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bDepartamento de Matemática, Universidade de Brasilia,

70.910-900–Brasilia (DF), Brazil.

Abstract

Using genus theory, the existence of infinitely many solutions for
an anisotropic equation involves subcritical growth is proved. Also
by using Krasnoselskii genus and Clark’s theorem, the existence of k-
pairs of distinct solutions is proved. Finally, the anisotropic equation
involves critical growth is considered and the existence of infinitely
many solutions is proved.

Keywords: 35J25, 35B65, 35J70, 46E35.

2010 Mathematics subject classification: Anisotropic operator, Genus
theory, Subcritical growth, Critical growth.

1 Introduction

Let F (ξ) = |ξ| =
( N∑
i=1

|ξi|2
) 1

2

be a norm on RN , the anisotropic Laplacian

is defined by

Lu :=

N∑
i=1

∂

∂xi

(
F (∇u)Fξi(∇u)

)
=

N∑
i=1

∂

∂xi

(
∂

∂ξi

(
1

2
F 2

)
(∇u)

)
.
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In general, the anisotropic Laplacian is a quasilinear elliptic operator of
divergent type. It appears in the Euler-Lagrange equations which involve
functionals containing the expressions

∫
Ω F (∇u(x))2dx, which is in fact the

Dirichlet energy of u in Minkowski space. Anisotropic Laplacian is closely
related to a convex hypersurface in RN , which is called the Wulff shape
(or equilibrium crystal shape) of F . Wulff [22] considered a variational
problem of an anisotropic geometric functional in the physical model of
crystal growth. He stated without proof that among closed convex hyper-
surfaces with constant enclosed volume, the so-called Wulff shape minimizes
the anisotropic surface energy. His work initiated lots of works on the theory
of phase transitions, in particular in the case of anisotropic and nonhomoge-
nous media. Recently, there some articles about the existence of solutions
for anisotropic problems (see [5, 8–13,20,23] and the references therein).

In this paper we are concerned with the multiplicity of nontrivial solu-
tions for the following classes of nonlinear anisotropic problems −

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u∂xi

)
−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣qi−2 ∂u∂xi

)
= λ|u|γ−2u in Ω,

u ∈ D1,−→p
0 (Ω) ∩D1,−→q

0 (Ω), γ ∈ (1, qN ),
(1.1)

and 
−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u∂xi

)
−

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣qi−2 ∂u∂xi

)
= λ|u|γ−2u+ |u|q

∗−2u in Ω,

u ∈ D1,−→p
0 (Ω) ∩D1,−→q

0 (Ω), γ ∈ (1, p1),

(1.2)

where Ω is a bounded smooth domain in RN , N ≥ 3, λ is a positive
parameter, −→p = (p1, · · · , pN ), −→q = (q1, · · · , qN ),

1 < p1 ≤ p2 ≤ . . . ≤ pN ,
N∑
i=1

1

pi
> 1,

1 < q1 ≤ q2 ≤ . . . ≤ qN ,
N∑
i=1

1

qi
> 1.

Also we define

D1,−→p
0 (Ω) := {u ∈ Lp∗(Ω) : ∂u

∂xi
∈ Lpi(Ω); i = 1, · · · , N},

D1,−→q
0 (Ω) := {u ∈ Lq∗(Ω) : ∂u

∂xi
∈ Lqi(Ω); i = 1, · · · , N}
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and

p∗ :=
N(

N∑
i=1

1

pi

)
− 1

=
Np

N − p
, q∗ :=

N(
N∑
i=1

1

qi

)
− 1

=
Nq

N − q
,

where p and q denote the harmonic means p = N/

(
N∑
i=1

1

pi

)
and q =

N/

(
N∑
i=1

1

qi

)
, respectively.

We say
−→p ≤ −→q iff pi ≤ qi for all i = 1, · · · , N. (1.3)

Throughout all the paper, we assume that

−→p ≤ −→q , pN < p∗ and qN < q∗

Also with respect to the (1.3), we have p∗ < q∗.
In this paper, by intuition of [9] we study the existence of infinity many

solutions for problems (1.1) and (1.2), respectively. With respect to this,
the rest of the paper is as follows: In Section 2 the suitable function space
is introduced and some facts about variational methods (such as Palais-
Smale condition) and genus theory are recalled. In Section 3 the existence
of infinity many solutions for problem (1.1) is studied by genus theory. This
problem involves a subcritical growth and we can prove that the problem
(1.1) has at least k pairs of distinct solutions, by applying Clark’s Theorem
2.8 which implies the existence of at least k pairs of distinct critical points.
In Section 4 the existence of infinity many solutions for problem (1.2) which
involves critical growth, is proved. In this critical case, the energy functional
is not bounded from below and we need to make a truncation in it such that
critical points preserves.

2 Function space

It is well known that D1,−→q
0 (Ω), which is the completion of the space D(Ω) :=

{ϕ ∈ C∞(Ω) : supp ϕ ⊂⊂ Ω} with respect to the norm

‖u‖q =
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
qi

,

3



is a reflexive Banach space and is continuously embedded in Lq
∗
(Ω). Here

|.|qi is the usual norm in Lqi(Ω).

Here we consider the D1,−→p
0 (Ω) ∩D1,−→q

0 (Ω) with respect to the norm

‖u‖ =
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

+
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
qi

.

