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Abstract

Using genus theory, the existence of infinitely many solutions for
an anisotropic equation involves subcritical growth is proved. Also
by using Krasnoselskii genus and Clark’s theorem, the existence of k-
pairs of distinct solutions is proved. Finally, the anisotropic equation
involves critical growth is considered and the existence of infinitely
many solutions is proved.
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1 Introduction

Let F(¢ <Z |§z]2> be a norm on RY, the anisotropic Laplacian

is defined by
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In general, the anisotropic Laplacian is a quasilinear elliptic operator of
divergent type. It appears in the Euler-Lagrange equations which involve
functionals containing the expressions [, F(Vu(z))?dz, which is in fact the
Dirichlet energy of u in Minkowski space. Anisotropic Laplacian is closely
related to a convex hypersurface in RY, which is called the Wulff shape
(or equilibrium crystal shape) of F. Wulff [22] considered a variational
problem of an anisotropic geometric functional in the physical model of
crystal growth. He stated without proof that among closed convex hyper-
surfaces with constant enclosed volume, the so-called Wulff shape minimizes
the anisotropic surface energy. His work initiated lots of works on the theory
of phase transitions, in particular in the case of anisotropic and nonhomoge-
nous media. Recently, there some articles about the existence of solutions

for anisotropic problems (see [5,8-13,20,23] and the references therein).
In this paper we are concerned with the multiplicity of nontrivial solu-
tions for the following classes of nonlinear anisotropic problems
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Also we define
Dévﬁ(Q) ={ue Lp*(Q) : 8%- e LPi(Q);i=1,---,N},
D(l]j(Q) ={u € Lq*(Q) : gu €L%(Q);i=1,--- ,N}
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where p and § denote the harmonic means p = N/ (Z > and ¢ =

N
1
N/ <Z q'>’ respectively.
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We say
T<q iff p;<gq forall i=1,--- N. (1.3)

Throughout all the paper, we assume that

T < q,py <p*and qn < ¢*

Also with respect to the (1.3), we have p* < ¢*.

In this paper, by intuition of [9] we study the existence of infinity many
solutions for problems (1.1) and (1.2), respectively. With respect to this,
the rest of the paper is as follows: In Section 2 the suitable function space
is introduced and some facts about variational methods (such as Palais-
Smale condition) and genus theory are recalled. In Section 3 the existence
of infinity many solutions for problem (1.1) is studied by genus theory. This
problem involves a subcritical growth and we can prove that the problem
(1.1) has at least k pairs of distinct solutions, by applying Clark’s Theorem
2.8 which implies the existence of at least k pairs of distinct critical points.
In Section 4 the existence of infinity many solutions for problem (1.2) which
involves critical growth, is proved. In this critical case, the energy functional
is not bounded from below and we need to make a truncation in it such that
critical points preserves.

2 Function space

It is well known that Dé’7 (€2), which is the completion of the space D(Q2) :=
{p € C®(Q) : supp ¢ CC Q} with respect to the norm

ou

N
fully = 3| 52

=1

ilg;



is a reflexive Banach space and is continuously embedded in L9 (Q). Here
|.|g; is the usual norm in L% (€2).

Here we consider the Dé’?(ﬂ) N D(l)’7 (©) with respect to the norm

pi =1

Remark 2.1. Notice that if ? < 7 and Q is a bounded domain in RN
then Dé’?(Q) C D(l)’7(Q). To see this, we have
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Then DYP () ¢ DY (9).

Since 2 is a bounded domain of RY, from [14, Theorem 1], the continuity
of the embedding Dé’7(Q) — L*(Q), for all s € [1,gn] relies on a well-
known Poincaré type inequality. More precisely, denoting by ej,--- , e, the
canonical basis of RV, assume that  has width @ > 0 in the direction of e;,

namely sup (z —y,e;) = a. Thus, for every v > 1, we have
z,yeN
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luly < , for all u € D(Q). (2.1)

On the other hand, from [21, Theorem 1.2], is also continuous the embedding
Dé’7(Q) < L9 (Q) and, since gy < ¢*, we obtain D(l)’7((2) — L%(Q), for
all s € [1,q¢"].

