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Curvature-based shape recognition: characterising and
analysing voltage dips
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email: nitin.sundriyal [manuel.ramirez][eduardo.bayro]@cinvestav.mx

Abstract This study employs differential geometric algebra to offer a fresh perspective on voltage sag and
swell analysis. By utilising differential geometry, simulated electrical signals can be visualised as curves. This
is made possible by describing the instantaneous amplitude of a sinusoidal wave as a curve in Euclidean
coordinates. This approach effectively represents the Frenet-Serret frame rotation at each point along the
curve. In systems with derivative components, the velocity of the moving frame denotes the rate at which
events change, as the Frenet structure is locally defined at every point along the curve. This mathematical
representation, utilising the Frenet frame, enhances our understanding of phenomena such as sag and swell, in
contrast to traditional approaches that rely on the Clark and Park transformations, which utilise two-
dimensional forms to capture the details and portrayal of an occurrence. The work emphasises the depiction of

voltage through curves and provides a geometric indicator of the pattern's evolution during operation.

Keywords ABC signature, Curvature, Frenet Frame, Power quality, Sag, Swell

1. Introduction

Voltage drops often result from fault currents flowing through the power system's impedance to the fault's
origin. As a result, power outages caused by transmission or distribution problems might impact thousands or
only a few customers. On the other hand, a problem with a transmission line may harm sensitive equipment
hundreds of kilometres away. This paper studies failure simulations in the three-phase system to analyse

voltage drops.

In the case of voltage sags, their distinctive non-rectangular shape arises from the increased starting current of
motors. Previous works have primarily focused on characterising and identifying sags using the space vector
approach [1]-[4]. Intriguingly, a recent study employed a 3-D polarisation ellipse parameter for sag
quantification [5]. The Clark transform has been commonly used in earlier works on space vectors, which
translates a three-phase signal into contra-rotating phasors and a zero-sequence component. However,
considering the transient voltage dips and spikes caused by unforeseen failures, a rotating frame is a more
suitable approach for analysing this scenario. While some efforts have been made to address this issue [6, 7],
their effectiveness has yet to be questioned [8, 9]. In this study, we propose a characterisation of sags using
the Frenet or TNB frame. Notably, variations in the instantaneous voltage values are inherently local,

independent of any external reference velocity.



Differential geometry is a branch of mathematics that investigates the geometry of smooth manifolds, also
referred to as soft forms and spaces. It encompasses various mathematical concepts, including differential and
integral calculus and linear and multilinear algebra. Differential geometry connects with geometric analysis,
which involves studying geometrical elements within the theory of differential equations. The TNB frame, for
instance, elucidates the directional aspects of particle motion on a space curve, signifying the particle's
heading (T), turning (N), and twisting (B). TNB or Frenet-Serret equations are commonly employed to
describe particle motion in space. As the behaviour of sinusoids can be viewed as a time-varying

phenomenon, the study adopts differential geometry, precisely the Frenet frame, to investigate this domain.

An overview of the IEEE Standard 1159-2019 for power quality monitoring is provided in this section [10].
Although there are several power quality phenomena, like voltage fluctuation, harmonics, flicker, etc., voltage
sag and swell are approached in the present work. However, other issues can also be handled with the
provided framework. Table I demonstrates the sag characteristic [11], which can be due to the type of fault,

transformer connection, or load connections.
1.1 Contribution and Outline
The paper's most significant originality is:

New perspective: an innovative geometric analysis method that describes sags and swells as curvature

functions is proposed.

Enhanced understanding: using differential geometry and the Frenet frame provides a comprehensive
understanding of voltage sags and swells. By representing electrical signals as curves in Euclidean
coordinates, the study captures the intricacies of these phenomena visually and intuitively. This curve-based
representation enhances comprehension compared to traditional approaches, enabling a deeper insight into

their behaviour.

Geometric Indicator: The work introduces a novel geometric indicator accompanying the curve-based
representation of voltage sags and swells. This indicator is valuable for analysing the patterns and their
evolution during operation. It provides a visual and quantitative means to assess the development of these

phenomena, enriching the interpretation of their impact on electrical systems.