Remark 2.1. Notice that if −→p ≤ −→q and Ω is a bounded domain in RN

then D1,−→p
0 (Ω) ⊂ D1,−→q

0 (Ω). To see this, we have

| ∂u
∂xi
|pipi =

∫
Ω

1 · | ∂u
∂xi
|pidx ≤ |Ω|

qi−pi
qi

(∫
Ω
·| ∂u
∂xi
|qidx

) pi
qi

.

Hence

‖u‖p =
N∑
i=1
| ∂u∂xi |pi ≤ N max

i=1,··· ,N
|Ω|

qi−pi
qi

N∑
i=1
| ∂u∂xi |qi

= N max
i=1,··· ,N

|Ω|
qi−pi
qi ‖u‖q.

Then D1,−→p
0 (Ω) ⊂ D1,−→q

0 (Ω).

Since Ω is a bounded domain of RN , from [14, Theorem 1], the continuity

of the embedding D1,−→q
0 (Ω) ↪→ Ls(Ω), for all s ∈ [1, qN ] relies on a well-

known Poincaré type inequality. More precisely, denoting by e1, · · · , en the
canonical basis of RN , assume that Ω has width a > 0 in the direction of ei,
namely sup

x,y∈Ω
(x− y, ei) = a. Thus, for every γ ≥ 1, we have

|u|γ ≤
aγ

2

∣∣∣∣ ∂u∂xi
∣∣∣∣
γ

, for all u ∈ D(Ω). (2.1)

On the other hand, from [21, Theorem 1.2], is also continuous the embedding

D1,−→q
0 (Ω) ↪→ Lq

∗
(Ω) and, since qN < q∗, we obtain D1,−→q

0 (Ω) ↪→ Ls(Ω), for
all s ∈ [1, q∗].

The function space that we study the problem on it is X := D1,−→p
0 (Ω) ∩

D1,−→q
0 (Ω) which respect to the Remark 2.1, we have X = D1,−→q

0 (Ω), with the
norm

‖u‖ = ‖u‖p + ‖u‖q
which is equivalent to ‖u‖q.
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Definition 2.2. We say that u ∈ X is a weak solution of the problem (1.1)
(and (1.2)) if it verifies

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

∂φ

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣qi−2 ∂u

∂xi

∂φ

∂xi
dx

−λ
∫

Ω
|u|γ−2uφ dx−

∫
Ω
h(u)φ dx = 0,

(2.2)

for all φ ∈ X, where h(t) = 0 in problem (1.1) and h(t) = |t|q∗−2t in problem
(1.2).

If a function u ∈ X
⋂
L∞(Ω) satisfies (2.2), then u is a strong solution of

the problems (1.1) (and (1.2)). From [2, Proposition 4.1] and [14, Theorem
4], weak solutions of problems (1.1) (and (1.2)) are strong solutions.

We will look for solutions of (1.1) (and (1.2)) by finding critical points
of the C1-functional I : X → R given by

I(u) =

N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx+

N∑
i=1

∫
Ω

1

q i

∣∣∣∣ ∂u∂xi
∣∣∣∣qi dx−λ1

γ

∫
Ω
|u|γ dx−

∫
Ω
H(u) dx,

where H(t) =

∫ t

0
h(τ) dτ .

Note that

I ′(u)φ =
N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

∂φ

∂xi
dx+

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣qi−2 ∂u

∂xi

∂φ

∂xi
dx

−λ
∫

Ω
|u|γ−2uφ dx−

∫
Ω
h(u)φ dx,

(2.3)

for all φ ∈ X. Hence critical points of I are weak solutions for (1.1) (and
(1.2)).

In order to use variational methods, we first derive some results related
to the Palais-Smale compactness condition.

Definition 2.3. A sequence (un) ⊂ X is a Palais-Smale sequence for the
functional I if

I(un)→ d and ‖I ′(un)‖ → 0 in X ′, (2.4)

for some d ∈ R.
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If (2.4) implies the existence of a subsequence (unj ) ⊂ (un) which con-
verges in X for all d ∈ R, we say that I satisfies the Palais-Smale condition.
If this strongly convergent subsequence exists only for some d values, we say
that I verifies a local Palais-Smale condition.

We recall some basic notions on the Krasnoselskii genus which we will
use in the proofs of our main results.

Let E be a real Banach space. Let us denote by A the class of all closed
subsets A ⊂ E \ {0} that are symmetric with respect to the origin, that is,
u ∈ A implies −u ∈ A.

Definition 2.4. Let A ∈ A. The Krasnoselskii genus γ(A) of A is defined
as being the least positive integer k such that there is an odd mapping φ ∈
C(A,Rk) such that φ(x) 6= 0 for all x ∈ A. If k does not exist we set
γ(A) =∞. Furthermore, by definition, γ(∅) = 0.

In the sequel we will establish only the properties of the genus that will
be used through this work. More information on this subject may be found
in the references [1], [3], [7] and [18].

Proposition 2.5. Let A and B be sets in A.

(i) If there exists an odd application ϕ ∈ C(A,B) then γ(A) ≤ γ(B).

(ii) If there exists an odd homeomorphism ϕ : A→ B then γ(A) = γ(B).

(iii) If A is a compact set, then there exists a neighborhood K ∈ A of A
such that γ(A) = γ(K).

