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1 | INTRODUCTION

Jose M. Mercero!? | Jesus M.
Ugalde2 | Xabier Lopez!?

| Jon M. Matxain1?’

In this work, we have computed and implemented one-body
integrals concerning gaussian confinement potentials over
gaussian basis functions. Then, we have set an equivalence
between gaussian and Hooke atoms and we have observed
that, according to singlet and triplet state energies, both
systems are equivalent for large confinement depth for a
series of even number of electrons n = 2,4, 6,8 and 10. Un-
like with harmonic potentials, gaussian confinement poten-
tials are dissociative for small enough depth parameter; this
feature is crucial in order to model phenomena such as ion-
ization. In this case, in addition to corresponding Taylor-
series expansions, the first diagonal and sub-diagonal Padé
approximant were also obtained, useful to compute the up-
per and lower limits for the dissociation depth. Hence, this

method introduces new advantages compared to others.
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approximants

Gaussian potential wells have attracted attention in the scientific community in a wide range of fields. On the one
hand, in theoretical condensed matter field for modelling and gaining further knowledge on Quantum Dots (QDs) in
semiconductors (such as GaAs) and confined systems [1, 2, 3, 4]. Recent works concerning two and three dimensional

quantum dots study properties of these impurities such as Aharonov-Bohm oscillations [5], decoherence effects [6],
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thermo-magnetic properties [7, 8, 9, 10], interactions with electric and laser fields [11, 12, 13, 14, 15, 16], topological
dependence on the stated properties [17, 18], quantum entanglement[19], mathematical modelling [20, 21, 22] and
even few-electron systems confined in such potentials [23, 24]. On the other hand, Ali-Bodmer potentials for describ-
ing a particles interactions in nuclear physics[25] are still employed in nuclear structure calculations with a clustering
[26, 27, 28].

In the latter field (in which only one-body equations are considered) the gaussian shaped interactions are treated
as such. However, in the condensed matter and electronic structure community (where many-body problems arise)
these functions are approximated by using harmonic potentials also known as Hooke atoms. Some of such systems
composed by 2 electrons have closed form solutions [29] which are employed as benchmarks when testing novel
electronic structure methods [30, 31, 32, 33, 34, 35, 36]. Besides, there are plenty works in the literature where high
theoretical level computations have been performed for larger systems [37, 38].

Although harmonic potentials found in Hookean systems are a sensible approximation when describing bound
states in QDs and artificial atoms, there are two main inconvenients. First, by using such potentials, one loses molecu-
lar structure since any linear combination of many centre harmonic potentials will give rise to a new harmonic potential
(the P, for degree two polynomia space is complete). Second, harmonic potentials have an infinite number of bound
states, therefore, processes such as ionization and dissociation cannot be properly modelled.

Minding the gap between one-particle confined in a gaussian-like potential problems and many-body systems
confined in harmonic potentials, in this work we have computed the required one-body integrals for gaussian poten-
tials using, also, gaussian basis functions so employed in quantum chemistry. By doing so, we have set sail in three
paths concerning these systems: we have studied deeply confined (high values depth parameter V;) atomic systems
with even number of electrons (n = 2, 4, 6,8 and 10) by computing their singlet-triplet gap and relating them to equiv-
alent Hooke atoms studied in previous works. On the opposite site, we have studied dissociation limits for 2 electron
systems in singlet spin state with Yukawa-like screening interaction.

2 | COMPUTATIONAL METHODS

In this work we have studied systems of even number of electrons (n = 2,4,6,8 and 10) confined within a three
dimensional gaussian potential and screened electron-electron interactions writing the one-centre Hamiltonian as
in 1. The two-body (four-centre) integrals concerning the screened Yukawa-like inter-electronic interactions were
already computed and implemented for gaussian basis functions by our group [39] in GAMESS US [40]. This time, we
have computed and implemented the corresponding one-body integrals for gaussian confinement potentials using
the same basis set functions as in section 2.1.
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The election of the exponent in the gaussian confinement function in Hamiltonian 1 is not a fact of chance, indeed.
It has been selected so that for any value of the depth parameter V), the curvature of the confinement function is kept
constant to %wz; by doing so, we have been able to relate these new calculations to former ones from the literature.
In preceding works, we have optimised some even-tempered gaussian basis functions for spherical harmonic
potentials with curvature w? = 17 and even number of electrons (n = 2,4, 6,8 and 10) at MRMP2(n,13) level. We

have observed that the most balanced (concerning accuracy and size) basis set was the one obtained for six electron
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systems with singlet spin state, namely ETBS-6S basis. We have used the same basis and method throughout this
paper conditioning the exponent of the gaussian confinement function so that the curvature is kept as in the optimised
Hooke system for each individual atom.