Comparative Analysis: A comparative analysis highlights the advantages of the proposed approach over
traditional methods like the Clark and Park transformations. The Frenet frame-based analysis surpasses the
limitations of two-dimensional forms, offering a more detailed and accurate representation of voltage sags and
swells. This comparative analysis underscores the superiority of the proposed methodology in capturing the

intricate details of these phenomena.



Table I: sag characteristics

Category Duration Voltage
magnitude

1. Instantaneous

1.1 Sag 0.5-30 cycles 0.1-0.9 p.u.

1.2 Swell 0.5-30cycles  1.1-1.8 p.u.

2. Momentary

2.1 Interruption | 0.5 cycles— 3s  <0.1 p.u.

2.2 Sag 30 cycles— 3s | 0.1-0.9 p.u.

2.3 Swell 30 cycles— 3s  1.1-1.4 p.u.

2.4Voltage 30cycles— 3s  2%—15%

imbalance

3. Temporary

3.1 Interruption = >3 s— 1 min <0.1 p.u.

3.2 Sag >3 s— 1 min 0.1-0.9 p.u.

3.3 Swell >3 s— 1 min 1.1-1.2 p.u.

3.4Voltage >3 s— 1 min 2%—15%

imbalance

2. Incorporating Geometrical Algebra and Differential Geometry in the Presented Work

The differential geometry of curves is concerned chiefly with the local properties of trajectories or curves. A
path an object takes through space is referred to as a curve. By incorporating curvature and torsion in three-
dimensional space, the Frenet Serret equations determine the gradient of three orthonormal vector fields

forming the Frenet frame, which is vital for studying curves.

This article presents space curves derived from a mechanical system's motion curves, where the following

parameters are defined.
Position
Velocity
Acceleration
Jerk

All the above motion parameters can be parameterised in the time (t) or arc length (s). The Jerk vector in
motion denotes a moving vector's acceleration change. Here it is mentioned just for informative purposes. In
the present work, it is utilised for calculating torsion. Position (1), velocity (2), acceleration (3), and Jerk (4)
can be parameterised (in time) (1)-(4), and eq, e;, and es, become the Euclidean basis of the system. The
following formulations are done using the framework in the 3D geometric algebra in Gs [12]; X, y, and z

represent the position.

r(t) = x()e, + y()e, + y()e; M
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In differential geometry, the focus is on the osculating bivector, the curve's curvature, and its torsion, in addition
to the four parameters listed above (1)-(4). In standard calculus, curvature and torsion are regarded as scalers, but

in differential framework, they are treated as bivectors and tri-vectors [13, 14].

Equation (5)-(12) specifies the Tangent (T), Normal (N), and Binormal (B), as well as the curvature and torsion,

of a Frenet Serret frame.

A tangential vector (T) is the displacement between two points on a curve: the tangent vector and the velocity

vector, v, are in the same direction.

T = |Zggl ©)

The normal vector is defined as
TI
N=im ©
where T' is the derivative of (5)

A binormal is a plane that contains a tangent, and a normal vector is defined as

B=TxN (7)

(5)-(7) gives the orthonormal vectors of the Frenet Serret frame. Consequently, the derivative of these vectors

can be provided by (8)-(10).

ar _

E = kN (8)
dN

E = 1B — kT (9)
[22: _

E = N (10)

where k and 1 are curvature and torsion [13] of the curve and are given mathematically as

x|
(t) = TOIE (11)

Curvature is a measure of change in the tangent vector or the bending in the shape of the curve.

_ (T"(t))(‘r”(t).‘r’”(t))
0 = o @ (12)

Torsion is the change in the binormal vector or the twisting of the curve.



Geometrically, k(t) is a bivector, and T(t) is a tri-vector.