(iv) If γ(B) <∞, thenγ(A\B) ≥ γ(A)− γ(B).

(v) If γ(A) ≥ 2, then A has infinitely many points.

Proposition 2.6. Let E = RN and ∂Ω be the boundary of an open, sym-
metric and bounded subset Ω ⊂ RN with 0 ∈ Ω. Then γ(∂Ω) = N .

Corollary 2.7. γ(SN−1) = N where SN−1 is a unit sphere of RN .

The proofs of these results can be found, for example, [19, Proposition
7.5, Remark 7.6 and Proposition 7.7]. We now establish a result due to
Clark [6].

Theorem 2.8. Suppose J ∈ C1(X,R) is a functional satisfying the Palais-
Smale condition and

A1) J is bounded from below and even.
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A2) there is a compact set K ∈ A such that γ(K) = k and sup
x∈K

J(x) < J(0).

Then J possesses at least k pairs of distinct critical points and their corre-
sponding critical values cj are less than J(0).

3 Subcritical problem

As we mentioned in the last section, we consider the space X = D1,−→q
0 (Ω) =

D1,−→p
0 (Ω) ∩D1,−→q

0 (Ω) endowed with the norm

‖u‖ =

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

+
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
qi

.

which is equivalent to the norm on D1,−→q
0 (Ω).

First, we study some properties related to the C1-functional I : X → R,
given by

I(u) =
N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx+

N∑
i=1

∫
Ω

1

q i

∣∣∣∣ ∂u∂xi
∣∣∣∣qi dx− λ1

γ

∫
Ω
|u|γ dx. (3.1)

The next two lemmas are true for γ ∈ (1, qN ). In [4] the authors showed
that I is coercive when γ ∈ (p1, qN ), by using the boundedness of levels sets
Ib = {u ∈ X : I(u) ≤ b}.

Lemma 3.1. I is bounded from below.

Proof. I is coercive. In fact, suppose by contradiction that ‖u‖ → ∞. Unfor-

tunately, we can not assure that

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

,

∣∣∣∣ ∂u∂xi
∣∣∣∣
qi

→∞ for all i ∈ {1, · · · , N}.

Hence, we will consider two cases.
If |u|γ is bounded, then we have already I(u)→∞. On the other hand,

if |u|γ →∞ then, by using Holder’s inequality and (2.1), we conclude that∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

,

∣∣∣∣ ∂u∂xi
∣∣∣∣
qi

→∞, γ ≤ pi ≤ qi. (3.2)

Moreover, since γ < qN , we have

I(u) ≥ 1

qN

∣∣∣∣ ∂u∂xi
∣∣∣∣qN
qN

−C
γ
λ

∣∣∣∣ ∂u∂xi
∣∣∣∣γ
qN

dx.

It follows from (3.2) that I(u)→∞. In any case, I is coercive and, therefore,
I is bounded from below.
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Lemma 3.2. I satisfies the (PS) condition.

Proof. Let (un) be a sequence in X such that

I(un)→ C and I ′(un)→ 0.

Since I is coercive, we conclude that (un) is bounded in X. Thus, passing
to a subsequence, if necessary, we have

un ⇀ u in X,

un → u in Lσ(Ω) with σ ∈ [1, q∗),

and
un(x)→ u(x) a.e in Ω.

Thus, from convergence in Lσ(Ω) we get∫
Ω
|un|γ dx−

∫
Ω
|un|γ−2unu dx = on(1), (3.3)

and from weak convergence

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

∂un
∂xi

dx+

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣qi−2 ∂u

∂xi

∂un
∂xi

dx (3.4)

−
N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx− N∑

i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣qi dx = on(1).

Hence, from (3.4) we obtain

0 ≤ Cp

N∑
i=1

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣pi
pi

+Cq

N∑
i=1

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣qi
qi

≤
N∑
i=1

∫
Ω

(∣∣∣∣∂un∂xi

∣∣∣∣pi−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣pi−2 ∂u

∂xi

)(
∂un
∂xi
− ∂u

∂xi

)
dx

+

N∑
i=1

∫
Ω

(∣∣∣∣∂un∂xi

∣∣∣∣qi−2∂un
∂xi
−
∣∣∣∣ ∂u∂xi

∣∣∣∣qi−2 ∂u

∂xi

)(
∂un
∂xi
− ∂u

∂xi

)
dx

=

N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi dx− N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi−2∂un
∂xi

∂u

∂xi
dx

+
N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣qi dx− N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣qi−2∂un
∂xi

∂u

∂xi
dx+ on(1).
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From (3.3), we derive

0 ≤ Cp
N∑
i=1

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣pi
pi

+Cq

N∑
i=1

∣∣∣∣∂un∂xi
− ∂u

∂xi

∣∣∣∣qi
qi

(3.5)

≤ I ′(un)un − I ′(un)u+ on(1),

where Cp and Cq are constants..
Thus, we conclude that un → u in X and the proof is complete.

Now we can state the existence of infinitely many solutions for problem
(1.1).

Theorem 3.3. Assume that γ ∈ (1, p1). Then, problem (1.1) has infinitely
many solutions, for all λ ∈ (0,+∞).

Proof. Let Xk = span{e1, e2, · · · , ek} be a subspace of X with dimXk = k.
Note that Xk is continuously embedded in Lγ(Ω). Thus, the norms of X
and Lγ(Ω) are equivalent on Xk and there exists a positive constant C(k)
which depends on k, such that

−C(k)‖u‖γ ≥ −
∫

Ω
|u|γ dx, for all u ∈ Xk.

