n where

�n =

{

min
{

rn
‖∇f (xn)−∇f (xn−1)‖+‖∇g(wn)−∇g(wn−1)‖

, �
}

if xn ≠ xn−1 & wn ≠ wn−1

� otherwise
(19)

Step 1: Compute

an = ∇f ∗(∇f (xn) + �n(∇f (xn) − ∇f (xn−1))),
bn = ∇g∗(∇g(wn) + �n(∇g(wn) − ∇g(wn−1))). (20)

Step 2: Choose 
n such that � ≤ 
n ≤ �n for S(an) ≠ K(bn) otherwise 
n = �, for some � > 0, where

�n = min

{

� + 1,
�‖S(an) −K(bn)‖2

2
[

‖S∗JE3(S(an)) −K(bn)‖
2 + ‖K∗JE3(K(bn)) − S(an)‖

2
]

}

. (21)

Step 3: Compute

dn = ∇f ∗(∇f (an) − 
nS∗JE3(S(an) −K(bn))),
en = ∇g∗(∇g(bn) − 
nK∗JE3(K(bn) − S(an))), (22)

Step 4: Compute
yn = JB�n∇f

∗(∇f (dn) − �nA(dn)),

zn = JD�n∇g
∗(∇g(en) − �nC(en)).

Step 5: Compute

un = ∇f ∗(∇f (yn) − �n(A(yn) − A(dn))),
vn = ∇g∗(∇g(zn) − �n(C(zn) − C(en))),

xn+1 = ∇f ∗(�n∇f (x) + (1 − �n)
[

�∇f (un) + (1 − �)T (un)
]

), (23)
wn+1 = ∇g∗(�n∇g(w) + (1 − �n)

[

�∇g(vn) + (1 − �)G(vn)
]

). (24)
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Step 6: Choose �n+1 and �n+1 such that � ≤ �n+1 ≤ �n+1 and � ≤ �n+1 ≤ �n+1, for some � > 0, where

�n+1 =

{

min
{

�n,
�‖yn−dn‖

‖A(yn)−A(dn)‖

}

, if A(yn) ≠ A(dn),

�n, otherwise,
(25)

and

�n+1 =

{

min
{

�n,
�‖zn−en‖

‖C(zn)−C(en)‖

}

if C(zn) ≠ C(en),

�n, otherwise.
(26)

Set n ∶= n + 1 and go to Step 0.

Remark 1. We note that if A and C are Lipschitz monotone mappings with Lipschitz constants L1 and L2, respectively, then
following the method in21, we obtain � = min

{

�
L1
, �1,

�
L2
, �1

}

and hence limn→∞ �n = � and limn→∞ �n = �, where �, � ≥ �.

Lemma 11. Suppose that the assumptions (A1)- (A10) hold. Then the sequences {xn} and {wn} generated by Algorithm 3.1
are bounded.

Proof. Let (p, q) ∈ Ω. By the definition of the Bregman distance, (25) and Lemma 2, we have

Df (p, un) = Df (p,∇f ∗(∇f (yn) − �n(A(yn) − A(dn))))
= f (p) − f (un) − ⟨p − un,∇f (yn)⟩ + ⟨p − un, �n(A(yn) − A(dn))⟩
= f (p) − f (yn) − ⟨p − yn,∇f (yn)⟩ − [f (un) − f (yn) − ⟨un − yn,∇f (yn)⟩] + ⟨p − un, �n(A(yn) − A(dn))⟩
= Df (p, yn) −Df (un, yn) + ⟨p − un, �n(A(yn) − A(dn))⟩
= Df (p, yn) −Df (un, yn) + ⟨p − yn, �n(A(yn) − A(dn))⟩ + ⟨yn − un, �n(A(yn) − A(dn))⟩
≤ Df (p, yn) −Df (un, yn) + ⟨p − yn, �n(A(yn) − A(dn))⟩ + �n‖A(yn) − A(dn)‖‖yn − un‖

≤ Df (p, yn) −Df (un, yn) + ⟨p − yn, �n(A(yn) − A(dn))⟩ +
(

�n
�n+1

)

�‖yn − dn‖‖yn − un‖

≤ Df (p, yn) −Df (un, yn) + ⟨p − yn, �n(A(yn) − A(dn))⟩ +
��n
2�n+1

‖yn − dn‖2 +
��n
2�n+1

‖yn − un‖2

≤ Df (p, yn) −Df (un, yn) + ⟨p − yn, �n(A(yn) − A(dn))⟩ +
��n
2�n+1

2
�
Df (yn, dn) +

��n
2�n+1

2
�
Df (un, yn)

≤ Df (p, yn) −
(

1 −
��n
��n+1

)

Df (un, yn) +
��n
��n+1

Df (yn, dn) + ⟨p − yn, �n(A(yn) − A(dn))⟩ . (27)

From (3), we have
Df (p, yn) = Df (p, dn) −Df (yn, dn) + ⟨p − yn,∇f (dn) − ∇f (yn)⟩ . (28)

Furthermore, from (16) and (17), we obtain

Df (p, dn) = Df (p,∇f ∗(∇f (an) − 
nS∗JE3(S(an) −K(bn))))
= Vf (p,∇f (an) − 
nS∗JE3(S(an) −K(bn)))
≤ Vf (p,∇f (an)) − 
n

⟨

dn − p, S∗JE3(S(an) −K(bn))
⟩

= Df (p, an) − 
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

. (29)

Substituting (29) into (28) gives

Df (p, yn) ≤ Df (p, an) − 
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

−Df (yn, dn) + ⟨p − yn,∇f (dn) − ∇f (yn)⟩
= Df (p, an) −Df (yn, dn) + ⟨p − yn,∇f (dn) − ∇f (yn)⟩ − 
n

⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

. (30)