Based on (5)-(12), the TNB or Frenet frame can be represented as (13)

T’ 0 x O\/T
(N )-(—K 0 ‘r) (N) (13)
B’ 0 -t 0/\B

Curvature can be perceived as a curving phenomenon. For instance, a straight line has curvature ()=0; however,
when this straight line is bent into an elliptical or circular shape, the k is non-zero. Torsion is the change in the
binormal vector. It can be perceived as a twisting of a curve or change in the plane spanned by (7), it also represents

the cross product, defined in geometric algebra Gs;, and its result is a vector. In DG, the binormal vector precisely
T detects the change in angle or rotation in degrees. The ratio — is a critical aspect, as the elliptical nature is defined

for the curve by this ratio. This aspect can be considered as a supplementary concept to the shape index (SI) defined

for quantifying voltage sag.

The ratio of curvature and torque give rise to different shape in DG. For example, if it is constant, it forms a

helix. The angle of rotation for an elliptical shape can be evaluated as
[i(s)ds = 6(L) — 6(0) = 2r I (14)

where 0 is the inclination angle spanned by the curve when it moves between two points (p and q), Fig.1, and I

stands for the curves' rotation index. Such an angle can be positive or negative based on the direction of movement.

L=

3y

Figure 1. Rotation angle based on «

The angle between two curves can be evaluated more straightforwardly by taking the scalar or dot product

between their respective Tangents in local coordinate or Frenet frame.

Conversely,

dot(T,Ts)
ITIITs|

cos@

(15)

T denotes the Tangent vector of a normally operating system, and 7 represents the Tangent vector of a
malfunction event. The tilt can be computed using the relation provided in geometrical algebra [14]. However,

curvature alone is sufficient to provide information on sag and swell. This data shows how the suggested



method aligns with established practices while shedding new light on voltage dips and spikes. The elliptical
aspect of the three-phase analysis is stated in the range of k from non-negative values to large positive ones.
Previous research on sag and swell provides a somewhat convoluted explanation of their elliptical character
because they depend on an eclipse's major and minor axis. Furthermore, phasor motion along real and

imaginary axes is required for the sag signature, often known as the ABC signature.
3. ABC Signature

The IEC and IEEE standards for describing voltage dips use a single voltage and a single time. This makes
the characterisation easier, as well as its interpretation and use in statistical approaches. However, this
technique has its downsides; essential data needs to be included when estimating the equipment's performance
based on the characteristics of individual dips or the statistics of the dips as a whole. On the other hand, no
system can quantitatively compare different sets of features. The three-phase imbalance of the sag and the fact
that it is not rectangular will likely present the most difficulties. Examples include voltage dips in many stages
and voltage dips that significantly impact motor loads and transformer saturation. In addition, multistage
voltage dips can occur because of fault growth because the magnitude of the voltage drops at different times

throughout the event. These voltage drops defy categorisation using the stated single-event features [15].

According to the ABC categorisation, there are seven different forms of basic voltage sag. Equation and
phasor form representations are shown in Fig. 2, adopted from [14], with phase A as the reference point. E1 is
an indicator of the pre-event voltage in phase a. It brings to mind the equivalence in a balanced system
between the voltage in phase a and the voltage in the positive sequence. V is used to signify the voltage that

dropped inside the phase or between phases affected by the sag.

Sag and swelling are the most frequent events in a system because of a failure or the abrupt start of large
industrial motors. These incidents are more significant since they negatively affect end-user equipment. The
Frenet frame, essentially an analytical mathematical method for assessing voltage as a curve, can be utilised
for their characterisation based on the local property of curves. First, the voltage wave or curve's orthonormal
vectors T, N, and B and the parameters like « and t are defined as the rate of change of tangent and change in

binormal, respectively.



Type B

V=V

Figure. 2 ABC classification of sag

Curvature (x), which describes the path that the curve takes through space, is an essential component to consider
when imagining voltage in the form of a curve. Because the value of x changes whenever there is a change in the
voltage (for example, a sag or a swell). This value may be used as an index to track the degree to which the voltage
has shifted or simply the depth (d) of sag. Although this idea is relatively new in power systems, it has already
been used to analyse curves in geodesic control, robotic control, and vehicle trajectory planning. [15,16,17]. F.

Milano, through his work on frequency, has recently introduced differential geometry applications [18,19].