The function space that we study the problem on it is X := Déj(Q) N
Déj(Q) which respect to the Remark 2.1, we have X = D(l)’?(Q), with the
norm

[l = fJull, + [lullq

which is equivalent to ||ul|4.



Definition 2.2. We say that v € X is a weak solution of the problem (1.1)
(and (1.2)) if it verifies
ou
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for all € X, where h(t) = 0 in problem (1.1) and h(t) = [t|9" 2t in problem
(1.2).
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If a function u € X () L>°(Q) satisfies (2.2), then u is a strong solution of
the problems (1.1) (and (1.2)). From [2, Proposition 4.1] and [14, Theorem
4], weak solutions of problems (1.1) (and (1.2)) are strong solutions.

We will look for solutions of (1.1) (and (1.2)) by finding critical points

of the C'-functional I : X — R given by
1
—)\/ lu|” dx—/ H(u) dx
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where H(t) :/0 h(T) dr.

Note that
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for all ¢ € X. Hence critical points of I are weak solutions for (1.1) (and

(1.2)).
In order to use variational methods, we first derive some results related
to the Palais-Smale compactness condition.

Definition 2.3. A sequence (u,) C X is a Palais-Smale sequence for the
functional I if

I(up) — d and ||[T'(uy)|| — 0 in X', (2.4)

for some d € R.



If (2.4) implies the existence of a subsequence (u,;) C (u,) which con-
verges in X for all d € R, we say that [ satisfies the Palais-Smale condition.
If this strongly convergent subsequence exists only for some d values, we say
that I verifies a local Palais-Smale condition.

We recall some basic notions on the Krasnoselskii genus which we will
use in the proofs of our main results.

Let E be a real Banach space. Let us denote by 2l the class of all closed
subsets A C E'\ {0} that are symmetric with respect to the origin, that is,
u € A implies —u € A.

Definition 2.4. Let A € 2. The Krasnoselskii genus v(A) of A is defined
as being the least positive integer k such that there is an odd mapping ¢ €
C(A,R*) such that ¢(z) # 0 for all x € A. If k does not erxist we set

v(A) = co. Furthermore, by definition, v(0) = 0.

In the sequel we will establish only the properties of the genus that will
be used through this work. More information on this subject may be found
in the references [1], [3], [7] and [18].

Proposition 2.5. Let A and B be sets in 2.
(i) If there exists an odd application ¢ € C(A, B) then v(A) < v(B).
(13) If there exists an odd homeomorphism ¢ : A — B then v(A) = v(B).

(ii7) If A is a compact set, then there ezists a neighborhood K € 2 of A
such that v(A) = vy(K).

(iv) If ¥(B) < oo, theny(A\B) > v(A) — y(B).
(v) If v(A) > 2, then A has infinitely many points.

Proposition 2.6. Let E = RY and 0Q be the boundary of an open, sym-
metric and bounded subset Q@ C RN with 0 € Q. Then y(0Q) = N.

Corollary 2.7. v(SV=1) = N where SN~ is a unit sphere of RYV.

The proofs of these results can be found, for example, [19, Proposition
7.5, Remark 7.6 and Proposition 7.7]. We now establish a result due to
Clark [6].

Theorem 2.8. Suppose J € C'(X,R) is a functional satisfying the Palais-
Smale condition and

A1) J is bounded from below and even.



Ag) thereis a compact set K € 2 such that y(K) = k and sup J(z) < J(0).
TeK

Then J possesses at least k pairs of distinct critical points and their corre-
sponding critical values c; are less than J(0).