Again, from (3), we have

Df (p, an) = Df (p, xn) −Df (an, xn) + ⟨p − an,∇f (xn) − ∇f (an)⟩ . (31)
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Now, from (19), (20) and Lemma 2 we obtain that

⟨p − an,∇f (xn) − ∇f (an)⟩ ≤ ‖∇f (xn) − ∇f (an)‖‖p − an‖
= �n‖∇f (xn) − ∇f (xn−1)‖‖p − an‖

≤
�n
2
‖∇f (xn) − ∇f (xn−1)‖

[

‖p − an‖2 + 1
]

≤ �n‖∇f (xn) − ∇f (xn−1)‖
[

‖p − xn‖2 + ‖xn − an‖2
]

+
�n
2
‖∇f (xn) − ∇f (xn−1)‖

≤
2rn
�
Df (p, xn) +

2rn
�
Df (an, xn) +

rn
2
. (32)

Combining (27), (30), (31) and (32), we find

Df (p, un) ≤ Df (p, yn) −
(

1 −
��n
��n+1

)

Df (un, yn) +
��n
��n+1

Df (yn, dn) + ⟨p − yn, �n(A(yn) − A(dn))⟩

≤ Df (p, an) −Df (yn, dn) + ⟨p − yn,∇f (dn) − ∇f (yn)⟩ − 
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

−
(

1 −
��n
��n+1

)

Df (un, yn) +
��n
��n+1

Df (yn, dn) + ⟨p − yn, �n(A(yn) − A(dn))⟩

= Df (p, an) −Df (yn, dn) −
(

1 −
��n
��n+1

)

Df (un, yn) +
��n
��n+1

Df (yn, dn)

−
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+ ⟨p − yn,∇f (dn) − ∇f (yn) + �n(A(yn) − A(dn))⟩

= Df (p, xn) −Df (an, xn) + ⟨p − an,∇f (xn) − ∇f (an)⟩ −Df (yn, dn) −
(

1 −
��n
��n+1

)

Df (un, yn)

+
��n
��n+1

Df (yn, dn) − 
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+ ⟨p − yn,∇f (dn) − ∇f (yn) + �n(A(yn) − A(dn))⟩

≤ Df (p, xn) −Df (an, xn) +
2rn
�
Df (p, xn) +

2rn
�
Df (an, xn) +

rn
2
−
(

1 −
��n
��n+1

)

Df (yn, dn)

−
(

1 −
��n
��n+1

)

Df (un, yn) − 
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+ ⟨p − yn,∇f (dn) − ∇f (yn) + �n(A(yn) − A(dn))⟩

=
(

1 +
2rn
�

)

Df (p, xn) −
(

1 −
2rn
�

)

Df (an, xn) −
(

1 −
��n
��n+1

)

Df (yn, dn) −
(

1 −
��n
��n+1

)

Df (un, yn) (33)

−
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+
rn
2
+ ⟨p − yn,∇f (dn) − ∇f (yn) + �n(A(yn) − A(dn))⟩ .

By the definition of yn, we have ∇f (dn)−�nA(dn) ∈ ∇f (yn)+�nB(yn). Since B is maximal monotone, there exists ℎn ∈ B(yn)
such that

∇f (dn) − �nA(dn) = ∇f (yn) + �nℎn.
This implies that

ℎn =
1
�n
(∇f (dn) − ∇f (yn) − �nA(dn)) ∈ B(yn). (34)

Since 0 ∈ (A + B)(p), A(yn) + ℎn ∈ (A + B)(yn) and A + B is monotone, we get

⟨p − yn, A(yn) + ℎn⟩ ≤ 0. (35)

From (34) and (35), we have
⟨p − yn,∇f (dn) − ∇f (yn) + �n(A(yn) − A(dn))⟩ ≤ 0. (36)

Thus, from (33) and (36) we get

Df (p, un) ≤
(

1 +
2rn
�

)

Df (p, xn) −
(

1 −
2rn
�

)

Df (an, xn) −
(

1 −
��n
��n+1

)

Df (yn, dn) (37)

−
(

1 −
��n
��n+1

)

Df (un, yn) − 
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+
rn
2
.
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Furthermore, from (23), (37) and the Bregman relatively f -nonexpansiveness of T , we have

Df (p, xn+1) = Df (p,∇f ∗(�n∇f (x) + (1 − �n)
[

�∇f (un) + (1 − �)T (un)
]

))
≤ �nDf (p, x) + (1 − �n)Df (p,∇f ∗(�∇f (un) + (1 − �)T (un)))
≤ �nDf (p, x) + (1 − �n)

[

�Df (p, un) + (1 − �)Df (p,∇f ∗(T (un)))
]

≤ �nDf (p, x) + (1 − �n)Df (p, un)

≤ �nDf (p, x) + (1 − �n)
(

1 +
2rn
�

)

Df (p, xn) − (1 − �n)
(

1 −
2rn
�

)

Df (an, xn) (38)

−(1 − �n)
(

1 −
��n
��n+1

)

Df (yn, dn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (un, yn)

−(1 − �n)
n
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+
rn
2
(1 − �n).