Thus we conclude that

I(u) ≤
N∑
i=1

1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

+
N∑
i=1

1

qi

∣∣∣∣ ∂u∂xi
∣∣∣∣qi
qi

−λC(k)
1

γ
‖u‖γ .

Let 0 < R < 1 and u ∈ X be such that ‖u‖ ≤ R. Thus

I(u) ≤ D

p1
‖u‖p1 − λC(k)

1

γ
‖u‖γ = ‖u‖γ

[
D

p1
‖u‖p1−γ − λC(k)

1

γ

]
,

whereD is a constant. Since γ < p1, choosing 0 < R < min

{
1,
(
λC(k)p1
Dγ

) 1
p1−γ

}
we have

I(u) ≤ Rγ
[
D

p1
Rp1−γ − λC(k)

1

γ

]
< 0 = I(0),

for all u ∈ K = {u ∈ Xk : ‖u‖ = R}. This inequality implies

sup
u∈K

I(u) < 0 = I(0).
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Since Xk and Rk are isomorphic and K and Sk−1 are homeomorphic, we con-
clude that γ(K) = k. Moreover, I is even. By Clarke’s Theorem (Theorem
2.8), I has at least k pairs of different critical points. Since k is arbitrary,
we found infinitely many critical points of I.

We point out that in order to apply the Clarke’s Theorem in the previous
proof, we use Lemmas 3.1 and 3.2, which hold for any γ ∈ (1, qN ).

Here we stat a lemma which we need it for proving the existence of at
least k pairs of solutions for problem (1.1).

Lemma 3.4. Let A be the set defined by

A =

{
u ∈ X\{0} :

∣∣∣∣ ∂u∂xi
∣∣∣∣`i
`i

≤
∣∣∣∣ ∂u∂xN

∣∣∣∣qN
qN

, for all 1 ≤ i ≤ N

}
,

where `i = pi or `i = qi for 1 ≤ i ≤ N − 1 and `N = pN . For each compact
set K ⊂ X\{0}, there exists tK > 0 such that tK ⊂ A for all t ≥ tK , where
tK = {tu : u ∈ K}.

Proof. We define functions h`i : X\{0} → R by

h`i(u) =

∣∣∣ ∂u∂xi ∣∣∣`i`i∣∣∣ ∂u∂xN

∣∣∣qN
qN

for all 1 ≤ i ≤ N.

By using (2.1), we conclude that h`i is well defined in the domain X\{0},
namely,

∣∣∣ ∂u∂xN

∣∣∣qN
qN

is not null. Moreover, the inequality∣∣∣∣∣
∣∣∣∣ ∂u∂xi

∣∣∣∣
`i

−
∣∣∣∣ ∂v∂xi

∣∣∣∣
`i

∣∣∣∣∣ ≤
∣∣∣∣ ∂u∂xi − ∂v

∂xi

∣∣∣∣
`i

≤‖u− v‖,

for all u, v ∈ X, 1 ≤ i ≤ N , says us that h`i is a continuous function for
1 ≤ i ≤ N .

Since K is compact, there exists u`i ∈ K such that h`i(u) ≤ h`i(u`i)

for all u ∈ K. Define still t`i := [h`i(u`i)]
1

qN−`i , tj = max
1≤i≤N

t`i and choose

tK = tj . Thus, if t ≥ tK we have t ≥ t`i and tqN−`i ≥ tqN−`i`i
= h`i(u`i).

Consequently, ∣∣∣ ∂u∂xi ∣∣∣`i`i∣∣∣ ∂u∂xN

∣∣∣qN
qN

≤ tqN−`i ,
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and ∣∣∣∣∂(tu)

∂xi

∣∣∣∣`i
`i

≤
∣∣∣∣∂(tu)

∂xN

∣∣∣∣qN
qN

,

for all u ∈ K and for all i ∈ {1, · · · , N}.

The next theorem is the second main result of this paper.

Theorem 3.5. Assume that γ ∈ [p1, qN ). Then, for each k ∈ N, there
exists λk > 0 such that problem (1.1) has at least k pairs of solutions, for
all λ ∈ (λk,+∞).

Proof. In a similar way to the previous theorem, for each k ∈ N, we consider
a k-dimensional subspace Xk = span{e1, e2, · · · , ek} of X, continuously em-
bedded in LqN (Ω). This is, there exists a positive constant C(k) which
depends on k, such that

C(k)

∣∣∣∣ ∂u∂xN
∣∣∣∣
qN

≤ C(k)‖u‖ ≤ |u|γ .

So,

− C(k)

∣∣∣∣ ∂u∂xN
∣∣∣∣γ
qN

≥ −C(k)‖u‖γ ≥ −|u|γγ , for all u ∈ Xk, (3.6)

where we are using the same notation C(k) to denote different constants.
Denoting by Sk the unit sphere of Xk and noting that Sk ⊂ X\{0} is a

compact set, it follows from previous lemma that there exists tk > 0 such
that tSk ⊂ A, for all t ≥ tk. Thus, for each u ∈ tkSk, we have

I(u) =
N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx+

N∑
i=1

∫
Ω

1

q i

∣∣∣∣ ∂u∂xi
∣∣∣∣qi dx− λ1

γ

∫
Ω
|u|γ dx

≤

(
N∑
i=1

1

pi

)∫
Ω

∣∣∣∣ ∂u∂xN
∣∣∣∣qN dx+

(
N∑
i=1

1

qi

)∫
Ω

∣∣∣∣ ∂u∂xN
∣∣∣∣qN dx− λ1

γ
|u|γγ

=

(
N

p
+
N

q

)∣∣∣∣ ∂u∂xN
∣∣∣∣qN
qN

− λ1

γ
|u|γγ .