2.1 | One-body integrals concerning Gaussian confinements

We need to obtain the one-body integrals for N centre external potentials defined as in (2); as it is commonly done in
quantum chemistry, if we expand atomic orbitals as contracted gaussian primitive functions, the inner integrals to be
computed have the form (3).

N
(| N2
Vext () == » Vo ePirRop) ()
i=1

/ Gi(a1,Ra, 1, m1,n1)Ga(az, R, I, my, ﬂz)efp"(r‘fRo"')zdlﬁ (3)

We take the next step by applying the Gaussian Product Theorem [41] upon the two basis functions G; and G,
so we obtain another gaussian namely Gp:
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For which the characteristic constants and coefficients are defined as:
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As the potential energy function is yet a gaussian function itself with zero angular momentum, we apply the
Gaussian Product Theorem again upon the potential function and the Gaussian obtained in the previous step Gp.

Then we obtain a new Gaussian, namely, G given as:
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Where the constants and coefficients are:
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Now -using the properties of the exponential function and considering the distance squared dependency of the
exponent- we can acknowledge the integral (3) is in fact composed by the product of three integrals; one for each
spacial variable. It can therefore be written as in (7)

I(x,y,2) = KK [I(x)I(y)I(2)] )
And each integral is given as:
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Notice we have exchanged the order of integration and summation and we are allowed to do so as both, the
integral and summation, are totally convergent, the former because we are dealing with functions which live in the
Schwartz space and the latter because the summation is finite. We may also notice that all three integrals are the
momenta of a Gaussian distribution for which the general formula is given by equation 9. Since the Gaussian distri-
bution is even with respect to reflection plane where the point ¢; = T in contained, only even order momenta will
be different from zero.

k1
m(t._T )ke*YQ(ff*TQ)zdt._ M k=024 9)
e TR SO
Q



Xabier Telleria-Allika et al. 5

One last remark concerns the evaluation of the gamma function obtained in equation 9. As we have mentioned,
the moment parameter k must be even for the integral not to vanish, using a property of the gamma function, we may
evaluate it using a product as:

1 1-3.5...2n-1)
F(n+5):\/7?2—n , neN
kK 1 v, ifk=0
F(7+—):
2 2 \/EH’:;:’Z %, otherwise

Thus, each of the three spatial components of the matrix element containing the /-th centre are given as simple

nested sums and products as in (11).
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We have coded these integrals as a subroutine in FORTRAN90 and FORTRAN70 in other to add them to the source
file for the one body integral packages in the open code package GAMESS-US [40].

3 | RESULTS AND DISCUSSION

3.1 | Deeply confined one centre systems with even number of electrons

We have performed MRPT2/ETBS6-S calculations using m = 10, 11, 12 and 13 orbitals in the active space upon systems
composed by small even number of electrons n = 2,4,6,8 and 10 confined in a single three-dimensional gaussian
potential well as in Hamiltonian 1. In order to make sure that our new results are sensible and make a connection
with former works on Hook atoms with these numbers of electrons, we have taken 30 values for the gaussian depth
parameter V; evenly spaced in the range [-300.0, —10.0] (in au), set the screening parameter A = 0.0 and the curvature
parameter w? = ];. With the aim of gaining a deeper insight of the connection between Gaussian and Hookean systems,
we have expanded the Gaussian potential energy function in a power series as in equation 12. If we keep the first
three terms in this Taylor expansion, we may notice that we assume an error in potential energy which is proportional
to the inverse of the gaussian potential depth as in equation 13. If we further assume that kinetic energy and electron
interaction energy do not depend strongly on potential depth (which is a sensible assumption for deep potentials),
the Gaussian system energy Eg and the equivalent (in the sense of curvature) Hookean system energy Ey are related
as in equation 14 where g(n, w?) is the average value of the first anharmonic term and depends on the number of
electrons n and the curvature of the equivalent Hookean w?. In this way, even if the number of electrons, the depth
and the curvature are kept constant, we may infer that spin state of the wave-function also plays a role since rather
different one-body functions may take part in building the whole many-body wave functions; therefore, altering the

third term average value in equation 13.
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If we study the Gaussian system'’s energy variation with respect to the potential depth, we shall observe that to a
great extend, the main contribution to this variation is the number of electrons as in equation 15. This last expression
may also be obtained by applying the Hellmann-Feynman theorem differentiating the Hamiltonian 1 with respect to

