References
Abbott, E. P., Ianiri, G., Castoria, R., & Idnurm, A. (2013). Overcoming recalcitrant transformation and gene manipulation inPucciniomycotina yeasts. Applied Microbiology and Biotechnology , 97 (1), 283-295. https://doi.org/10.1007/s00253-012-4561-7
Abdel-Mawgoud, A. M., Markham, K. A., Palmer, C. M., Liu, N., Stephanopoulos, G., & Alper, H. S. (2018). Metabolic engineering in the host Yarrowia lipolytica. Metabolic Engineering , 50 , 192-208. https://doi.org/10.1016/j.ymben.2018.07.016
Abe, I., Watanabe, T., & Noguchi, H. (2005). Chalcone synthase superfamily of type III polyketide synthases from rhubarb Rheum palmatum . Proceedings of the Japan Academy, Series B ,81 (10), 434-440. https://doi.org/10.2183/pjab.81.434
Athenstaedt, K. (2011). YALI0E32769g (DGA1) and YALI0E16797g (LRO1) encode major triacylglycerol synthases of the oleaginous yeastYarrowia lipolytica . Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids , 1811 (10), 587-596. https://doi.org/10.1016/j.bbalip.2011.07.004
Blazeck, J., Hill, A., Liu, L., Knight, R., Miller, J., Pan, A., Otoupal, P., & Alper, H. S. (2014). Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production.Nature Communications , 5 (1), 3131. https://doi.org/10.1038/ncomms4131
Cardenas, J., & Da Silva, N. A. (2014). Metabolic engineering ofSaccharomyces cerevisiae for the production of triacetic acid lactone. Metabolic Engineering , 25 , 194-203. https://doi.org/10.1016/j.ymben.2014.07.008
Cardenas, J., & Da Silva, N. A. (2016). Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metabolic Engineering ,36 , 80-89. https://doi.org/10.1016/j.ymben.2016.02.009
Chen, Y., Daviet, L., Schalk, M., Siewers, V., & Nielsen, J. (2013). Establishing a platform cell factory through engineering of yeast acetyl-CoA metabolism. Metabolic Engineering , 15 , 48-54. https://doi.org/10.1016/j.ymben.2012.11.002
Chia, M., Schwartz, T. J., Shanks, B. H., & Dumesic, J. A. (2012). Triacetic acid lactone as a potential biorenewable platform chemical.Green Chemistry , 14 (7), 1850-1853. https://doi.org/10.1039/C2GC35343A
Coradetti, S. T., Pinel, D., Geiselman, G. M., Ito, M., Mondo, S. J., Reilly, M. C., Cheng, Y.-F., Bauer, S., Grigoriev, I. V., Gladden, J. M., Simmons, B. A., Brem, R. B., Arkin, A. P., & Skerker, J. M. (2018). Functional genomics of lipid metabolism in the oleaginous yeastRhodosporidium toruloides . eLife , 7 . Retrieved 2018/03//, from
Díaz, T., Fillet, S., Campoy, S., Vázquez, R., Viña, J., Murillo, J., & Adrio, J. L. (2018). Combining evolutionary and metabolic engineering inRhodosporidium toruloides for lipid production with non-detoxified wheat straw hydrolysates. Applied Microbiology and Biotechnology , 102 (7), 3287-3300. https://doi.org/10.1007/s00253-018-8810-2
Dinh, H. V., Suthers, P. F., Chan, S. H. J., Shen, Y., Xiao, T., Deewan, A., Jagtap, S. S., Zhao, H., Rao, C. V., Rabinowitz, J. D., & Maranas, C. D. (2019). A comprehensive genome-scale model forRhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metabolic Engineering Communications , 9 , e00101. https://doi.org/10.1016/j.mec.2019.e00101
Dolan, S. K., & Welch, M. (2018). The Glyoxylate Shunt, 60 Years On.Annual Review of Microbiology , 72 (1), 309-330. https://doi.org/10.1146/annurev-micro-090817-062257
Du, J., Shao, Z., & Zhao, H. (2011). Engineering microbial factories for synthesis of value-added products. Journal of Industrial Microbiology and Biotechnology , 38 (8), 873-890. https://doi.org/10.1007/s10295-011-0970-3