Similarly, we have

Dg(q,wn+1) ≤ �nDg(q,w) + (1 − �n)
(

1 +
2rn
�

)

Dg(q,wn) − (1 − �n)
(

1 −
2rn
�

)

Dg(bn, wn)

−(1 − �n)
(

1 −
��n
��n+1

)

Dg(zn, en) − (1 − �n)
(

1 −
��n
��n+1

)

Dg(vn, zn)

−(1 − �n)
n
⟨

K(en) −K(q), JE3(K(bn) − S(an))
⟩

+
rn
2
(1 − �n). (39)

Since limn→∞ �n and limn→∞ �n exist and � ∈ (0, �), we obtain that

lim
n→∞

(

1 −
��n
��n+1

)

= lim
n→∞

(

1 −
��n
��n+1

)

= 1 − �
�
> 0. (40)

Take � ∈ (0, �
2
). Then, from (A9) and (40), there existsN ∈ ℕ such that

2rn
�

< �n�,
(

1 −
��n
��n+1

)

> 0 and
(

1 −
��n
��n+1

)

> 0,∀n ≥ N. (41)

Now, from (38), (39) and (41), we have

Df (p, xn+1) +Dg(q,wn+1) ≤ �n(Df (p, x) +Dg(q,w)) + (1 − �n)(Df (p, xn) +Dg(q,wn)) (42)

+�n�(Df (p, xn) +Dg(q,wn)) + �n�
�
2
− (1 − �n)
n

⟨

K(en) − S(dn), JE3(K(bn) − S(an))
⟩

,

for all n ≥ N . But,

−
⟨

K(en) − S(dn), JE3(K(bn) − S(an))
⟩

= −
⟨

K(bn) − S(an), JE3(K(bn) − S(an))
⟩

−
⟨

K(en) −K(bn), JE3(K(bn) − S(an))
⟩

−
⟨

S(an) − S(dn), JE3(K(bn) − S(an))
⟩

= −‖K(bn) − S(an)‖2 −
⟨

en − bn, K∗JE3(K(bn) − S(an))
⟩

−
⟨

an − dn, S∗JE3(K(bn) − S(an))
⟩

≤ −‖K(bn) − S(an)‖2 + ‖en − bn‖‖K∗JE3(K(bn) − S(an))‖ + ‖an − dn‖‖S∗JE3(K(bn) − S(an))‖.

From the fact that ∇g∗ is a Lipschitz mapping with constant 1
�
and the definition of en, we obtain that

‖en − bn‖ = ‖∇g∗(∇g(bn) − 
nK∗JE3(K(bn) − S(an))) − bn‖ ≤

n
�
‖K∗JE3(K(bn) − S(an)‖. (43)

Similarly, by the Lipschitz property of ∇f ∗ and the definition of dn gives

‖dn − an‖ ≤

n
�
‖S∗JE3(S(an) −K(bn))‖. (44)
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Then, from (21), (43), (43) and (44), we get

−
n
⟨

K(en) − S(dn), JE3(K(bn) − S(an))
⟩

≤ −
n‖K(bn) − S(an)‖2 +

2n
�
‖K∗JE3(K(bn) − S(an))‖

2

+

2n
�
‖S∗JE3(S(an) −K(bn))‖

2

≤ −
n‖K(bn) − S(an)‖2 +

n
2
‖K(en) − S(dn)‖2

= −

n
2
‖K(bn) − S(an)‖2

≤ −
�
2
‖K(bn) − S(an)‖2. (45)

Thus, from (42) and (45), we obtain for all n ≥ N

Df (p, xn+1) +Dg(q,wn+1) ≤ �n(Df (p, x) +Dg(q,w)) + (1 − �n)(Df (p, xn) +Dg(q,wn))

+�n�(Df (p, xn) +Dg(q,wn)) + �n�
�
2
−
�
2
(1 − �n)‖K(bn) − S(an)‖2

≤ �n(Df (p, x) +Dg(q,w)) + (1 − �n(1 − �))(Df (p, xn) +Dg(q,wn)) + �n�
�
2

≤ (1 − �n(1 − �))(Df (p, xn) +Dg(q,wn)) + �n(1 − �)
[

1
1 − �

(Df (p, x) +Dg(q,w)) +
��

2(1 − �)

]

≤ max
{

Df (p, xn) +Dg(q,wn),
1

1 − �
(Df (p, x) +Dg(q,w)) +

��
2(1 − �)

}

. (46)

Therefore, by induction, for all n ≥ N , we have that

Df (p, xn) +Dg(q,wn) ≤ max
{

Df (p, xN ) +Dg(q,wN ),
1

1 − �
(Df (p, x) +Dg(q,w)) +

��
2(1 − �)

}

,

and hence {Df (p, xn) + Dg(q,wn)} is bounded which implies that the sequences {Df (p, xn)} and {Dg(q,wn)} are bounded.
Furthermore, by Lemma 5, we have {xn} and {wn} are bounded.

Theorem 1. Suppose that assumption (A1)- A(10) are satisfied. Then, the sequence {(xn, wn)} generated by Algorithm 3.1
converges strongly to (p, q) in Ω, where (p, q) = P ℎ

Ω(x,w), where ℎ ∶ E1 × E2 → ℝ is given by ℎ(x, y) = f (x) + g(y).

Proof. Let (p, q) = P ℎ
Ω(x,w). Then, from Algorithm 3.1, Lemma 3, (16), and (17), we obtain

Df (p, xn+1) = Df (p,∇f ∗
(

�n∇f (x) + (1 − �n)[�∇f (un) + (1 − �)T (un)]
)

)
= Vf (p, �n∇f (x) + (1 − �n)[�∇f (un) + (1 − �)T (un)])
≤ Vf (p, �n∇f (p) + (1 − �n)[�∇f (un) + (1 − �)T (un)]) − �n

⟨

xn+1 − p,∇f (p) − ∇f (x)
⟩

= Df (p,∇f ∗
(

�n∇f (p) + (1 − �n)[�∇f (un) + (1 − �)T (un)]
)

) − �n
⟨

xn+1 − p,∇f (p) − ∇f (x)
⟩

≤ �nDf (p, p) + (1 − �n)Df (p,∇f ∗
(

�∇f (un) + (1 − �)T (un)
)

) − �n
⟨

xn+1 − p,∇f (p) − ∇f (x)
⟩

= (1 − �n)Df (p,∇f ∗
(

�∇f (un) + (1 − �)T (un)
)

) − �n
⟨

xn+1 − p,∇f (p) − ∇f (x)
⟩

= (1 − �n)Vf (p,
(

�∇f (un) + (1 − �)T (un)
)