Vo and taking into account that in deeply confined systems % goes to zero 16.

dEg w*

Fra -n+0 (Voz) (15)
2,2
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Hereby, based on the power series representation for the potential energy function in equation 12 and considering
T and V.. do not heavily depend on a specific V; but rather on the curvature of the potential w2, we may state that
-just considering the first anharmonic term- the shifted energy of the gaussian system Eg + nVy depends linearly on
the inverse of the gaussian potential depth 1/V, and the ordinate is just the Hookean system energy with curvature
w?. We have performed several calculations as stated in the previous paragraph and we have obtained the Hookean
energy £y and the first anharmonic term (written for simplicity as g) by linear regression; all regression estimates are
contained in table 1.

We may observe that Hooke atom energies for singlet and triplet states agree with those obtained in former
works at the same level of theory and in the worst case scenario, the Hookean energy has 1 x 10~ au error obtained
by error estimation in routine linear regression; thus, the calculation protocol error is larger than the one from the
regression. As far as first anharmonic terms g are considered, they are obtained by taking the slope of the linear
regression which -in the worst case scenario- has an error of 4 x 1074 au. If we take a deeper insight of the g values,
we may immediately notice that, for a given spin state either singlet or triplet, does not dramatically change with the
size of the active space while it is highly dependent on the number of electrons n. Besides the number of electrons,
this anharmonic term also depends on the spin state taking the two electron system as the most notorious one. From
the previously exposed theory this behaviour was expected since g represents a sum over electrons of an averaged
value of a quartic potential with respect to a many-body normalised wave-function; therefore, g condenses a lot of
information about the system: the curvature,the number of electrons and the spin state.

In the worst case scenario -the one for CASSCF(8,10)(S)/ETBS-6S calculations- the regression correlation param-
eter was R? = 0.9623. However, this is a pretty odd case and the average value for this statistic is R? = 0.9991. It can
also be seen that even the Hooke atom energy is comparable to the ones obtained by other methods, the anharmonic
contribution g is quite different even if we compare it to the one obtained by including dynamical correlation effects

via perturbation methods at the same theory level. We have also observed that as soon as the active space size is
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TABLE 1 Hookean energy Ey (au) and g (au?) terms obtained by linear regression using data obtained by
MRPT2(n,m)/ETBS-6S calculations.

ES EL

s
E MRPT?2 CAS

CAS E

MRPT2

n m Ey g Ey g Ey g En g

2 10 2001718 0.3214578 2.000553  0.3214138 2.36111 0.4615673  2.359877  0.4623589
11 2.001569  0.3220647 2.000541  0.3214695 2.359966  0.4629399  2.359749  0.4629238
12 2.001353 0.3219344 2.000521 0.3214604 2.359883  0.4629516 2359746  0.4629451
13 2.001233 0.3221784 2.000509 0.3214931 2.35988 0.4629387  2.359746  0.4629558

4 10 6.41014 1.330105 6.391462 1.331209 6.369164 1.314156 6.353142 1.31538
11 6.405534 1.329927 6.391097 1.331188 6.365399 1.315223 6.352794 1.315585
12 6.401805 1.332317 6.390674 1.331675 6.361329 1.316371 6.352395 1.315823
13 6.398952 1.331355 6.390306 1.331604 6.360014 1.305258 6.352244 1.314446

6 10 12.13421 2.784703 12.08499 2.786157 12.09482 2.767391 12.04846 2.768882
11 1212679 2.788366 12.0844 2.786919 12.08947 2.763241 12.04783 2.768251
12 12.12125 2.788358 12.08397 2.786566 12.08349 2.770115 12.04719 2.768935
13 1211545 2.783258 12.08333 2.786984 12.07844 2.771766 12.04666 2.769276