3 Subcritical problem

As we mentioned in the last section, we consider the space X = D(l)
Dé’?(Q) N Dé’ﬁ(ﬂ) endowed with the norm

pi =1

which is equivalent to the norm on Dé’?(ﬂ).
First, we study some properties related to the C'-functional I : X — R,
given by

N N
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The next two lemmas are true for v € (1,¢n). In [4] the authors showed
that I is coercive when v € (p1, gn), by using the boundedness of levels sets
I"={uec X :I(u)<b}.
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Lemma 3.1. [ is bounded from below.
Proof. I is coercive. In fact, suppose by contradiction that ||u| — co. Unfor-
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tunately, we can not assure that | — —
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Hence, we will consider two cases.

If |u|, is bounded, then we have already I(u) — co. On the other hand,
if |u|y — oo then, by using Holder’s inequality and (2.1), we conclude that
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It follows from (3.2) that I(u) — co. In any case, [ is coercive and, therefore,
I is bounded from below. O]



Lemma 3.2. I satisfies the (PS) condition.
Proof. Let (uy,) be a sequence in X such that
I(up) = C and I'(up) — 0.

Since I is coercive, we conclude that (uy,) is bounded in X. Thus, passing
to a subsequence, if necessary, we have

Up, = u in X,
up, = u in L7(Q) with o € [1,q%),

and
up(x) = u(x) aein Q.

Thus, from convergence in L7 () we get
/ |un|? dx —/ [ | 2upu dz = o, (1), (3.3)
Q Q

and from weak convergence
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From (3.3), we derive
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< I’(un) Up — I (up)u + on(l),
where C), and C, are constants..
Thus, we conclude that u, — u in X and the proof is complete. ]

Now we can state the existence of infinitely many solutions for problem
(1.1).
Theorem 3.3. Assume that v € (1,p1). Then, problem (1.1) has infinitely
many solutions, for all A € (0,400).

Proof. Let X}, = span{ei,ea,--- ,er} be a subspace of X with dim X} = k.
Note that Xy is continuously embedded in L7(£2). Thus, the norms of X
and L7(Q) are equivalent on X and there exists a positive constant C(k)
which depends on k, such that

—C®)|ul > —/ (uf? dz, for all u € X).
Q

Thus we conclude that
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Let 0 < R <1 and uw € X be such that ||u| < R. Thus
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where D is a constant. Since v < p1, choosing 0 < R < min {1, (’\Cg?pl ) e }

we have

D 1
I(w) < B\ SR - AC(k)V] < 0= 1(0),
1

for all w € K = {u € X, : ||u|| = R}. This inequality implies

sup I(u) < 0= I(0).
ueK



Since X}, and R¥ are isomorphic and K and S¥~1 are homeomorphic, we con-
clude that v(K) = k. Moreover, [ is even. By Clarke’s Theorem (Theorem
2.8), I has at least k pairs of different critical points. Since k is arbitrary,
we found infinitely many critical points of I. O

We point out that in order to apply the Clarke’s Theorem in the previous
proof, we use Lemmas 3.1 and 3.2, which hold for any v € (1, gn).

Here we stat a lemma which we need it for proving the existence of at
least k pairs of solutions for problem (1.1).

Lemma 3.4. Let A be the set defined by
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ou
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where b; = p; or by =q; for 1 <i< N —1 and {nx = py. For each compact
set K C X\{0}, there exists tg > 0 such that tK C A for all t > tx, where
tK ={tu:u € K}.

Proof. We define functions hy, : X\{0} — R by

ou b

T

l; .
—Wforalllgzgl\f.

By using (2.1), we conclude that hy, is well defined in the domain X\{0},

an
namely, |-2% is not null. Moreover, the inequality
ozr N N
ou v < ou  Ov
ox; ¢ ox; ¢ ~ | Oz; 0x; 2
< H'LL - UH,

for all u,v € X, 1 < i < N, says us that hy, is a continuous function for
1<i < N.
Since K is compact, there exists uy, € K such that hy,(u) < hy,(ug,)

1
for all u € K. Define still ¢, := [hy, (ug,)] "%, t; = 1122}5\/% and choose

tg = tj. Thus, if t > tg we have t > t,, and tav—ti > t%\’_g" = hy, (ug,).
Consequently,




and

A(tu) " _ o) ™
aml lz - 8.’1:]\[ qN’
for all w € K and for all i € {1,--- ,N}. O

The next theorem is the second main result of this paper.