) + �n
⟨

xn+1 − xn,∇f (x) − ∇f (p)
⟩

+ �n ⟨xn − p,∇f (x) − ∇f (p)⟩
≤ (1 − �n)Vf (p, �∇f (un) + (1 − �)T (un)) + �n‖xn+1 − xn‖‖∇f (x) − ∇f (p)‖ (47)
+�n ⟨xn − p,∇f (x) − ∇f (p)⟩ .
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Thus, from the definition of Vf , uniformly convexity of f ∗ and the Bregman relatively f -nonexpansiveness of T , we obtain that

Vf (p, �∇f (un) + (1 − �)T (un)) = f (p) − ⟨p, �∇f (un) + (1 − �)T (un)⟩ + f ∗(�∇f (un) + (1 − �)T (un))
≤ f (p) − � ⟨p,∇f (un)⟩ − (1 − �) ⟨p, T (un)⟩ + �f ∗(∇f (un)) + (1 − �)f ∗(T (un))
−�(1 − �) 1(‖∇f (un) − T (un)‖)

= �Vf (p,∇f (un)) + (1 − �)Vf (p, T (un)) − �(1 − �) 1(‖∇f (un) − T (un)‖)
= �Df (p, un) + (1 − �)Df (p,∇f ∗(T (un))) − �(1 − �) 1(‖∇f (un) − T (un)‖)
≤ �Df (p, un) + (1 − �)Df (p, un) − �(1 − �) 1(‖∇f (un) − T (un)‖)
= Df (p, un) − �(1 − �) 1(‖∇f (un) − T (un)‖), (48)

where  1 is the modulus of convexity of f .
From (37), (47) and (48), we obtain that

Df (p, xn+1) ≤ (1 − �n)Df (p, un) − �(1 − �)(1 − �n) 1(‖∇f (un) − T (un)‖)
+�n‖xn+1 − xn‖‖∇f (x) − ∇f (p)‖ + �n ⟨xn − p,∇f (x) − ∇f (p)⟩

≤ (1 − �n)
(

1 +
2rn
�

)

Df (p, xn) − (1 − �n)
(

1 −
2rn
�

)

Df (an, xn) (49)

−(1 − �n)
(

1 −
��n
��n+1

)

Df (yn, dn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (un, yn)

−
n(1 − �n)
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

+ (1 − �n)
rn
2
− �(1 − �)(1 − �n) 1(‖∇f (un) − T (un)‖)

+�n‖xn+1 − xn‖‖∇f (x) − ∇f (p)‖ + �n ⟨xn − p,∇f (x) − ∇f (p)⟩ ,

and hence from (41) and (49), we get

Df (p, xn+1) ≤ (1 − �n)Df (p, xn) +
2rn
�
Df (p, xn) +

rn
2
+ �n ⟨xn − p,∇f (x) − ∇f (p)⟩ + �n‖xn+1 − xn‖‖∇f (x) − ∇f (p)‖

−(1 − �n)
(

1 −
2rn
�

)

Df (an, xn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (yn, dn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (un, yn)

−
n(1 − �n)
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

− �(1 − �)(1 − �n) 1(‖∇f (un) − T (un)‖)

≤ (1 − �n)Df (p, xn) + �n�Df (p, xn) +
rn
2
+ �n ⟨xn − p,∇f (x) − ∇f (p)⟩ + �n‖xn+1 − xn‖‖∇f (x) − ∇f (p)‖

−(1 − �n)
(

1 − �n�
)

Df (an, xn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (yn, dn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (un, yn)

−
n(1 − �n)
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

− �(1 − �)(1 − �n) 1(‖∇f (un) − T (un)‖)

= (1 − �n(1 − �))Df (p, xn) + �n(1 − �)
[ 1
1 − �

⟨xn − p,∇f (x) − ∇f (p)⟩
]

+
rn
2

(50)

+�n‖xn+1 − xn‖‖∇f (x) − ∇f (p)‖ − (1 − �n)
(

1 − �n�
)

Df (an, xn) − (1 − �n)
(

1 −
��n
��n+1

)

Df (yn, dn)

−(1 − �n)
(

1 −
��n
��n+1

)

Df (un, yn) − �(1 − �)(1 − �n) 1(‖∇f (un) − T (un)‖)

−
n(1 − �n)
⟨

S(dn) − S(p), JE3(S(an) −K(bn))
⟩

.

Similarly, we have

Dg(q,wn+1) ≤ (1 − �n(1 − �))Dg(q,wn) + �n(1 − �)
[ 1
1 − �

⟨wn − q,∇g(w) − ∇g(q)⟩
]

+
rn
2

+�n‖wn+1 −wn‖‖∇g(w) − ∇g(q)‖ − (1 − �n)
(

1 − �n�
)

Dg(bn, wn) − (1 − �n)
(

1 −
��n
��n+1

)

Dg(vn, zn)

−(1 − �n)
(

1 −
��n
��n+1

)

Dg(zn, en) − �(1 − �)(1 − �n) 2(‖∇g(vn) − G(vn)‖)

−(1 − �n)
n
⟨

K(en) −K(q), JE3(K(bn) − S(an))
⟩

, (51)
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where  2 is the modulus of convexity of g.
From the fact that {rn} ⊂ (0,

�
2
), � ∈ (0, �), (A7), (50) and (51) we obtain that

Df (p, xn+1) +Dg(q,wn+1) ≤ (1 − �n(1 − �))(Df (p, xn) +Dg(q,wn)) (52)

+�n(1 − �)
1

1 − �
[

⟨xn − p,∇f (x) − ∇f (p)⟩ + ⟨wn − q,∇g(w) − ∇g(q)⟩
]