8 10 19.07563 3.931056 19.00154  4.625022 19.36024  4.555748 19.27003 4.672289
11 19.07066 4.728791 19.00104 4.728537 19.35476 4.703725 19.2721 4.905097
12 19.06393 4.689791 19.00023 4.703367 19.34488 4.823247 19.27197 5.007794
13 19.05414  4.735014 18.99894  4.729663 19.33712 4.901288 19.27023 4.921244

10 10 27.83390 7.339055 27.69036 7.533762 27.80165 7.224892 27.66912 7.522172
11 27.81091 7.453328 27.68948 7.638288 27.78357 7.424963 27.66788 7.547430
12 27.789871 7.5806211 27.693892 7.5958861 27.768859 7.5651956 27.666607 7.5712475

augmented, the correlation parameter gets rapidly closer to 1 approaching perfect linear dependency.

3.2 | Loosely confined two electron systems with screened Coulomb interaction

Based on the fact that two electron systems with singlet spin state have one occupied bound state, we have been
wondering at which point of gaussian potential depth the whole systems dissociates (Eg (Vod) = 0). On top of this, we
have also considered electron-electron interaction to be screened and in what measure it affects the loosely bound
system'’s stability. Hence, we have modelled these systems using Hamiltonians as in equation 17 where the confine-
ment Gaussian potential has been defined as in the previous section and the electronic Coulomb interaction is replaced
by a Yukawa-like potential with exponent A > 0. We have taken 10 values for A parameter in the evenly separated
range [0.10, 1.00] and 20 values for V; also in a evenly separated range [—1.50, —0.50] at MRPT2(2,13)/ETBS-6S level
of theory for singlet states; the results for these calculations can be found in figure 1.

Points with positive energies (above the gray line) in this plot are somehow meaningless since positive energies
belong to dissociated systems (scattering states); nevertheless, energies are positive and real since the basis function

themselves create the Dirichlet boundaries. At a first glimpse, one shall observe that the dissociation limit depth is
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smaller as A is larger (therefore electron-electron interaction is weaker).

CASSCF(2,13)ETBS-6S MRPT2(2,13)ETBS-6S

Ealau)
Egfau)

10 06 08 10 12 14

Velau.) Volau)

FIGURE 1 Energies for gaussian confinement with two electrons in singlet spin state for several screening
parameter A values.

Let us try to make sense of the obtained results. As in the previous section, we have expanded our Gaussian
systems energy now taking an additional term as in equation 18 where the anharmonic contributions g; and g, are
generally taken as positive despite the fact the sign is alternating in the original Taylor-like series. Now, we shall
obtain Ey, g1 and g, from data using linear regression (omitting all £ > 0 data) via small squares minimisation; from
the residues, we may notice that they follow an expected cubic polynomial trend due to the fact that we have trimmed
the Taylor-like series at that order.

1 2 2 2 —%rz e An2
H = —EZV,.—ZVQe o = (17)
i=1 i=1
&1 82 w
Eg+2V = Ey+=+2=+0|— (18)
o oo Vg (%2)

Once we have obtained the coefficients we can solve the equation 18 for Eg as in equation 19 where we still
have a Taylor-like series. Now, we can exploit an interesting property of the energy function: in the Taylor-like series
signs are alternating, therefore it is a Stiljies function (in connection with continued fractions) and if we obtain the
main Padé sequence, we do know that the sequence P21 (Vo’1) will converge to the right energy from bellow while
7’11 (V0’1) will converge from above. If we take the first Padé approximants for the Taylor-like series 19 as in equations
20 and 21 and solve them for Vg, we will obtain the lower and upper limit of the dissociation depths Vod’ and Vo‘”
respectively in terms of the physical quantities £, g1 and g, for a given screening parameter A. All obtained results

are condensed in table 2.
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6
% = —2+5H+g12+g23+0(w3) (19)
0 o V5 Y Y5
7)1 l _ _2g1 +EH_2EHVO (20)
1 Vo g1_EHVO
Pl ( 1 ) ~ (481 +2En)VZ — (4g2 +481Ep)Vo
2\ —(E% +281)VZ + (g1 + 282+ Er)Vo + (8261 — £7)

(21)

TABLE 2 Hooke atom energy (Ey), first anharmonic terms (g1, g2) and bound dissociation limits obtained for
several screening parameter values for 2 electron systems with singlet spin state at MRPT2(2,13)/ETBS-6S level. All
values are given in atomic units.