Theorem 3.5. Assume that v € [p1,qn). Then, for each k € N, there
exists A\, > 0 such that problem (1.1) has at least k pairs of solutions, for
all X € (A, +00).

Proof. In a similar way to the previous theorem, for each k € N, we consider
a k-dimensional subspace X} = span{ey,ea, - ,ex} of X, continuously em-
bedded in LIV (Q2). This is, there exists a positive constant C(k) which
depends on k, such that

ou
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)| 5an S CR)[lull < July
N
So,
ou |”
—Ck) |5—| =-CE)lul” > —[ul], forall ue X, (3.6)
OxN |,y

where we are using the same notation C'(k) to denote different constants.

Denoting by Sy the unit sphere of X and noting that Sy C X\{0} is a
compact set, it follows from previous lemma that there exists ¢, > 0 such
that ¢S, C A, for all ¢ > t;,. Thus, for each u € ¢3Sy, we have
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I(u) = / dx + / dx—)\/ u|” dx
() ;Qpiaﬂ% ;quam v QH
N N
1 ou | 1 ou | 1
< — —| dx+ — / — | dx— X=|ul?
(i) ol oo () Ll o250
N N an 1
p q TN lgn v
From (3.6), we get
an v
I(u)§<N N>‘8u _C(k))\‘au ,
P q/)|0xN|,, Y N |,

11



and so
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From (2.1) we conclude that o := min
UELE Sk

aN— - %
N . A) . (3.7)

D > 0. Hence,

aN

I(u) <a? <(JZ + ];[)tZN‘V — CS{:)A) <0,

Q=

7N<;,+ )
when A > )\, = th” ~7. Therefore,

sup I, < 0,
i Sk

for all A > A\, with v(¢xSk) = k. Arguing as in the proof of Theorem 3.3,
the result follows from Clarke’s Theorem 2.8. ]

4 Critical case

Since I is not bounded from below, in the critical case, to apply genus theory,
we will need to make a truncation in the functional I. In fact, the idea is to
get a truncated functional J such that critical points u of J with J(u) < 0
are also critical points of I.

However, the anisotropy of (1.2) becomes our job somewhat more com-
plicated. To overcome the difficulties , we need to consider separately the
cases ||u/| <1 and ||ul| > 1 in the building of J.

Case 1: |jul]| < 1.

0 0
In this case, we have 4 <1 and 4 <1forallie{l,...,N}, and
O i Oz %
consequently
‘au aqN ‘&u pi ou aN ‘au qi
< and < .
al‘i pi a:EZ i 8332 @ (9:131 @
Hence
N N
1 ou|™ 1 ou | 1 1 x
) > — S0 |28 Y& —A/ fuf? da:—*/ ul? da.
pN 0z, an = 0zil, v Ja 7 Ja

12



From continuous embedding,

/ f* do < Cllul®, s € [1,q.
Q

From previous inequality we obtain

1 1 N
I(w) > ¢y ( ; ) lall™ = ACTull” = Collull® = g(lul),  (4.1)
PN gN

where g(t) := Cy (p%v + q;)th — ACtY — C5t?". So, there exists A* > 0 such

that, if A € (0, \*), then ¢ attains its positive maximum.
We denote by 0 < Rp(A) < Ri(\) the unique two roots of g. The next
lemma is essential to construct the truncated functional.

Lemma 4.1. Ry(A\) = 0 as A — 0.