+�nD(‖xn+1 − xn‖ + ‖wn+1 −wn‖) + rn − (1 − �n)(1 − ��n)(Df (an, xn) +Dg(bn, wn))

−(1 − �n)
[(

1 −
��n
��n+1

)

Df (yn, dn) +
(

1 −
��n
��n+1

)

Dg(zn, en)
]

−(1 − �n)
[(

1 −
��n
��n+1

)

Df (un, yn) +
(

1 −
��n
��n+1

)

Dg(vn, zn)
]

−M(1 − �n)( 1(‖∇f (un) − T (un)‖) +  2(‖∇g(vn) − G(vn)‖))

−(1 − �n)
�
2
‖S(an) −K(bn)‖2

≤ (1 − �n(1 − �))(Df (p, xn) +Dg(q,wn)) (53)

+�n(1 − �)
1

1 − �
[

⟨xn − p,∇f (x) − ∇f (p)⟩ + ⟨wn − q,∇g(w) − ∇g(q)⟩
]

+rn + �nD(‖xn+1 − xn‖ + ‖wn+1 −wn‖),

where D = max{‖∇f (x) − ∇f (p)‖, ‖∇g(w) − ∇g(q)‖} andM = �(1 − �).
Suppose that {Df (p, xnk) +Dg(q,wnk)} is a subsequence of {Df (p, xn) +Dg(q,wn)} such that

lim inf
k→∞

[(

Df (p, xnk+1) +Dg(q,wnk+1)
)

−
(

Df (p, xnk) +Dg(q,wnk)
)]

≥ 0. (54)

Then, from (52) and the fact that {�n} ⊂ (0, 1), rn ≤
�
2
and � ≤ � for all n ≥ 0, �n → 0 and rn → 0 as n→∞, we obtain

Df (ank , xnk)→ 0, Dg(bnk , wnk)→ 0 as k→∞, (55)
Df (ynk , dnk)→ 0, Dg(znk , enk)→ 0 as k→∞, (56)
Df (unk , ynk)→ 0, Dg(vnk , znk)→ 0, as k→∞, (57)

 1(‖∇f (unk) − T (unk)‖)→ 0,  2(‖∇g(vnk) − G(vnk)‖)→ 0 as k→∞, (58)

and

‖S(ank) −K(bnk)‖ → 0 as k→∞. (59)

Moreover, from (55), (56) (57),(58), Lemma 4 and the property of  1 and  2, we have

‖ank − xnk‖ → 0, ‖ynk − dnk‖ → 0, ‖unk − ynk‖ → 0 as k→∞, (60)
‖bnk −wnk‖ → 0, ‖znk − enk‖ → 0, ‖vnk − znk‖ → 0 as k→∞, (61)

and
‖∇f (unk) − T (unk)‖ → 0, ‖∇g(vnk) − G(vnk)‖ → 0 as k→∞. (62)

From (23), (24), (62) and the fact that �nk → 0 as k→∞, we have

lim
k→∞

‖∇f (xnk+1) − ∇f (unk)‖ ≤ lim
k→∞

[

�nk‖∇f (x) − ∇f (unk)‖ + (1 − �)‖∇f (unk) − T (unk)‖
]

= 0 (63)

and
lim
k→∞

‖∇g(wnk+1) − ∇g(vnk)‖ = 0. (64)

Now, from (22) and (59) we obtain that

‖∇f (ank) − ∇f (dnk)‖ = 
n‖S
∗J3(S(ank) −K(bnk))‖

≤ (� + 1)‖S∗‖‖J3(S(ank) −K(bnk))‖ → 0 as k→∞. (65)

Similarly, we get

‖∇g(bnk) − ∇g(enk)‖ → 0 as k→∞. (66)
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From (63), (64), (65), (66) and the uniformly continuity of ∇f ∗ and ∇g∗, we have

‖xnk+1 − unk‖ → 0, and ‖wnk+1 − vnk‖ → 0 as k→∞,
‖ank − dnk‖ → 0 and ‖bnk − enk‖ → 0 as k→∞. (67)

Then, from (60), (61) and (67), we obtain that

lim
k→∞

‖xnk+1 − xnk‖ ≤ lim
k→∞

‖xnk+1 − unk‖ + lim
k→∞

‖unk − ynk‖ + lim
k→∞

‖ynk − dnk‖

+ lim
k→∞

‖dnk − ank‖ + lim
k→∞

‖ank − xnk‖ = 0. (68)

Similarly, we have

lim
k→∞

‖wnk+1 −wnk‖ = 0. (69)

Now, since {(xnk , wnk)} is bounded in E1 ×E2, there exists (x
∗, w∗) ∈ E1 ×E2 and a subsequence {(xnkj , wnkj

)} of {(xnk , wnk)}
such that (xnkj , wnkj

)⇀ (x∗, w∗) and

lim sup
k→∞

⟨(xnk , wnk) − (p, q), (∇f (x),∇g(w)) − (∇f (p),∇g(q))⟩ (70)

= lim
j→∞

⟨(xnkj , wnkj
) − (p, q), (∇f (x),∇g(w)) − (∇f (p),∇g(q))⟩.