From (3.6), we get

I(u) ≤
(
N

p
+
N

q

)∣∣∣∣ ∂u∂xN
∣∣∣∣qN
qN

− C(k)

γ
λ

∣∣∣∣ ∂u∂xN
∣∣∣∣γ
qN

,
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and so

I(u) ≤
∣∣∣∣ ∂u∂xN

∣∣∣∣γ
qN

((
N

p
+
N

q

)∣∣∣∣ ∂u∂xN
∣∣∣∣qN−γ
qN

− C(k)

γ
λ

)
. (3.7)

From (2.1) we conclude that α := min
u∈tkSk

∣∣∣∣ ∂u∂xN
∣∣∣∣
qN

> 0. Hence,

I(u) ≤ αγ
((

N

p
+
N

q

)
tqN−γk − C(k)

γ
λ

)
< 0,

when λ > λk =

γN

(
1
p

+ 1
q

)
C(k) tqN−γk . Therefore,

sup
tkSk

Iλ < 0,

for all λ > λk, with γ(tkSk) = k. Arguing as in the proof of Theorem 3.3,
the result follows from Clarke’s Theorem 2.8.

4 Critical case

Since I is not bounded from below, in the critical case, to apply genus theory,
we will need to make a truncation in the functional I. In fact, the idea is to
get a truncated functional J such that critical points u of J with J(u) < 0
are also critical points of I.

However, the anisotropy of (1.2) becomes our job somewhat more com-
plicated. To overcome the difficulties , we need to consider separately the
cases ‖u‖ ≤ 1 and ‖u‖ > 1 in the building of J .

Case 1: ‖u‖ ≤ 1.

In this case, we have

∣∣∣∣ ∂u∂xi
∣∣∣∣
pi

≤ 1 and

∣∣∣∣ ∂u∂xi
∣∣∣∣
qi

≤ 1 for all i ∈ {1, . . . , N}, and

consequently ∣∣∣∣ ∂u∂xi
∣∣∣∣qN
pi

≤
∣∣∣∣ ∂u∂xi

∣∣∣∣pi
pi

and

∣∣∣∣ ∂u∂xi
∣∣∣∣qN
qi

≤
∣∣∣∣ ∂u∂xi

∣∣∣∣qi
qi

.

Hence

I(u) ≥ 1

pN

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣qN
pi

+
1

qN

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣qN
qi

−λ1

γ

∫
Ω
|u|γ dx− 1

q∗

∫
Ω
|u|q∗ dx.

12



From continuous embedding,∫
Ω
|u|s dx ≤ C‖u‖s, s ∈ [1, q∗].

From previous inequality we obtain

I(u) ≥ C1

(
1

pN
+

1

qN

)
‖u‖qN − λC‖u‖γ − C2‖u‖q

∗
= g(‖u‖), (4.1)

where g(t) := C1

(
1
pN

+ 1
qN

)
tqN −λCtγ−C2t

q∗ . So, there exists λ∗ > 0 such

that, if λ ∈ (0, λ∗), then g attains its positive maximum.
We denote by 0 < R0(λ) < R1(λ) the unique two roots of g. The next

lemma is essential to construct the truncated functional.

Lemma 4.1. R0(λ)→ 0 as λ→ 0.

Proof. Indeed, from g(R0(λ)) = 0 and g′(R0(λ)) > 0, we have

C1

(
1

pN
+

1

qN

)
R0(λ)qN = λCR0(λ)γ + C2R0(λ)q

∗
(4.2)

and

C1

(
qN
pN

+ 1

)
R0(λ)qN−1 > λCγR0(λ)γ−1 + C2q

∗R0(λ)q
∗−1, (4.3)

for all λ ∈ (0, λ∗). From (4.2), we conclude that R0(λ) is bounded. Suppose
that R0(λ)→ R0 > 0 as λ→ 0. Then,

C1

(
1

pN
+

1

qN

)
RqN0 = C2R

q∗

0 and C1

(
qN
pN

+ 1

)
RqN−1

0 ≥ C2q
∗Rq

∗−1
0 ,

a contradiction, because q∗ > qN . Therefore R0 = 0.

Now we consider the following truncation in the functional I:
From Lemma 4.1, we have R0(λ) < 1 for small λ. So R0(λ) < min{R1(λ), 1}
and we can take φ ∈ C∞0 ([0,+∞)), 0 ≤ φ(t) ≤ 1, for all t ∈ [0,+∞), such
that

φ(t) =

{
1 , t ∈ [0, R0(λ)],
0 , t ∈ [min{R1(λ), 1},+∞).
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We define the functional

J(u) =
N∑
i=1

∫
Ω

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx+

N∑
i=1

∫
Ω

1

q i

∣∣∣∣ ∂u∂xi
∣∣∣∣qi dx

− λ1

γ

∫
Ω
|u|γ dx− φ(‖u‖) 1

q∗

∫
Ω
|u|q∗ dx.

