Abstract
In this paper, we study the following eigenvalue problem for Kirchhoff
type equation with Hartree nonlinearity:
\begin{equation}
-M\left(\int_{\mathbb{R}^{N}}|\nabla
u|^{2}dx\right)\Delta
u+\mu V(x)u=\left(
I_{\alpha }\ast
Q\left\vert
u\right\vert^{p}\right)
Q\vert u\vert
^{p-2}u+\lambda f(x)u \quad
\text{in}\quad
\mathbb{R}^{N}, \end{equation}
where $N\geq3, a, \mu>0$
parameters, $M(t)=at+1$, $V\in
C(\mathbb{R}^{N},\mathbb{R}%
^{+}) $, $I_{\alpha }$ is the Riesz potential,
$Q(x)\in
L^{\infty}(\mathbb{R}^{N})$
with changes sign in
$\overline{\Omega}:=\left\{V(x)=0\right\}$,
and $0