A sag signature may be identified by comparing a sagging structure's geometry and inclination angle to a healthy
one (without sag). This has been done in previous sag characterisation studies [20,21,22]. The work presented in
[20,21,22] talks about the sag characterisation using ellipse major and minor axis and zero sequence components
by utilising Clark and Park transform; the same geometrical aspect is shown in this study, in general, the

relationship holds the following property.

Curvature and Major Axis: Generally, the curvature tends to be larger near the ends of the major axis of an
ellipse. This means that the curve deviates more from being a straight line at these points, resulting in a higher

curvature.

Curvature and Minor Axis: The curvature is typically smaller near the points along the minor axis of an
ellipse. These points exhibit less deviation from a straight line, resulting in a lower curvature than the ends of

the major axis.

Using the orthonormal Tangent vectors or velocity vectors of the system without sag and the simulated sag
event, inclination angles may be calculated in the Frenet frame (15). Unlike prior studies that have used phasor

representation to evaluate the orientation or tilt angle between the locus of the health system and the sag event



while analysing three-phase voltage sag or swell, the current investigation does not use phasor representation.
Summing up the entire process of generating orthonormal vectors in Euclidean space, the algorithm can be

summarised in Fig.3.

3- phase signal
() (Position vector)

.

First Differentiation

(Velocity vector)
rit)

|

Second Differentiation R
(Acceleration vector)
r{t)
Third Differentiation (lerk vector)

(L)

— T — x
Geometric metric in

F—" N Euclidean 3-D, for 3
component signal

» B —_— T P g

Figure 3. Differential geometry algorithm

where r(t) = V,(t)e, + V,(t)e, + V.(t)e; represents the parametric equation of three component voltage

signals in time. A detailed analysis of this approach is shown through the presented case studies.
4. Case studies

Four case studies of a three-phase system are presented to demonstrate the above mathematical background,
which can be seen as an analogy in practical scenarios. In all the presented cases, the sag or swell event on the
phase is compared to the healthy operating system (nominal condition). The p.u. Notation is used for all of the

voltages.
Case 1: Sag in single phase (0.1 p.u.)

A line to ground fault (LG) can be attributed to a dip in one phase of a three-phase system, (5)-(7) represents
the three individual phases of the simulated system respectively, and f=120° is the corresponding angular

separation among phases.

V, =V, sin(wt) (16)
V, =V, sin(wt — ) (17)
V. =V, sin(wt + ) (18)

for sag modelling, the duration is one second

vd = 3 <t < 4(time window)



and the percentage reduction in voltage during the fault period, also known as depth of sag, is given by

d =" (19)

vm

and sag occurrence in phases a, b, and c is defined by (20)

Vo (vd) = Vo (vd)d

Vy(vd) = V,(vd)d (20)
Ve(vd) = Ve(vd)d

Under normal circumstances, i.e., a system with no variation in voltage, a three-dimensional vector in the time
domain may be translated into a single geometric object using the Frenet frame, an ellipse (3 to 1 mapping). Fig.
4. This mapping can be considered a spatial image set as V(R) = R>. In phase a, a sag of 0.1 p.u. Causes the
corresponding curve to alter its trajectory. It is inclined to the elliptical shape representing the healthy system
Fig.5(b). The change in curvature value can be detected. It can be reported as a sag event since curvature implies

a shift or modification in geometric meaning. Fig. 6. Notice that as the depth of sag increases, k decreases.

a)

Figure 4 (a) p.u. Voltage Healthy State, (b) Voltage in 7NB Frame

1]
Z!

a)‘ b)

Figure 5 (a) voltage sag in phase a, (b) sag in 7NB frame(blue)
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Figure 6. Curvature before, during, and after sag

The sag characterisation in differential geometry can be depicted by a curvature index specifying a range
between the maximum and minimum curvature values. These values are chosen because, in between, there are
various curvature values defined for different time instants. The curvature at a specific time instant is a scaler value
illustrated every moment. From Fig.6, a sag event has an oscillatory nature of curvature values during a sag event,
which shows that during a dip or sag, the voltage curve trajectory experiences a sharp change in its steady state.
This exciting notion allows us to propose a curvature index for voltage variation. The depth of dip d can be related
to the curvature value for defining a relation between d and «; other cases are also investigated in the following
examples. Typically, when voltage is shown as a curve, the fluctuation in the voltage wave (i.e., sag) is included,

and Fig. 7 additionally provides information about the time instant.