Proof. Indeed, from g(Rp(\)) =0 and ¢'(Rp()\)) > 0, we have

1 1 *
C < + >Ro()\)‘m = ACRy(A)” + CaRo(N)? (4.2)
PN gN
and
Ch (ZN + 1>R0(/\)QN_1 > ACyRy(A\) ! + Cag" Ro(\)? 7, (4.3)
N

for all A € (0, \*). From (4.2), we conclude that Ry(A) is bounded. Suppose
that Ro(A) — Ro > 0 as A — 0. Then,

1 1 * _ .
C ( + > RN = CuRY and Oy <qN + 1)R3N 1> Cyg*RY T,
PN 4N PN
a contradiction, because ¢* > qn. Therefore Ry = 0. O

Now we consider the following truncation in the functional I:
From Lemma 4.1, we have Ry(\) < 1 for small A. So Rp(\) < min{R;(A), 1}
and we can take ¢ € C§°([0,400)), 0 < ¢(t) < 1, for all ¢ € [0, +00), such

that
[ 1,te0,Ro(N)],
o(t) = { 0,te [mianl()\), 1}, +00).

13



We define the functional

=3l

N
1] 0ul|?
Casy [
o 7 i

8.%‘

1 1 .
A/ |ul” dx¢(||uH)*/ lul? dz.
v Ja q Jo

Notice that J € C1(X,R) and, as in (4.1), J(u) > g(||lul)), for all u € X
with |lu|| < 1, where

o0x;

g(t) = Cy (1 + 1>tQN — ACtY — Cog(t)t? >0, (4.4)
PN 4N
for all t € (Ro(\), min{R1(\), 1}).

By definition, if ||u]] < Rp(A) < min{R;(A),1} then J(u) = I(u). Once
we will obtain critical points u of J with J(u) < 0, to show that these
critical points verify ||u|| < Ro()\) is important to ensure that J(u) > 0
when |ul| > 1.

In fact, suppose just for a moment that J(u) > 0 when |Ju| > 1. Let @ be a
critical point of J such that
J(m) < 0. (4.5)

So ||m|] < 1. If min{R;(A),1} = 1, follows from (4.4) and (4.5) that
|lz|| < Ro(A\). On the other hand, if min{R;(A),1} = R;1(\), we conclude
again from (4.4), (4.5) and definition of J that ||u|| < Ro(\). It remains to
prove that J(u) > 0 when ||ul| > 1.

Case 2: |jul| > 1.
Note that in this case we have ¢(||ul|) = 0, and there exists i = i(u) €

0
{1,2,..., N} such that ‘ u > % where ¢; = p; or £; = ¢;. So,
N N
1 1| 0ul®
J(u) = - —A—|ul?
( le 8%1 quZ oz, Jul}
oul™ C ou |7
>
- fl Ox; 2 0x; 2
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where g; : [1/N,00) — R is defined by

1, C
(t) = —thi — X\, with i =
gi(t) 7 el with i = i(u),
1
which has a global minimum point at t; = (CA)%— and

() = (C)\)eﬁw 11 <0
gi\li) = G .
1
Observe that g;(t) > 0 if, and only if, ¢ > (%)\) %=7. Hence, to ensure that

n;liggi(t) > 0, we take \* < W Therefore, for each A € (0, \*) we

have J(u) > 0 for all |Ju|| > 1. Moreover, we conclude that the functional J
is coercive and bounded from below.

Now, we will show that J satisfies the local Palais-Smale condition. For
this, we need the following technical result.

Lemma 4.2. Let (u,) C X be a bounded sequence such that
I(uy) = ¢ and I'(u,) — 0.

If

1 1 P
¢ < (1 _ 1) Ga* /(@ —an) _ [(v - qu) €2 @ r /(a* =)
gNn ~ q*

y [(V)V/(Q*V) - (7>q*/(q*v)] <1 ~ 1) o)
q* q* aN ¢

hold, then there exists \* > 0 such that, for all A € (0, \*), we have that, up
to a subsequence, (uy) is strongly convergent in X.