Notice that J ∈ C1(X,R) and, as in (4.1), J(u) ≥ g(‖u‖), for all u ∈ X
with ‖u‖ < 1, where

g(t) = C1

(
1

pN
+

1

qN

)
tqN − λCtγ − C2φ(t)tq

∗ ≥ 0, (4.4)

for all t ∈ (R0(λ),min{R1(λ), 1}).
By definition, if ‖u‖ ≤ R0(λ) < min{R1(λ), 1} then J(u) = I(u). Once

we will obtain critical points u of J with J(u) < 0, to show that these
critical points verify ‖u‖ < R0(λ) is important to ensure that J(u) ≥ 0
when ‖u‖ > 1.
In fact, suppose just for a moment that J(u) ≥ 0 when ‖u‖ > 1. Let u be a
critical point of J such that

J(u) < 0. (4.5)

So ‖u‖ ≤ 1. If min{R1(λ), 1} = 1, follows from (4.4) and (4.5) that
‖u‖ < R0(λ). On the other hand, if min{R1(λ), 1} = R1(λ), we conclude
again from (4.4), (4.5) and definition of J that ‖u‖ < R0(λ). It remains to
prove that J(u) ≥ 0 when ‖u‖ > 1.

Case 2: ‖u‖ > 1.
Note that in this case we have φ(‖u‖) = 0, and there exists i = i(u) ∈

{1, 2, . . . , N} such that

∣∣∣∣ ∂u∂xi
∣∣∣∣
`i

≥ 1
N where `i = pi or `i = qi. So,

J(u) =

N∑
i=1

1

p i

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

+

N∑
i=1

1

q i

∣∣∣∣ ∂u∂xi
∣∣∣∣qi
qi

−λ1

γ
|u|γγ

≥ 1

`i

∣∣∣∣ ∂u∂xi
∣∣∣∣`i
`i

− C

γ
λ

∣∣∣∣ ∂u∂xi
∣∣∣∣γ
`i

= gi

(∣∣∣∣ ∂u∂xi
∣∣∣∣
`i

)
,

14



where gi : [1/N,∞)→ R is defined by

gi(t) =
1

`i
t`i − C

γ
λtγ , with i = i(u),

which has a global minimum point at ti = (Cλ)
1

`i−γ and

gi(ti) = (Cλ)
`i

`i−γ

(
1

`i
− 1

γ

)
< 0.

Observe that gi(t) ≥ 0 if, and only if, t ≥ (C`iγ λ)
1

`i−γ . Hence, to ensure that

min
t≥ 1

N

gi(t) ≥ 0, we take λ∗ ≤ γ

C`iN `i−γ
. Therefore, for each λ ∈ (0, λ∗) we

have J(u) ≥ 0 for all ‖u‖ ≥ 1. Moreover, we conclude that the functional J
is coercive and bounded from below.

Now, we will show that J satisfies the local Palais-Smale condition. For
this, we need the following technical result.

Lemma 4.2. Let (un) ⊂ X be a bounded sequence such that

I(un)→ c and I ′(un)→ 0.

If

c <

(
1

qN
− 1

q∗

)
Sq
∗/(q∗−qN ) −

[( 1
γ −

1
qN

)
|Ω|

q∗−γ
q∗(

1
qN
− 1

q∗

) ]q∗/(q∗−γ)

×
[(

γ

q∗

)γ/(q∗−γ)

−
(
γ

q∗

)q∗/(q∗−γ) ]( 1

qN
− 1

q∗

)
λq
∗/(q∗−γ)

hold, then there exists λ∗ > 0 such that, for all λ ∈ (0, λ∗), we have that, up
to a subsequence, (un) is strongly convergent in X.

Proof. Using a version of Lions’s concentration compactness-principle (see
[16, Corollary 1 of Lemma 5]), we obtain at most a countable index set Λ,
sequences (xj) ⊂ Ω, (bj), (aj) ⊂ (0,∞), such that

N∑
i=1

∣∣∣∣∂un∂xi

∣∣∣∣pi+ N∑
i=1

∣∣∣∣∂un∂xi

∣∣∣∣qi⇀ N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pi+ N∑

i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣qi+µ (4.6)

and
|un|q

∗
⇀ |u|q∗ + ν (4.7)
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in the weak∗-sense of measures, where

µ ≥
∑
j∈Λ

bjδxj , ν =
∑
j∈Λ

ajδxj , Sa
qN/q

∗

j ≤ bj , (4.8)

for all j ∈ Λ and δxj is the Dirac mass at xj ∈ Ω.
Now, for every % > 0, we set ψ%(x) := ψ((x − xk)/%) where ψ ∈

C∞0 (RN , [0, 1]) is such that ψ ≡ 1 on B1(0), ψ ≡ 0 on RN \ B2(0) and
|∇ψ|∞ ≤ 2. Since (ψ%un) is bounded, I ′(un)(ψ%un)→ 0, that is,

N∑
i=1

∫
Ω
ψ%

∣∣∣∣∂un∂xi

∣∣∣∣pi+ N∑
i=1

∫
Ω
ψ%

∣∣∣∣∂un∂xi

∣∣∣∣qi dx
= −

N∑
i=1

∫
Ω
un

∣∣∣∣∂un∂xi

∣∣∣∣pi−2∂un
∂xi

∂ψ%
∂xi

dx−
N∑
i=1

∫
Ω
un

∣∣∣∣∂un∂xi

∣∣∣∣qi−2∂un
∂xi

∂ψ%
∂xi

dx

+λ

∫
Ω
|un|γψ% dx+

∫
Ω
ψ%|un|q

∗
dx+ on(1).