Voltage curve with single phase sag

POSR

Figure 7 Complete voltage trajectory with sag.

On the curve's trajectory, it is simple to pinpoint the sag initiation (POSI) and retardation (POSR),
respectively. But to make things more precise, the sag event and regular behaviour (Balanced scenario) has

been handled independently to show the inclination between the two.

Case 2: Sag in single phase (0.9 p.u.)



The same voltage set as for case 1 is adopted for this case. The only difference is Vsag = 0.9. For a sag of 0.9

p-u., results are presented in Fig. 7(a), and the curvature index is in Fig. 8(b).

|
rrves L uvaes
|— rom| 1 :
d i
o
1 o g

Figure 8 (a) TNB frame(sag 0.9 p.u.) (b) curvature index
If d is the depth of sag, then

1
doc @1

Also, the inclination angle during sag is a function of «, as the curvature is the inverse of the sag depth. The
inclination angle is zero for the most severe occurrence, a three-phase sag. The curvature oscillates at a higher

value, which may be thought of analytically as the severity measure.

Therefore, empirically the tilt (angle) measure can be approximated by the relation in (22),

o = 22
Ko< 22)
Thus, the curvature index effectively indicates the voltage variation during a fault or transient condition.

Case. 3: Reconsidering the system given by (20), sag is modelled in phases a and b., which can be considered
LLG(double line to ground) fault and is treated as dual or double phase sag. This phenomenon can occur in any

two phases. In this case of double sag, the magnitude is Vsag = 0.1,

i

Vipa)

14|

a8

Figure 9 Double phase sag phase ab) IN 2d
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Figure 11 Curvature index

Fig. 9, 10, and 11, respectively, signify the double-phase sag and its representation in the 7NB frame

compared to the regular system (no sag) and the curvature index.

Case. 4: This case presents the sag in all three phases of the system represented by (16)-(18), which can be

perceived as a particular case due to LLL (triple line) fault, and the sag value is 0.1 p.u.
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Figure 12 Triple phase sag
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Figure 13. Triple phase sag in TNB
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Figure 14 Curvature index for triple-phase sag

Figures 12 and 13 illustrate the three-phase sag and its representation in the TNB or Frenet frame. Figure 14
shows the suggested curvature index for the three-phase event. Consequently, all of the single sag
occurrences, as well as the multistage sag event [3], maybe appropriately portrayed within the mathematical
framework of differential geometry, as shown in Fig. 15. The abnormal occurrence and its trajectory may both

be correctly explained using the three-dimensional visualisation of orthonormal vector.
Case. S

The proposed mathematical approach has been validated by the raw EPRI data [23]. Although some earlier
works have shown a mathematical approach using this data in Clark components, where the signals have been
pre-processed for clarity of understanding, we would like to propose the approach without pre-processing of

data. Table II presents the results for different events and their geometric representation.

In Fig 16. Three cases of the recorded waveform have been shown where (a) represents a single-phase sag
event, (b) represents a three-phase sag event, (c¢) represents a double-phase sag event and (d) is a replica in the
o-P plane for signal 3555 to show the ability of Frenet frame in successfully representing an o-3 plane in TNB
plane. The subsequent distortions in the trajectory of the ellipse are due to the presence of harmonics in
signals, and the presence of torsion values well supports the fact that the Frenet frame's torsion value for a

balanced and disturbance-free signal is 0.
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Figure 15 (a) represents a healthy system(no sag),(b)-(d) represents the sag in a,b, and c, individually, (e)-(g) represents double phase
sag in the order ab, bc, and ac, (h) represents three phase sag and (i) represents a swell of 1.1 p.u. in phase a

Table II: curvature index for a sag of 0.1 p.u.