Eckermann, S., Schröder, G., Schmidt, J., Strack, D., Edrada, R. A., Helariutta, Y., Elomaa, P., Kotilainen, M., Kilpeläinen, I., Proksch, P., Teeri, T. H., & Schröder, J. (1998). New pathway to polyketides in plants. Nature , 396 (6709), 387-390. https://doi.org/10.1038/24652
Gerlt, J. A., Bouvier, J. T., Davidson, D. B., Imker, H. J., Sadkhin, B., Slater, D. R., & Whalen, K. L. (2015). Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): A web tool for generating protein sequence similarity networks. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics , 1854 (8), 1019-1037. https://doi.org/10.1016/j.bbapap.2015.04.015
Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A., & Smith, H. O. (2009). Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods , 6 (5), 343-345. https://doi.org/10.1038/nmeth.1318
Jagtap, S. S., & Rao, C. V. (2018). Production of d-arabitol from d-xylose by the oleaginous yeast Rhodosporidium toruloidesIFO0880. Applied Microbiology and Biotechnology , 102 (1), 143-151. https://doi.org/10.1007/s00253-017-8581-1
Jiao, X., Zhang, Y., Liu, X., Zhang, Q., Zhang, S., & Zhao, Z. K. (2019). Developing a CRISPR/Cas9 System for Genome Editing in the Basidiomycetous Yeast Rhodosporidium toruloides .Biotechnology Journal , 14 (7), 1900036. https://doi.org/10.1002/biot.201900036
Keatinge-Clay, A. T. (2016). Stereocontrol within polyketide assembly lines. Natural Product Reports , 33 (2), 141-149. https://doi.org/10.1039/C5NP00092K
Kozak, B. U., van Rossum, H. M., Luttik, M. A., Akeroyd, M., Benjamin, K. R., Wu, L., de Vries, S., Daran, J. M., Pronk, J. T., & van Maris, A. J. (2014). Engineering acetyl coenzyme A supply: functional expression of a bacterial pyruvate dehydrogenase complex in the cytosol of Saccharomyces cerevisiae. mBio , 5 (5), e01696-01614. https://doi.org/10.1128/mBio.01696-14
Lee, J. J., Chen, L., Cao, B., & Chen, W. N. (2016). EngineeringRhodosporidium toruloides with a membrane transporter facilitates production and separation of carotenoids and lipids in a bi-phasic culture. Appl Microbiol Biotechnol , 100 (2), 869-877. https://doi.org/10.1007/s00253-015-7102-3
Li, Y., Qian, S., Dunn, R., & Cirino, P. C. (2018). EngineeringEscherichia coli to increase triacetic acid lactone (TAL) production using an optimized TAL sensor-reporter system. J Ind Microbiol Biotechnol , 45 (9), 789-793. https://doi.org/10.1007/s10295-018-2062-0
Lian, J., Si, T., Nair, N. U., & Zhao, H. (2014). Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiaestrains. Metabolic Engineering , 24 , 139-149. https://doi.org/10.1016/j.ymben.2014.05.010
Lin, X., Wang, Y., Zhang, S., Zhu, Z., Zhou, Y. J., Yang, F., Sun, W., Wang, X., & Zhao, Z. K. (2014). Functional integration of multiple genes into the genome of the oleaginous yeast Rhodosporidium toruloides . FEMS Yeast Research , 14 (4), 547-555. https://doi.org/10.1111/1567-1364.12140
Liu, D., Geiselman, G. M., Coradetti, S., Cheng, Y.-F., Kirby, J., Prahl, J.-P., Jacobson, O., Sundstrom, E. R., Tanjore, D., Skerker, J. M., & Gladden, J. (2020). Exploiting nonionic surfactants to enhance fatty alcohol production in Rhodosporidium toruloides .Biotechnology and Bioengineering , 117 (5), 1418-1425. https://doi.org/10.1002/bit.27285
Liu, H., Marsafari, M., Wang, F., Deng, L., & Xu, P. (2019). Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica .Metabolic Engineering , 56 , 60-68. https://doi.org/10.1016/j.ymben.2019.08.017
Liu, J.-J., Zhang, G.-C., Kwak, S., Oh, E. J., Yun, E. J., Chomvong, K., Cate, J. H. D., & Jin, Y.-S. (2019). Overcoming the thermodynamic equilibrium of an isomerization reaction through oxidoreductive reactions for biotransformation. Nature Communications ,10 (1), 1356. https://doi.org/10.1038/s41467-019-09288-6