Arguing as [15], we can prove that

lim
%→0

[
lim sup
n→∞

∣∣∣∣∣
N∑
i=1

∫
Ω
un

∣∣∣∣∂un∂xi

∣∣∣∣pi−2∂un
∂xi

∂ψ%
∂xi

dx

∣∣∣∣∣+

∣∣∣∣∣
N∑
i=1

∫
Ω
un

∣∣∣∣∂un∂xi

∣∣∣∣qi−2∂un
∂xi

∂ψ%
∂xi

dx

∣∣∣∣∣
]

= 0.

Moreover, since un → u in Lγ(Ω), ψ% has compact support and (4.6), (4.7)
and (4.8) hold, if n→∞ in the above expression then∑N

i=1

∫
Ω ψρ

∣∣∣ ∂u∂xi ∣∣∣pi dx+
∑N

i=1

∫
Ω ψρ

∣∣∣ ∂u∂xi ∣∣∣qi dx+
∑

j∈Λ bjψρ(xj)

≤ lim supn→∞

∣∣∣∣∣
N∑
i=1

∫
Ω
un

∣∣∣∣∂un∂xi

∣∣∣∣pi−2∂un
∂xi

∂ψ%
∂xi

dx

∣∣∣∣∣
+ lim supn→∞

∣∣∣∣∣
N∑
i=1

∫
Ω
un

∣∣∣∣∂un∂xi

∣∣∣∣qi−2∂un
∂xi

∂ψ%
∂xi

dx

∣∣∣∣∣
+λ
∫

Ω |u|
γψρdx+

∫
Ω ψρ|u|

q∗dx+
∑

j∈Λ ajψρ(xj).

Letting %→ 0 and using the definition of ψρ we conclude that bk ≤ ak. Since

Sa
qN/q

∗

k ≤ bk we have that

Sq
∗/(q∗−qN ) ≤ ak. (4.9)

Now we shall prove that the above expression cannot occur, and therefore
the set Λ is empty. Indeed, arguing by contradiction, let us suppose that
the inequality (4.9) holds for some k ∈ Λ. Thus, from

c = I(un)− 1

qN
I ′(un)un + on(1),
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we obtain(
1

qN
− 1

q∗

)∫
Ω
ψ%|un|q

∗
dx− λ

(
1

γ
− 1

qN

)∫
Ω
|un|γ dx ≤ c+ on(1),

because 0 ≤ ψρ ≤ 1. Letting n→∞ and using (4.6) and (4.8), we get(
1

qN
− 1

q∗

)∫
Ω
ψρ|u|q

∗
dx+

(
1

qN
− 1

q∗

)∑
j∈Λ

ajψρ(xj)−λ
(

1

γ
− 1

qN

)∫
Ω
|u|γ dx ≤ c.

Since Ω is a bounded domain, we can choose ρ such that Ω ⊂⊂ suppψρ, in
this case, ψρ(x) = 1 for all x ∈ Ω. Thus,(

1

qN
− 1

q∗

)∫
Ω
|u|q∗ dx+

(
1

qN
− 1

q∗

)∑
j∈Λ

aj − λ
(

1

γ
− 1

qN

)∫
Ω
|u|γ dx ≤ c.

By using (4.9), we obtain(
1

qN
− 1

q∗

)∫
Ω
|u|q∗ dx+

(
1

qN
− 1

q∗

)
Sq
∗/(q∗−qN )−λ

(
1

γ
− 1

qN

)∫
Ω
|u|γ dx ≤ c.

By Holder’s inequality(
1

qN
− 1

q∗

)∫
Ω
|u|q∗ dx +

(
1

qN
− 1

q∗

)
Sq
∗/(q∗−qN )

− λ

(
1

γ
− 1

qN

)
|Ω|(q∗−γ)/q∗

(∫
Ω
|u|q∗ dx

)γ/q∗
≤ c.

Let

f(t) =

(
1

qN
− 1

q∗

)
tq
∗ − λ

(
1

γ
− 1

qN

)
|Ω|

q∗−γ
q∗ tγ .

This function attains its absolute minimum, for t > 0, at the point

t0 =

[γλ( 1
γ −

1
qN

)
|Ω|

q∗−γ
q∗

q∗
(

1
qN
− 1

q∗

) ]1/(q∗−γ)

.

Thus, we conclude that

(
1

qN
− 1

q∗

)
Sq
∗/(q∗−qN ) −

[( 1
γ −

1
qN

)
|Ω|

q∗−γ
q∗(

1
qN
− 1

q∗

) ]q∗/(q∗−γ)

×
[(

γ

q∗

)γ/(q∗−γ)

−
(
γ

q∗

)q∗/(q∗−γ) ]( 1

qN
− 1

q∗

)
λq
∗/(q∗−γ)

≤ c.
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But this is a contradiction. Thus Λ is empty and it follows that un → u in
Lq
∗
(Ω). Arguing as in the proof of Lemma 3.2, we find

‖un − u‖ = on(1).