But (xnkj , wnkj
)⇀ (x∗, w∗) implies that xnkj ⇀ x∗ and wnkj

⇀ w∗. Moreover, from (60), (61) and (67), we have

ankj ⇀ x∗, dnkj ⇀ x∗, ynkj ⇀ x∗, unkj ⇀ x∗ as j →∞, (71)

and

bnkj ⇀ w∗, enkj ⇀ w∗, znkj ⇀ w∗, vnkj ⇀ w∗ as j →∞. (72)

In addition, from (62), (71), (72), the fact that T is Bregman relatively f -nonexpansive and G is Bregman relatively g-
nonexpansive mapping, we conclude that x∗ ∈ F̃f (T ) and w∗ ∈ F̃g(G), and hence x∗ ∈ Ff (T ) and w∗ ∈ Fg(G). Next, we need
to show that (x∗, w∗) ∈ Ω. Let s ∈ (A + B)(e). Then, there exists ℎ ∈ B(e) such that s = A(e) + ℎ.
Thus, from (34) and monotonicity of A and B, we have

⟨e − ynkj , s⟩ = ⟨e − ynkj , A(e) + ℎ⟩

= ⟨e − ynkj , A(e) − A(ynkj )⟩ + ⟨e − ynkj , A(ynkj ) − A(dnkj )⟩ + ⟨e − ynkj , A(dnkj ) + ℎnkj ⟩

+⟨e − ynkj , ℎ − ℎnkj ⟩

≥ ⟨e − ynkj , A(ynkj ) − A(dnkj )⟩ + ⟨e − ynkj , A(dnkj ) +
1
�nkj

(∇f (dnkj ) − ∇f (ynkj ) − �nkjA(dnkj ))⟩

= ⟨e − ynkj , A(ynkj ) − A(dnkj )⟩ +
1
�nkj

⟨e − ynkj ,∇f (dnkj ) − ∇f (ynkj ))⟩ (73)

Taking limits on both sides of the inequality (73) as j → ∞ and using the fact that ∇f and A are uniformly continuous, (60)
and (71), we have

⟨e − x∗, s⟩ ≥ 0. (74)
Then, by the maximal monotonicity of A + B, we get 0 ∈ (A + B)x∗, that is, x∗ ∈ (A + B)−1(0). Similarly we obtain that,
w∗ ∈ (C + D)−1(0). Now, from (59), (71), (72) and the fact that S and K are bounded linear mappings we have Sx∗ = Kw∗

and hence (x∗, w∗) ∈ Ω. Therefore, from (70) and Lemma 1, we obtain that

lim sup
k→∞

⟨(xnk , wnk) − (p, q), (∇f (x),∇g(w)) − (∇f (p),∇g(q))⟩

= lim
j→∞

⟨(xnkj , wnkj
) − (p, q), (∇f (x),∇g(w)) − (∇f (p),∇g(q))⟩

= ⟨(x∗, w∗) − (p, q), (∇f (x),∇g(w)) − (∇f (p),∇g(q))⟩
≤ 0. (75)
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Let sn = �n(1 − �) and

bn =
1

1 − �
[

⟨xn − p,∇f (x) − ∇f (p)⟩ + ⟨wn − q,∇g(w) − ∇g(q)⟩
]

+
rn

�n(1 − �)
+ 1
1 − �

D
[

‖xn+1 − xn‖ + ‖wn+1 −wn‖‖
]

.

Then, inequality (53) implies that
{

Df (p, xn+1) +Dg(q,wn+1)
}

≤ (1 − sn)
{

Df (p, xn) +Dg(q,wn)
}

+ snbn (76)

From (68), (69), (75) and using the fact that �n → 0 and rn
�n

→ 0 as n → ∞, we obtain limn→∞ sn = 0, and lim supk→∞ bnk ≤ 0.
From Lemma 9, we conclude that limn→∞

(

Df (p, xn) +Dg(q,wn)
)

= 0 and so limn→∞Df (p, xn) = 0 and limn→∞Dg(q,wn) = 0
. Hence, by Lemma 4 we obtain limn→∞ xn = p and limn→∞wn = q.
Therefore, the sequence {(xn, wn)} generated by Algorithm 3.1 converges strongly to (p, q) = P ℎ

Ω(x,w) and this completes
the proof.

If, in Theorem 1, we assume that E1 = E2 = E3 = E, C = 0 = D, S = 0 = K and G = ∇g, then we obtain the following
theorem.

Theorem 2. Let E be a reflexive real Banach space with its dual space E∗. Let f ∶ E → ℝ be a strongly coercive, lower semi-
continuous, strongly convex, bounded and uniformly Fréchet differentiable Legendre function on bounded subsets with strongly
convex conjugate f ∗. Let g ∶ E → ℝ be a strongly convex and Gâteaux differentiable function with the strong convexity
constant of g be �2. Let T ∶ E → E∗ be Bregman relatively f -nonexpansive mapping. Let A ∶ E → E∗ and B ∶ E → 2E∗ be
uniformly continuous monotone and maximal monotone mappings, respectively. If the assumptions (A2),(A8), (A9) and (A10)
are satisfied and Ω = {a ∈ E ∶ a ∈ (Ff (T ) ∩ (A + B)−1(0))} ≠ ∅, then the sequence {xn} generated by Algorithm 3.1 with
E1 = E2 = E3 = E, C = 0 = D, S = 0 = K , G = ∇g and w = w0 = w1 converges strongly to p = P

f
Ω (x).

If Ei, i = 1, 2, 3 are strictly convex and smooth Banach spaces with their respective, duals E∗
i , i = 1, 2, 3 and g(x) = f (x) =

1
2
‖x‖2, then ∇f = ∇g = J , ∇f ∗ = ∇g∗ = J−1, P f

Ω = ΠΩ = P g
Ω and the Bregman relatively f -nonexpansive mapping T

and the Bregman relatively g-nonexpansive mapping G reduce to relatively semi-nonexpansive mappings. Thus, we obtain the
following theorem.

Theorem 3. Let Ei, i = 1, 2, 3 be strictly convex and smooth reflexive real Banach spaces with their respective, duals E∗
i ,

i = 1, 2, 3 and let T ∶ E1 → E∗
1 and G ∶ E2 → E∗

2 be relatively semi-nonexpansive mappings. Suppose that the assumptions
(A4)- (A6) and (A8)-(A10) are satisfied. IfΩ = {(a, b) ∈ (Fs(T )∩ (A+B)−1(0))× (Fs(G)∩ (C +D)−1(0)) ∶ S(a) = K(b)} ≠ ∅,
then the sequence {(xn, wn)} generated by Algorithm 3.1 with∇f = J = ∇g,∇f ∗ = J−1 = ∇g∗ and P f

Ω = ΠΩ = P
g
Ω converges

strongly to (p, q) in Ω, where (p, q) = ΠΩ(x,w).