Proof. Using a version of Lions’s concentration compactness-principle (see
[16, Corollary 1 of Lemma 5]), we obtain at most a countable index set A,
sequences (z;) C Q, (b;), (a;) C (0,00), such that

N . N . N ) N )
aun Dpi aun qi au pi 8,“ qi
- U 4.
and
lun|? = |u|” + v (4.7)

15



in the weak*-sense of measures, where

,u>Zb Oz, V—Zaj o qN/q < bj, (4.8)

JEA JEA

for all j € A and 4, is the Dirac mass at z; € Q.

Now, for every o > 0, we set ¢,(x) = ¢¥((z — x)/0) where ¢ €
C&°(RM,[0,1]) is such that v = 1 on B1(0), ¢ = 0 on RY \ By(0) and
|Vt)|oo < 2. Since (Y,uy,) is bounded, I'(uy,)(¢ou,) — 0, that is,

Gun aun
Z/ @Z}g Z/ ¢g Ox; dx
B ouy, P2 0u,, O, oy, |92 0w, I,
N _; / ox; ox; O0x; d - ; /Qu ox; ox; O0x; du
+)\/ [un| 1, d:r—l—/ wg|un|q* dz + o, (1).
Q 0
Arguing as [15], we can prove that
N _
Oy, |72 0u oY Ouy |92 0u oY
1i 1 n n o da . n n ] da
ng(l) llffiip ; / " O, Ox; Ox; Q ox; ox; 0x; ]

Moreover, since u, — u in L7(2), ¥, has compact support and (4.6), (4.7)
and (4.8) hold, if n — oo in the above expression then

z 1fQ¢p Py d +Zz 1f9¢p P Idx"‘ZjeAbjd’p(xj)
) Oun [P 2 0u,, 0
< limsup,,_, Z/ Un| 5 o ({;ﬁé dx
6un0
+ lim sup,,_, Z / 8x D, (;ﬁg dx

+A Jo |“|V¢pd$ + fQ Pplul” da + > jen @thp(T;).
Letting 0 — 0 and using the definition of ¢, we conclude that b, < aj. Since
SaZN/q* < by, we have that

S/ ax—an) < g, . (4.9)

Now we shall prove that the above expression cannot occur, and therefore
the set A is empty. Indeed, arguing by contradiction, let us suppose that
the inequality (4.9) holds for some k € A. Thus, from

1
c = I(uy) — —1I'(up)up + on(1),
gnN
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we obtain

( ) / Volun|” dr ( - ) / lup|? dz < ¢+ on(1),

because 0 < v, < 1. Letting n — oo and using (4.6) and (4.8), we get

L1 i L1 : AW v
<(JN Q*>/Q¢p d:H—(qN q*>jeZAaJ¢P($J) )‘< >/|u| dr < c.

Since € is a bounded domain, we can choose p such that Q CC suppp,, in
this case, 1,(x) =1 for all x € Q. Thus,

) e () S (- )
= = ul? de+ | — — = a;i — N = - — ul? dr < c.
<QN q) [ N q* 2% Y gn QH

JEA

By using (4.9), we obtain

(L) [ ars( L= L) sraonn(Po L) [upae<e

By Holder’s inequality

(_)/Mq dr + < 1> 97"/ (¢"—an)
11 )/ - \T
— >\< > Q" =)/a </ |u|? dx) <ec.
Y 4N Q

f(t) = (1 - 1*> - ( B 1) Qe
qN q Y qN

This function attains its absolute minimum, for ¢ > 0, at the point

N
/(@ =) */(@* =)
> [<7>ﬂY o _ <7>q ! }(1 _ 1> A\ /(@ =)
q q v - g~

< ec

17



But this is a contradiction. Thus A is empty and it follows that u, — u in
L7 (Q). Arguing as in the proof of Lemma 3.2, we find

[un = ul] = on(1).

By the Lemma 4.2 we conclude, for A > 0 sufficiently small, that

1 1

(1 — 1) §7*/(@*—an) _ [('y - qu> |Q|q*‘1ﬂ]q*/(Q*—'y)
&-#)

aqN  q*
/(@* =) */(@* =)
X [(’7)’y T _ <’7)q o ](1 _ 1) A=) S
q* q* gN  q*

and, hence, if (u,) is a sequence bounded such that I(u,) — ¢, I'(u,) — 0
with ¢ < 0, then (u,) has a subsequence convergent.