Liu, S., Zhang, M., Ren, Y., Jin, G., Tao, Y., Lyu, L., Zhao, Z. K., & Yang, X. (2021). Engineering Rhodosporidium toruloides for limonene production. Biotechnology for Biofuels , 14 (1), 243. https://doi.org/10.1186/s13068-021-02094-7
Liu, X., Zhang, Y., Liu, H., Jiao, X., Zhang, Q., Zhang, S., & Zhao, Z. K. (2019). RNA interference in the oleaginous yeast Rhodosporidium toruloides . FEMS Yeast Research , 19 (3). https://doi.org/10.1093/femsyr/foz031
Lyu, L., Chu, Y., Zhang, S., Zhang, Y., Huang, Q., Wang, S., & Zhao, Z. K. (2021). Engineering the Oleaginous Yeast Rhodosporidium toruloides for Improved Resistance Against Inhibitors in Biomass Hydrolysates. Frontiers in bioengineering and biotechnology ,9 , 768934-768934. https://doi.org/10.3389/fbioe.2021.768934
Markham, K. A., Palmer, C. M., Chwatko, M., Wagner, J. M., Murray, C., Vazquez, S., Swaminathan, A., Chakravarty, I., Lynd, N. A., & Alper, H. S. (2018). Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proceedings of the National Academy of Sciences , 115 (9), 2096. https://doi.org/10.1073/pnas.1721203115
Nora, L. C., Wehrs, M., Kim, J., Cheng, J.-F., Tarver, A., Simmons, B. A., Magnuson, J., Harmon-Smith, M., Silva-Rocha, R., Gladden, J. M., Mukhopadhyay, A., Skerker, J. M., & Kirby, J. (2019). A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides . Microbial Cell Factories , 18 (1), 117. https://doi.org/10.1186/s12934-019-1167-0
Otoupal, P. B., Ito, M., Arkin, A. P., Magnuson, J. K., Gladden, J. M., & Skerker, J. M. (2019). Multiplexed CRISPR-Cas9-Based Genome Editing of Rhodosporidium toruloides . mSphere , 4 (2). https://doi.org/10.1128/mSphere.00099-19
Park, Y.-K., Nicaud, J.-M., & Ledesma-Amaro, R. (2018). The Engineering Potential of Rhodosporidium toruloides as a Workhorse for Biotechnological Applications. Trends in Biotechnology ,36 (3), 304-317. https://doi.org/10.1016/j.tibtech.2017.10.013
Pomraning, K. R., Collett, J. R., Kim, J., Panisko, E. A., Culley, D. E., Dai, Z., Deng, S., Hofstad, B. A., Butcher, M. G., & Magnuson, J. K. (2019). Transcriptomic analysis of the oleaginous yeastLipomyces starkeyi during lipid accumulation on enzymatically treated corn stover hydrolysate. Biotechnology for Biofuels ,12 (1), 162. https://doi.org/10.1186/s13068-019-1510-z
Robinson, J. A. (1991). Polyketide synthase complexes: their structure and function in antibiotic biosynthesis. Philosophical transactions of the Royal Society of London. Series B, Biological sciences , 332 (1263), 107-114. https://doi.org/10.1098/rstb.1991.0038
Saunders, L. P., Bowman, M. J., Mertens, J. A., Da Silva, N. A., & Hector, R. E. (2015). Triacetic acid lactone production in industrialSaccharomyces yeast strains. J Ind Microbiol Biotechnol ,42 (5), 711-721. https://doi.org/10.1007/s10295-015-1596-7
Schultz, J. C., Cao, M., Mejia, A., & Zhao, H. (2021). CUT&RUN Identifies Centromeric DNA Regions of Rhodotorula toruloidesIFO0880. FEMS Yeast Research , foab066. https://doi.org/10.1093/femsyr/foab066
Schultz, J. C., Cao, M., & Zhao, H. (2019). Development of a CRISPR/Cas9 system for high efficiency multiplexed gene deletion inRhodosporidium toruloides . Biotechnology and Bioengineering , 116 (8), 2103-2109. https://doi.org/10.1002/bit.27001
Shao, Z., Zhao, H., & Zhao, H. (2009). DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways.Nucleic acids research , 37 (2), e16-e16. https://doi.org/10.1093/nar/gkn991
Sun, L., Lee, J. W., Yook, S., Lane, S., Sun, Z., Kim, S. R., & Jin, Y.-S. (2021). Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast.Nature Communications , 12 (1), 4975. https://doi.org/10.1038/s41467-021-25241-y