Signal No Curvature index Angle
2797

3.16*10°° <K< 0.0042 90°
2911

7.3*10<k< 0.0015 30°
2948

3.5%106<x<0.0132 90°
2912

1.93*106 <1< 0.0018 30°
3555

1.4%10% <x<0.0022 60°
3235

0.00008 <x< 0.0053 0°

Signal 2797
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Figure 16 Voltage trajectory in TNB for (a) signal 2797 (b) signal 3235 (c) signal 3555 (d) voltage trajectory in o-f frame

5. Results and discussion

The case studies discussed in the previous section provide a thorough representation of the sag characteristics

in a three-phase system. Additionally, the differential geometric framework concerned with the sag and swell



analysis offers a new interpretation of curvature. As a more general retrospection, particularly in the case of a
single sag event, such as sag in phase a, when the depth(d) of sag varies from 0.1 p.u. to 0.9 p.u., some interesting
phenomena are observed. Let us reproduce these scenarios in 2-D for a more accurate visual understanding in

Fig.17 and 18.

Figure 17 0.1 p.u. sag in phase a

Figure 18 0.9 p.u. Sag in phase a

When the depth of sag is changed, the inclination also shifts, and so does the curvature. This can be inferred
from Tables II and III, which provide a numeric representation of curvature values so that they can be understood
as numeric values at various points along the voltage trajectory. This depiction makes it easy to comprehend that

the inclination shifts when the sag's depth changes.

From Tables II and 11, it can be understood how the change in the depth of sag gives the oscillating value of
curvature and how it is related to the geometric indicator curvature (k), as described in (21) and (22). The
healthy state in Tables IT and III refers to the system free of voltage variation or sag(dip). A dip is when a
single or multiphase voltage variation(sag) event occurs. Also from Table I, the results and angle can be

interpreted. However, there is a difference in the curvature range of simulated cases and recorded waveform,



primarily because simulated cases are just for mathematical understanding, and the disturbance attribution is

random. However, still, the instances convey a general observation of sag and swell.
Table III: curvature index for a sag of 0.1 p.u.

Type of Sag Curvature index(&ndex )
(For a dip of 0.1 p.u.)

Single-phase Voltage Dip(sag) 0.1< k< 2.5(healthy state)

(Signature- B, D, F) I<x< 2.5 (dip)
Double-phase Voltage Dip 1<k < 16.5(healthy state)
(Signature- C, E, G) 3<k< 16.5 (dip)
Three-phase Voltage Dip 1.5<x < 8(healthy state)
(Signature- A) 6.55x < 8 (dip)

Table IV: curvature index for a sag of 0.9 p.u.

Type of Sag Curvature index(&index )

(For a dip of 0.9 p.u.)
Single-phase Voltage sag 0.4098<x < 0.9798(healthy
(Signature- B, D, F) state)

0.70135 1< 0.9272 (dip)

Double-phase Voltage Dip 0.4098< kx < 1.0020(healthy
(Signature- C, E, G) state)

0.6218<x < 0.9643 (dip)
Three-phase Voltage Dip 0.4098< x < 1.0185(healthy
(Signature- A) state)

0.6780<x< 0.9072 (dip)

The sag angle, measured from the system's initial, healthy condition to the moment it sags, may be determined

using (15). In this representation, a few exciting achievements may be highlighted, most notably:

L In the event of voltage variation in one of the phases, e.g., in phase a, the tilt angle is /2. It is

progressively scaled by a factor of 1/3 for subsequent events in phases b and c.

IL. The curvature numeric values for sag involving two phases are maximum Table.II and the tilt angle

are in the multiple of /3 for double phase sag ab; later on, for phase ac, it is 27/3, and so on.
1L The inclination angle is zero for a three-phase sag.

The inclination angle varies even if the sag depth varies for the same phase, Fig. 15 and 16. Finally, Fig. 19

shows a spatiotemporal 3-D picture of a typical three-phase system with 0.1 p.u. Sag and 1.1 p.u. Swell in phase

a.