En & & 7 VT
A CASSCF  MRPT2 CASSCF MRPT2 CASSCF MRPT2 CASSCF MRPT2 CASSCF MRPT2
0.1 1.9379 1.9372 -0.3839 -0.3839 0.0163 0.0164 0.731 0.730 0.771 0.770
02 18719 18712 -0.3829 -0.3830 00200 00201 0689 0688 0731 0731
03 1.8204 18197 -0.3802 -0.3803 00232 00233 0657 0657 0701 0701
0.4 1.7770 1.7753 -0.3712 -0.3691 0.0232 0.0220 0.635 0.634 0.680 0.680
0.5 1.7397 1.7394 -0.3578 -0.3587 0.0203 0.0208 0.618 0.617 0.664 0.663
0.6 1.7143 1.7135 -0.3568 -0.3569 0.0233 0.0234 0.603 0.603 0.649 0.648
0.7 1.6902 1.6890 -0.3487 -0.3482 0.0223 0.0222 0.593 0.592 0.639 0.638
0.8 1.6702 1.6686 -0.3418 -0.3406 0.0215 0.0211 0.584 0.584 0.630 0.630
0.9 1.6532 1.6514 -0.3354 -0.3339 0.0206 0.0201 0.578 0.577 0.624 0.624
10 16376 16369 -03280 -0.3281 00192 00192 0573 0572 0619 0618

If we focus our attention upon a given A value and study a given estimated physical property, we shall notice that
including dynamic correlation effects via perturbation methods does not quite make a big difference with respect to
the same quantity obtained by regular CASSCF method.

Now, as far as Ey is concerned, this energy is smaller as A increases which is to be expected for Hooke atoms
REF. In contrast to the stated former results, in this very work, we obtained a Hooke two electron singlet atom energy
for A = 0.2,0.4,0.8 and 1.0 to be Ey = 1.8459,1.7502, 1.6881, 1.6458 and 1.6159au respectively at CASSCF/ETBS-6S
while in table 2 the obtained energies are in average 0.025 au higher in energy. As we have discussed in the previous
section, accurate Hooke energies are obtained for deep potentials, nevertheless, in this section we have been dealing
with loosely confined systems. Therefore, on the basis of this approximation, we may state that our estimations are

rather reasonable and both regimes have pretty unique features.

As for the anharmonic terms, g; we may obverse it also gets smaller as A increases. We may hypothesise that as
electron-electron interaction gets weaker, correlation effects are also turned off and electrons are more likely found
in the centre of the potential well, thus this first anharmonic term becomes smaller. On the other hand, the second

anharmonic term g; gets a maximum for A = 0.6 and then decreases.
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CASSCF/ETBS-6S MRPT2/ETBS-6S
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FIGURE 2 Limit dissociation potentials for several A values.

Finally, the lower and upper bounds for the limit ionization potentials have in the worst case scenario a 0.046au
amplitude as we may observe that we have predicted their behaviour in terms of physical constants by setting the
corresponding Padé approximants 20 and 21 to zero and solving for V. We shall see that these limit potentials are
shallower and asymptotic to a limit value at which only one-body interactions are relevant. Thus, we get an obvious
conclusion, as electron-electron interaction is turned off the potentials does not need to do so much "work" to confine
the interacting particles and shallower potentials are still able to confine them. We may may a visual summary in figure
2.

4 | CONCLUDING REMARKS

In this work we have computed and implemented the required one-body integrals for quantum particles confined in
gaussian potential wells for which the centre of the basis function and the centre of the potentials do not need to
coincide. Such implementation has been interfaced to electronic structure software GAMESS-US so that we can make

use of its quantum chemical computation machinery to study systems of electrons confined in dissociative potentials.

Firstly, we have performed computations on deeply confined systems (large V,, parameter) with controlled width
parameter such that the curvature of the potential at the minimum point was w? = 0.5. Since previous results on
harmonic potentials have been well established for n = 2, 4,6, 8 and 10 electrons, by means of Taylor series we have
shown our calculations are compatible with the former ones.

Finally, we have studied dissociative systems composed by two electrons in which the conventional Coulomb
operator was substituted by Yukawa potentials. In this case, we have not only obtained the corresponding Taylor-
series expansion but also the first diagonal and sub-diagonal Padé approximant which were useful to compute the

upper and lower limits for the dissociation depth for several screening parameters A.
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