Tang, S.-Y., Qian, S., Akinterinwa, O., Frei, C. S., Gredell, J. A., & Cirino, P. C. (2013). Screening for Enhanced Triacetic Acid Lactone Production by Recombinant Escherichia coli Expressing a Designed Triacetic Acid Lactone Reporter. Journal of the American Chemical Society , 135 (27), 10099-10103. https://doi.org/10.1021/ja402654z
Vorapreeda, T., Thammarongtham, C., Cheevadhanarak, S., & Laoteng, K. (2012). Alternative routes of acetyl-CoA synthesis identified by comparative genomic analysis: involvement in the lipid production of oleaginous yeast and fungi. Microbiology , 158 (1), 217-228. https://doi.org/10.1099/mic.0.051946-0
Wang, G.-Y., Zhang, Y., Chi, Z., Liu, G.-L., Wang, Z.-P., & Chi, Z.-M. (2015). Role of pyruvate carboxylase in accumulation of intracellular lipid of the oleaginous yeast Yarrowia lipolytica ACA-DC 50109.Applied Microbiology and Biotechnology , 99 (4), 1637-1645. https://doi.org/10.1007/s00253-014-6236-z
Wang, Y., Lin, X., Zhang, S., Sun, W., Ma, S., & Zhao, Z. K. (2016). Cloning and evaluation of different constitutive promoters in the oleaginous yeast Rhodosporidium toruloides. Yeast , 33 (3), 99-106. https://doi.org/https://doi.org/10.1002/yea.3145
Wen, Z., Zhang, S., Odoh, C. K., Jin, M., & Zhao, Z. K. (2020).Rhodosporidium toruloides - A potential red yeast chassis for lipids and beyond. FEMS Yeast Research , 20 (5). https://doi.org/10.1093/femsyr/foaa038
Xie, D., Shao, Z., Achkar, J., Zha, W., Frost, J. W., & Zhao, H. (2006). Microbial synthesis of triacetic acid lactone.Biotechnology and Bioengineering , 93 (4), 727-736. https://doi.org/10.1002/bit.20759
Xu, P., Ranganathan, S., Fowler, Z. L., Maranas, C. D., & Koffas, M. A. G. (2011). Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA.Metabolic Engineering , 13 (5), 578-587. https://doi.org/10.1016/j.ymben.2011.06.008
Yu, J., Landberg, J., Shavarebi, F., Bilanchone, V., Okerlund, A., Wanninayake, U., Zhao, L., Kraus, G., & Sandmeyer, S. (2018). Bioengineering triacetic acid lactone production in Yarrowia lipolytica for pogostone synthesis. Biotechnology and Bioengineering , 115 (9), 2383-2388. https://doi.org/10.1002/bit.26733
Zha, W., Rubin-Pitel, S. B., Shao, Z., & Zhao, H. (2009). Improving cellular malonyl-CoA level in Escherichia coli via metabolic engineering. Metabolic Engineering , 11 (3), 192-198. https://doi.org/10.1016/j.ymben.2009.01.005
Zha, W., Shao, Z., Frost, J. W., & Zhao, H. (2004). Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo. Journal of the American Chemical Society , 126 (14), 4534-4535. https://doi.org/10.1021/ja0317271
Zhang, S., Skerker, J. M., Rutter, C. D., Maurer, M. J., Arkin, A. P., & Rao, C. V. (2016). Engineering Rhodosporidium toruloides for increased lipid production. Biotechnology and Bioengineering ,113 (5), 1056-1066. https://doi.org/10.1002/bit.25864
Zhang, X.-K., Nie, M.-Y., Chen, J., Wei, L.-J., & Hua, Q. (2019). Multicopy integrants of crt genes and co-expression of AMP deaminase improve lycopene production in Yarrowia lipolytica . Journal of Biotechnology , 289 , 46-54. https://doi.org/10.1016/j.jbiotec.2018.11.009
Zhang, Y., Peng, J., Zhao, H., & Shi, S. (2021). Engineering oleaginous yeast Rhodotorula toruloides for overproduction of fatty acid ethyl esters. Biotechnology for Biofuels , 14 (1), 115. https://doi.org/10.1186/s13068-021-01965-3
Zhu, Z., Zhang, S., Liu, H., Shen, H., Lin, X., Yang, F., Zhou, Y. J., Jin, G., Ye, M., Zou, H., & Zhao, Z. K. (2012). A multi-omic map of the lipid-producing yeast Rhodosporidium toruloides . Nature Communications , 3 (1), 1112. https://doi.org/10.1038/ncomms2112
Table 1. List of plasmids and strains.