3-D spatio-temporal view
(Sag(0.1p.u),normal state and swell(1.1p.u))

m—Sag(0.1p.u)
e Normal

Swell(1.1pu}

Figure 19 3-d differential view of voltage variation

6. Conclusion

This article proposes a new concept for the characterisation or pattern recognition of sag and swells based on a
local vector property in differential geometry. The authors conceived the notion of this research. The sag-swell
shape analysis is provided in three dimensions, providing a more accurate geometric viewpoint. The present study
introduces a novel geometrical analytic approach for describing power system voltage sag and swell events. By
employing differential geometry, particularly the concept of curvature, we gain a fresh perspective on
understanding these power quality phenomena. The traditional methods, such as the Clark and Park transformation
and RMS method, have been prevalent in sag characterisation, but they cannot capture detailed waveform shape

information.

In contrast, the proposed curvature-based method allows for a more comprehensive analysis of voltage sag and
swell events. The curvature profile obtained from the practical signal data reveals distinct patterns and variations
in the voltage waveforms, providing deeper insights into the shape and behaviour of these events. This approach
enhances our ability to distinguish between different types of sags, such as single-phase, double-phase, and three-

phase sags, based on their curvature characteristics.

The geometric analysis here contrasts with the complex algebra-based space vector technique. These simulated
case studies assume no noise or interference. The given study further improves knowledge of ellipse geometry

utilised for power quality and how curvature might be connected to the major and minor axis.
Appendix

ey, ey, 3 : Euclidean coordinate

T: Tangent vector

N: Normal vector

B: Binormal vector



GA: Geometrical Algebra
DG: Differential geometry

K: curvature

T: torsion

d: sag depth

6: inclination angle

=120; phase difference angle
POSI: point of sag initiation
POSR: point of sag retardation
G5: 3-D Euclidean geometric algebra
References

[1] J. M. Aller, A. Bueno, and T. Paga, "Power system analysis using space-vector transformation," in IEEE

Transactions on Power Systems, vol. 17, no. 4, pp. 957-965, Nov. 2002, DOI: 10.1109/TPWRS.2002.804995.

[2] V. Ignatova, P. Granjon and S. Bacha, "Space Vector Method for Voltage Dips and Swells Analysis," in IEEE
Transactions on Power Delivery, vol. 24, no. 4, pp. 2054-2061, Oct. 2009, DOI: 10.1109/TPWRD.2009.2028787.

[3] M. R. Alam, K. M. Muttaqi and A. Bouzerdoum, "Characterising Voltage Sags and Swells Using Three-Phase
Voltage Ellipse Parameters," in IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 2780-2790, July-Aug.
2015, doi: 10.1109/TIA.2015.2397176.

[4] J. Lira, V. Cardenas, and C. Nunez, "Factor compensation capacity," (ICEEE). 1st International Conference on

Electrical and Electronics Engineering, 2004., 2004, pp. 567-572, DOI: 10.1109/ICEEE.2004.1433949.

[5] M. R. Alam, K. M. Muttaqi and A. Bouzerdoum, "A New Approach for Classification and Characterisation of
Voltage Dips and Swells Using 3-D Polarization Ellipse Parameters," in IEEE Transactions on Power Delivery, vol. 30,

no. 3, pp. 1344-1353, June 2015, DOI: 10.1109/TPWRD.2014.2361624.

[6] M. Faisal, M. S. Alam, M. I. M. Arafat, M. M. Rahman, and S. M. G. Mostafa, "PI controller and park's
transformation based control of dynamic voltage restorer for voltage sag minimisation," 2014 9th International Forum on

Strategic Technology (IFOST), 2014, pp. 276-279, DOI: 10.1109/IFOST.2014.6991121.

[71 Mostafa Bakkar, Santiago Bogarra, Alejandro Rolan, Felipe Corcoles, Jaume Saura, Voltage sag influence on
controlled three-phase grid-connected inverters according to the Spanish grid code, IET Generation, Transmission &

Distribution, 10.1049/iet-gtd.2019.1496, 14, 10, (1882-1892), (2020).