Lemma 4.3. If J(u) <0, then |lu|]| < Ro(A), and J(v) = I(v), for all v in
a small enough neighborhood of uw. Moreover, J verifies a local Palais-Smale
condition for ¢ < 0.

Proof. Since A € (0, \*) then J(u) > 0 whenever ||u|| > 1. Hence, if J(u) < 0
we have ||lul| < 1 and consequently g(||lu|) < J(u) < 0, with § defined in
(4.4). Therefore, ||u|| < Ro(\) and J(u) = I(u). Moreover, we conclude
that J(v) = I(v), for all ||v — ul| < Ro(\) — |lu|]|. Moreover, if (uy) is a
sequence such that J(u,) — ¢ < 0 and J'(u,) — 0, for n sufficiently large,
I(uy) = J(up) = ¢ < 0 and I'(uy,) = J'(uy) — 0. Since J is coercive, we
get that (uy) is bounded in X. From Lemma 4.2, for A sufficiently small,

L (2-2%) T 0 )
c < ( _ > §a* /(@ —an) _ [ 2 ;’N - }
gN  ¢* (qu — qT)
v/ (¢ =) a*/(g" =)
% [(7> _ (7) ] <1 _ 1) A\ /(@ =)
q* qr qN ¢
and, hence, up to a subsequence, (u,,) is strongly convergent in X. ]

Now, we will construct an appropriate mini-max sequence of negative
critical values for the functional J. Thus, for each real number €, we consider
the set

Jf={ue X :J(u) < —ete
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Lemma 4.4. Given k € N, there exists ¢ = e(k) > 0 such that

(T > k.

Proof. Given k € N, consider a k-dimensional subspace
Xy = spanfer, - e}
of X, such that
~Cll = = [ e
for all w € Xj. Thus,

N

2

Ou |?
o0x;

Zle

—)\ C ul|7.
X, ()]

di

o0x;

By a similar argument of Theorem 3.3, there exists R € (0, 1) small enough,
such that defining K = {u € X, : ||u|| = R}, we get

J(u) <sup J(u) =—e< J(0)=0, VueK,
ueK

for some € > 0. Since v(K) = k and K C J~¢, it follows from (i) in the
Proposition 2.5, that v(J~¢) > k. O

For each k£ € N, one can define the sets
={CcX:CeA and (C) >k},

Ke={ue X :J(u)=0 and J(u)=c}
and the number
= inf J(u).
R e S

Lemma 4.5. Given k € N, the number ¢, is negative.

Proof. Tt is sufficient to use Lemma 4.4 and to argument as in [15, Lemma
4.4]. O

The next Lemma is necessary for the existence of critical points of J.
The proof is very similar to that in [15], we omit it here.
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Lemma 4.6. If ¢ = ¢, = cxp1 = -+ = ckay for some r € N, then there
exists \* > 0 such that
FY(KC) Z r + 17

for A € (0, \*).

Finally, we can prove the existence of infinitely many solutions of problem
(1.2).

Theorem 4.7. Assume that g € (1,p1). Then, there exists \* > 0 such that
problem (1.2) has infinitely many solutions, for all X € (0, \*).

Proof. If —00 < c1 < ca < -+- < ¢ < --- <0 with ¢; # ¢;, since each ¢,
is critical value of J, the we obtain infinitely many critical points of J and,
hence problem (1.2) has infinitely many solutions.

On the other hand, if there are two constants ¢y = cgyr, then ¢ = ¢ =
Ch+1 = -+ = Cpyr and from Lemma 4.6, there exists A* > 0 such that

V(KC)ZT+122

for all A € (0, A*). From Proposition 2.5, K, has infinitely many points, that
is, problem (1.2) has infinitely many solutions. O
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