If Ei, i = 1, 2, 3 are real Hilbert spaces and g(x) = f (x) = 1
2
‖x‖2 then ∇f = ∇g = I , ∇f ∗ = ∇g∗ = I , P f

Ω = PΩ = P g
Ω,

JE3 = I and the Bregman relatively f -nonexpansive mapping T and the Bregman relatively g-nonexpansive mapping G reduce
to relatively nonexpansive mappings. Thus, we obtain the following corollary.

Corollary 1. LetHi, i = 1, 2, 3 be real Hilbert spaces, T ∶ H1 → H1 andG ∶ H2 → H2 be relatively nonexpansive mappings.
Suppose that the assumptions (A4)- (A6) and (A8)-(A9) are satisfied. If Ω = {(a, b) ∈ (F (T ) ∩ (A + B)−1(0)) × (F (G) ∩ (C +
D)−1(0)) ∶ S(a) = K(b)} ≠ ∅, then the sequence {(xn, wn)} generated by Algorithm 3.1 with ∇f = I = ∇g, ∇f ∗ = I = ∇g∗,
JE3 = I and P f

Ω = PΩ = P
g
Ω converges strongly to (p, q) = PΩ(x,w).

4 APPLICATION

4.1 Split Monotone Inclusion and f -fixed Point Problems
If Ei = E, i = 1, 2, 3, K = I , where I is identity mapping, then SEMIfFPP reduces to the split monotone inclusion and
f, g-fixed point problems, which is defined as finding p ∈ (Ff (T ) ∩ (A + B)−1(0)) such that Sp ∈ (Fg(G) ∩ (C +D)−1(0)).

Denote Ψ = {p ∈ (Ff (T ) ∩ (A + B)−1(0)) ∶ S(p) ∈ (Fg(G) ∩ (C +D)−1(0))}.
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Corollary 2. Assume that conditions (A1)- (A6) and (A8)- (A10) are satisfied with Ei = E, i = 1, 2, 3 and K = I . If Ψ ≠ ∅,
then the sequence {(xn, wn)} generated by Algorithm 3.1 converges strongly to (p, S(p)) = P ℎ

Ψ(x,w).

4.2 Common Solutions of Monotone Inclusion and f -fixed Point Problems
Let Ei = E, i = 1, 2, 3, S = K = I . Then, SEMIfFPP reduces to a common solution of two monotone inclusion and f, g-fixed
point problems, which is defined as finding a point p ∈ E such that p ∈ (Ff (T ) ∩ (A + B)−1(0)) ∩ (Fg(G) ∩ (C +D)−1(0)).

Denote Γ = {p ∈ E ∶ p ∈ (Ff (T ) ∩ (A + B)−1(0)) ∩ (Fg(G) ∩ (C +D)−1(0))}.

Corollary 3. Assume that conditions (A1)-(A5) and (A8)-(10) are satisfied withEi = E, i = 1, 2, 3. If Γ ≠ ∅, then the sequence
{(xn, wn)} generated by Algorithm 3.1 with S = K = I converges strongly to (p, p) = P ℎ

Γ (x,w).

4.3 Split Equality Monotone Inclusion Problem
If T = ∇f and G = ∇g, then SEMIfFPP reduces to the split equality of monotone inclusion problems, which is finding a point
(p, q) ∈ E1 × E2 such that p ∈ (A + B)−1(0), q ∈ (C +D)−1(0) and Sp = Kq.

Denote Λ = {(p, q) ∈ (A + B)−1(0) × (C +D)−1(0) ∶ Sp = Kq}.

Corollary 4. If conditions (A1),(A2), (A4)-(A6) and (A8)-(A10) are satisfied andΛ ≠ ∅, then the sequence {(xn, wn)} generated
by Algorithm 3.1 with T = ∇f and G = ∇g converges strongly to (p, q) in Λ, where (p, q) = P ℎ

Λ (x,w).

4.4 Split Equality f -Fixed Point Problem
If A = B = 0 = C = D, then SEMIfFPP reduces to the split equality of f, g-fixed point problems, which is finding a point
(p, q) ∈ E1 × E2 such that p ∈ Ff (T ), q ∈ Fg(G) and Sp = Kq.

Denote Σ = {(p, q) ∈ E1 × E2 ∶ p ∈ Ff (T ), q ∈ Fg(G) and Sp = Kq}.

Corollary 5. If conditions (A1)-(A3),(A6) and (A8)-(A10) are satisfied and Σ ≠ ∅, then the sequence {(xn, wn)} generated by
Algorithm 3.1 with A = B = 0 = C = D converges strongly to (p, q) = P ℎ

Σ (x,w).

4.5 Optimization Problem
Let Ei = E, i = 1, 2, 3, be reflexive real Banach spaces. Let fi ∶ Ei → ℝ be convex smooth functions and gi ∶ Ei → ℝ be
convex, lower semicontinuous functions, i = 1, 2. We consider the following minimization problem: Find (p, q) ∈ E1 ×E2 such
that

p solves min
x∈E1

{f1(x) + g1(x) ∶ (∇f1 − T )(x) = 0}, (77)

q solves min
y∈E2

{f2(y) + g2(y) ∶ (∇f2 − G)(y) = 0} (78)

and

Sp = Kq, (79)

where T ∶ E1 → E∗
1 andG ∶ E2 → E∗

2 are Bregman relatively f -nonexpansive mappings and S ∶ E1 → E3 andK ∶ E2 → E3
are bounded linear mappings.