[8] M. Paolone et al., "Fundamentals of power systems modeling in the presence of converter-interfaced
generation," Electric Power Systems Research, Volume 189, 2020, 106811, ISSN 0378-7796,
https://doi.org/10.1016/j.epsr.2020.106811."



[9] F. Milano, "The Frenet Frame as a Generalization of the Park Transform," in IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 70, no. 2, pp. 966-976, Feb. 2023, doi: 10.1109/TCS1.2022.3223726

[10] "IEEE Recommended Practice for Monitoring Electric Power Quality," in IEEE Std 1159-2019 (Revision of
IEEE Std 1159-2009), vol., no., pp.1-98, 13 Aug. 2019, doi: 10.1109/IEEESTD.2019.8796486

[11] D. Hestenes, G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and
Physics, Kluwer Academic, 1987.

[12] E. Bayro-Corrochano. Geometric Algebra Applications Vol.I: Computer Vision. Graphics and Neurocomputing.
Springer Verlag 2019.

[13] M. P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc Englewood Cliffs, New
Jersey, 1976

[14] E. J. Bayro-Corrochano, G. Altamirano-Escobedo, A. Ortiz-Gonzalez, V. Farias-Moreno, and N. Chel-Puc,
"Computing in the Conformal Space Objects, Incidence Relations, and Geometric Constrains for Applications in Al, GIS,
Graphics, Robotics, and Human-Machine Interaction," in IEEE Access, vol. 10, pp. 112742-112756, 2022, doi:
10.1109/ACCESS.2022.3216266.

[15] SZ. Djokic, J.V. Milanovic, D.J. Chapman, and M.F. McGranaghan, "Shortfalls of existing methods for
classification and presentation of voltage reduction events", IEEE Trans. on Power Delivery, vol.20, no.2, pp. 1640—

1649, Apr. 2005.

[16] S. Stramigioli, A. van der Schaft, B. Maschke and C. Melchiorri, "Geometric scattering in robotic
telemanipulation," in [EEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 588-596, Aug. 2002, DOI:
10.1109/TRA.2002.802200.

[17] H. Hajieghrary, D. Kularatne, and M. A. Hsieh, "Differential Geometric Approach to Trajectory Planning:
Cooperative Transport by a Team of Autonomous Marine Vehicles," 2018 Annual American Control Conference (ACC),

2018, pp. 858-863, DOI: 10.23919/ACC.2018.8430951.

[18] F. Milano, "A Geometrical Interpretation of Frequency," in IEEE Transactions on Power Systems, vol. 37, no.

1, pp. 816-819, Jan. 2022, DOI: 10.1109/TPWRS.2021.3108915.

[19] F. Milano, G. Tzounas, I. Dassios, and T. Kér¢i, "Applications of the Frenet Frame to Electric Circuits," in
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 69, no. 4, pp. 1668-1680, April 2022, DOI:
10.1109/TCSI1.2021.3133948.

[20] J. R. Camarillo-Pefiaranda and G. Ramos, "Characterisation of Voltage Sags Due to Faults in Radial Systems
Using Three-Phase Voltage Ellipse Parameters," in IEEE Transactions on Industry Applications, vol. 54, no. 3, pp. 2032-
2040, May-June 2018, doi: 10.1109/TIA.2018.2793245.

[21] J. R. Camarillo-Pefiaranda and G. Ramos, "Fault Classification and Voltage Sag Parameter Computation Using
Voltage Ellipses," in IEEE Transactions on Industry Applications, vol. 55, no. 1, pp. 92-97, Jan.-Feb. 2019, doi:
10.1109/T1A.2018.2864108.

[22] M. R. Alam, F. Bai, R. Yan and T. K. Saha, "Classification and Visualisation of Power Quality Disturbance-
Events Using Space Vector Ellipse in Complex Plane," in IEEE Transactions on Power Delivery, vol. 36, no. 3, pp. 1380-
1389, June 2021, doi: 10.1109/TPWRD.2020.3008003.



[23] "DOE Disturbance Library," US Dept. Energy Electr. Power Res. Inst., Orlando, FL, USA. [Online]. Available:
http://pqmon.epri.com/disturbance library/see all.asp