By the Lemma 4.2 we conclude, for λ > 0 sufficiently small, that

(
1

qN
− 1

q∗

)
Sq
∗/(q∗−qN ) −

[( 1
γ −

1
qN

)
|Ω|

q∗−γ
q∗(

1
qN
− 1

q∗

) ]q∗/(q∗−γ)

×
[(

γ

q∗

)γ/(q∗−γ)

−
(
γ

q∗

)q∗/(q∗−γ) ]( 1

qN
− 1

q∗

)
λq
∗/(q∗−γ) > 0

and, hence, if (un) is a sequence bounded such that I(un) → c, I ′(un) → 0
with c < 0, then (un) has a subsequence convergent.

Lemma 4.3. If J(u) < 0, then ‖u‖ < R0(λ), and J(v) = I(v), for all v in
a small enough neighborhood of u. Moreover, J verifies a local Palais-Smale
condition for c < 0.

Proof. Since λ ∈ (0, λ∗) then J(u) ≥ 0 whenever ‖u‖ ≥ 1. Hence, if J(u) < 0
we have ‖u‖ < 1 and consequently g(‖u‖) ≤ J(u) < 0, with g defined in
(4.4). Therefore, ‖u‖ < R0(λ) and J(u) = I(u). Moreover, we conclude
that J(v) = I(v), for all ‖v − u‖ < R0(λ) − ‖u‖. Moreover, if (un) is a
sequence such that J(un) → c < 0 and J ′(un) → 0, for n sufficiently large,
I(un) = J(un) → c < 0 and I ′(un) = J ′(un) → 0. Since J is coercive, we
get that (un) is bounded in X. From Lemma 4.2, for λ sufficiently small,

c <

(
1

qN
− 1

q∗

)
Sq
∗/(q∗−qN ) −

[( 1
γ −

1
qN

)
|Ω|

q∗−γ
q∗

( 1
qN
− 1

q∗ )

]q∗/(q∗−γ)

×
[(

γ

q∗

)γ/(q∗−γ)

−
(
γ

q∗

)q∗/(q∗−γ) ]( 1

qN
− 1

q∗

)
λq
∗/(q∗−γ)

and, hence, up to a subsequence, (un) is strongly convergent in X.

Now, we will construct an appropriate mini-max sequence of negative
critical values for the functional J . Thus, for each real number ε, we consider
the set

J−ε = {u ∈ X : J(u) ≤ −ε} ∈ A.
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Lemma 4.4. Given k ∈ N, there exists ε = ε(k) > 0 such that

γ(J−ε) ≥ k.

Proof. Given k ∈ N, consider a k-dimensional subspace

Xk = span{e1, · · · , ek}

of X, such that

−C(k)‖u‖γ ≥ −
∫

Ω
|u|γdx,

for all u ∈ Xk. Thus,

J(u) ≤
N∑
i=1

1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣pi
pi

+

N∑
i=1

1

pi

∣∣∣∣ ∂u∂xi
∣∣∣∣qi
qi

−λ1

γ
C(k)‖u‖γ .

By a similar argument of Theorem 3.3, there exists R ∈ (0, 1) small enough,
such that defining K = {u ∈ Xk : ‖u‖ = R}, we get

J(u) ≤ sup
u∈K

J(u) = −ε < J(0) = 0, ∀ u ∈ K,

for some ε > 0. Since γ(K) = k and K ⊂ J−ε, it follows from (i) in the
Proposition 2.5, that γ(J−ε) ≥ k.

For each k ∈ N, one can define the sets

Γk = {C ⊂ X : C ∈ A and γ(C) ≥ k},

Kc = {u ∈ X : J ′(u) = 0 and J(u) = c}

and the number
ck = inf

C∈Γk
sup
u∈C

J(u).

Lemma 4.5. Given k ∈ N, the number ck is negative.

Proof. It is sufficient to use Lemma 4.4 and to argument as in [15, Lemma
4.4].

The next Lemma is necessary for the existence of critical points of J .
The proof is very similar to that in [15], we omit it here.
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Lemma 4.6. If c = ck = ck+1 = · · · = ck+r for some r ∈ N, then there
exists λ∗ > 0 such that

γ(Kc) ≥ r + 1,

for λ ∈ (0, λ∗).

Finally, we can prove the existence of infinitely many solutions of problem
(1.2).

Theorem 4.7. Assume that q ∈ (1, p1). Then, there exists λ∗ > 0 such that
problem (1.2) has infinitely many solutions, for all λ ∈ (0, λ∗).

Proof. If −∞ < c1 < c2 < · · · < ck < · · · < 0 with ci 6= cj , since each ck
is critical value of J , the we obtain infinitely many critical points of J and,
hence problem (1.2) has infinitely many solutions.
On the other hand, if there are two constants ck = ck+r, then c = ck =
ck+1 = · · · = ck+r and from Lemma 4.6, there exists λ∗ > 0 such that

γ(Kc) ≥ r + 1 ≥ 2

for all λ ∈ (0, λ∗). From Proposition 2.5, Kc has infinitely many points, that
is, problem (1.2) has infinitely many solutions.
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Poincaré Anal. Non Linéaire, 21 (2004), 715–734.
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