Denote Δ = {(z, v) ∈ E1 × E2 ∶ z solves (77), v solves (78) and Sz = Kv}.

This problem is equivalent, by Fermat’s rule, to the problem of finding (p, q) ∈ E1 × E2 such that

(p, q) ∈
[

Ff1(T ) ∩ (∇f1 + )g1)
−1(0)

]

×
[

Ff2(G) ∩ (∇f2 + )g2)
−1(0)

]

and S(p) = K(q), (80)

where ∇fi are gradient of fi and )gi are subdifferential of gi, i = 1, 2. Note that ∇fi and )gi are monotone and maximal
monotone mappings, respectively.
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Corollary 6. Let fi ∶ Ei → ℝ be convex smooth functions and gi ∶ Ei → ℝ be convex, lower semicontinuous functions,
i = 1, 2. Assume that the conditions (A1),(A3), (A6) and (A8) - (A10) are satisfied. If Δ ≠ ∅, then the sequence {(xn, wn)}
generated by Algorithm 3.1 with A = ∇f1, C = ∇f2, B = )g1 and D = )g2, converges strongly to (p, q) in Δ, where
(p, q) = P ℎ

Δ(x,w), where ℎ = f1 + f2.

5 NUMERICAL EXPERIMENT

In this section, we provide some numerical examples to clearly exhibit the behavior of the convergence of the proposed method.
Example 1. Consider the minimization problem: find (p, q) ∈ ℝ4 ×ℝ3 such that

p solve min
x∈ℝ4

{‖x‖1 +
1
2
‖x‖22 + (3, 4,−2, 5)

tx + 3 ∶ T (x) = (−2,−3, 1,−4)}, (81)

q solve min
y∈ℝ3

{‖y‖1 + ‖y‖22 + (0,−5, 3)
ty + 2 ∶ G(y) = (0, 2,−1)} (82)

and

Sp = Kq, (83)

where S(x1, x2, x3, x4) = (x1 + x2, x3), T (x1, x2, x3, x4) = ( 1
2
x1 − 1, 2

3
x2 − 1, x3,

3
4
x4 − 1), ∀(x1, x2, x3, x4) ∈ ℝ4 and

K(y1, y2, y3) = (−2y2 + y3,−y3), G(y1, y2, y3) = (y1,
1
4
y2 +

3
2
,− 1

2
y3 −

3
2
), ∀(y1, y2, y3) ∈ ℝ3.

By Fermat’s rule, this problem is equivalent to the problem of finding a point (p, q) ∈ ℝ4 ×ℝ3 such that

(p, q) ∈ Ω = {(x, y) ∈
[

Ff (T ) ∩ (A + B)−1(0)
]

×
[

Fg(G) ∩ (C +D)−1(0)
]

∶ S(x) = K(y)}, (84)

where A(x) = ∇( 1
2
‖x‖22 + (3, 4,−2, 5)

tx + 3) = x + (3, 4,−2, 5), B(x) = )(‖x‖1) and f (x) =
1
2
‖x‖22, ∀x ∈ ℝ4 and C(y) =

∇(‖y‖22+(0,−5, 3)
ty+2) = 2y+(0,−5, 3),D(y) = )(‖y‖1) and g(y) =

1
2
‖y‖22, y ∈ ℝ3. We note that the mappingsA ∶ E1 → E1

and C ∶ E2 → E2 are monotone mappings, B ∶ E1 → E1 and D ∶ E2 → E2 are maximal monotone mappings, S ∶ E1 → E3
and K ∶ E2 → E3 are bounded linear mappings with adjoints S∗(x1, x2) = (x1, x1, x2, 0) and K∗(x1, x2) = (0,−2x1, x1,−x2),
(x1, x2) ∈ ℝ2, respectively, where E1 = ℝ4, E2 = ℝ3 and E3 = ℝ2. Moreover, we observe that ∇f (x) = x,∇g(y) = y, Jℝ2 = I ,
where I is identity mapping on ℝ2, and the mapping T ∶ E1 → E1 is a Bregman relatively f -nonexpansive and G ∶ E2 → E2
is a Bregman relatively g-nonexpansive mapping and Ω = {((−2,−3, 1,−4), (0, 2,−1))} ≠ ∅.
Now, we present the numerical experiment results for testing and comparing the performance of the control parameter by

taking different values in the Algorithm 3.1. All experiments are performed by using MATLAB R2021b.
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FIGURE 1 Algorithms 3.1. with � = 0.5, �1 = 1 = �1 � = 0.99, � = 0.1, 
 = 10−4 and different �n.
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FIGURE 2 Algorithms 3.1. with �n = (n + 1)−0.5, �1 = 1 = �1, � = 0.99, � = 0.1, 
 = 10−5 and different �.

From FIGURE 1 and 2, we observe that the sequence dn = (xn, wn) converges faster to x∗ = ((−2,−3, 1, 4), (0, 2,−1)), when
the power a of the control parameters �n = (n + 1)−a gets closer to one while the initial point and all other parameters are kept
fixed, and the control parameter � gets closer to zero while the initial point and all other parameters are kept fixed, respectively.

6 CONCLUSION

In this paper, we proposed an inertial type algorithm to approximate the solution of the split equality of monotone inclusion
and f, g-fixed point of Bregman relatively f, g-nonexpansive mapping problems. We proved a strong convergence theorem
for the developed algorithm in reflexive real Banach spaces. The main result of our method improves the result obtained by
Izuchukwu et al.9 from the split feasibility over the solution set of monotone variational inclusion problems in real Hilbert spaces
to the split equality of monotone inclusion and f, g-fixed point of Bregman relatively f, g-nonexpansive mapping problems in
reflexive real Banach spaces. As an application, we provided several applications of our method and provided a numerical result
to demonstrate the behavior of the convergence of the algorithm. A numerical example is also provided to illustrate the behavior
of the proposed algorithm.
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