References
Alexander SP, Fabbro D, Kelly E, Mathie A, Peters JA, Veale EL, et
al. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Catalytic
receptors. Br J Pharmacol, 178 Suppl 1 , S264-s312.
https://doi.org/10.1111/bph.15541
Alexander SP, Kelly E, Mathie A, Peters JA, Veale EL, Armstrong
JF, et al. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22:
Transporters. Br J Pharmacol, 178 Suppl 1 , S412-s513.
https://doi.org/10.1111/bph.15543
Alexander SP, Mathie A, Peters JA, Veale EL, Striessnig J, Kelly
E, et al. (2021). THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: Ion
channels. Br J Pharmacol, 178 Suppl 1 , S157-s245.
https://doi.org/10.1111/bph.15539
Alshnbari AS, Millar SA, O’Sullivan SE, & Idris I. (2020). Effect of
Sodium-Glucose Cotransporter-2 Inhibitors on Endothelial Function: A
Systematic Review of Preclinical Studies. Diabetes Ther, 11 (9),
1947-1963. https://doi.org/10.1007/s13300-020-00885-z
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M,
et al. (2021). Empagliflozin in Heart Failure with a Preserved Ejection
Fraction. N Engl J Med .
https://doi.org/10.1056/NEJMoa2107038
Apte RS, Chen DS, & Ferrara N. (2019). VEGF in Signaling and Disease:
Beyond Discovery and Development. Cell, 176 (6), 1248-1264.
https://doi.org/10.1016/j.cell.2019.01.021
Baartscheer A, Schumacher CA, Wust RC, Fiolet JW, Stienen GJ, Coronel
R, et al. (2017). Empagliflozin decreases myocardial cytoplasmic
Na(+) through inhibition of the cardiac Na(+)/H(+) exchanger in rats and
rabbits. Diabetologia, 60 (3), 568-573.
https://doi.org/10.1007/s00125-016-4134-x
Bai B, Yang Y, Wang Q, Li M, Tian C, Liu Y, et al. (2020). NLRP3
inflammasome in endothelial dysfunction. Cell Death Dis, 11 (9),
776. https://doi.org/10.1038/s41419-020-02985-x
Behnammanesh G, Durante ZE, Peyton KJ, Martinez-Lemus LA, Brown SM,
Bender SB, et al. (2019). Canagliflozin Inhibits Human
Endothelial Cell Proliferation and Tube Formation. Front
Pharmacol, 10 , 362. https://doi.org/10.3389/fphar.2019.00362
Brownlee M. (2001). Biochemistry and molecular cell biology of diabetic
complications. Nature, 414 (6865), 813-820.
https://doi.org/10.1038/414813a
Canet F, Iannantuoni F, Marañon AM, Díaz-Pozo P, López-Domènech S, Vezza
T, et al. (2021). Does Empagliflozin Modulate
Leukocyte-Endothelium Interactions, Oxidative Stress, and Inflammation
in Type 2 Diabetes? Antioxidants (Basel), 10 (8).
https://doi.org/10.3390/antiox10081228
Cappetta D, De Angelis A, Ciuffreda LP, Coppini R, Cozzolino A, Micciche
A, et al. (2020). Amelioration of diastolic dysfunction by
dapagliflozin in a non-diabetic model involves coronary endothelium.Pharmacol Res, 157 , 104781.
https://doi.org/10.1016/j.phrs.2020.104781
Chistiakov DA, Orekhov AN, & Bobryshev YV. (2017). Effects of shear
stress on endothelial cells: go with the flow. Acta Physiol (Oxf),
219 (2), 382-408. https://doi.org/10.1111/apha.12725
Chung YJ, Park KC, Tokar S, Eykyn TR, Fuller W, Pavlovic D, et
al. (2020). Off-target effects of SGLT2 blockers: empagliflozin does
not inhibit Na+/H+ exchanger-1 or lower [Na+]i in the heart.Cardiovasc Res . https://doi.org/10.1093/cvr/cvaa323
Cooper S, Teoh H, Campeau MA, Verma S, & Leask RL. (2019).
Empagliflozin restores the integrity of the endothelial glycocalyx in
vitro. Mol Cell Biochem, 459 (1-2), 121-130.
https://doi.org/10.1007/s11010-019-03555-2
Daiber A, Steven S, Vujacic-Mirski K, Kalinovic S, Oelze M, Di Lisa
F, et al. (2020). Regulation of Vascular Function and
Inflammation via Cross Talk of Reactive Oxygen and Nitrogen Species from
Mitochondria or NADPH Oxidase-Implications for Diabetes Progression.Int J Mol Sci, 21 (10). https://doi.org/10.3390/ijms21103405
Damman K, Beusekamp JC, Boorsma EM, Swart HP, Smilde TDJ, Elvan A,
et al. (2020). Randomized, double-blind, placebo-controlled,
multicentre pilot study on the effects of empagliflozin on clinical
outcomes in patients with acute decompensated heart failure
(EMPA-RESPONSE-AHF). Eur J Heart Fail, 22 (4), 713-722.
https://doi.org/10.1002/ejhf.1713
Devineni D, Polidori D, Curtin C, Stieltjes H, Tian H, & Wajs E.
(2016). Single-dose Pharmacokinetics and Pharmacodynamics of
Canagliflozin, a Selective Inhibitor of Sodium Glucose Cotransporter 2,
in Healthy Indian Participants. Clin Ther, 38 (1), 89-98 e81.
https://doi.org/10.1016/j.clinthera.2015.11.008
Durante W, Behnammanesh G, & Peyton KJ. (2021). Effects of
Sodium-Glucose Co-Transporter 2 Inhibitors on Vascular Cell Function and
Arterial Remodeling. Int J Mol Sci, 22 (16).
https://doi.org/10.3390/ijms22168786
Eelen G, Treps L, Li X, & Carmeliet P. (2020). Basic and Therapeutic
Aspects of Angiogenesis Updated. Circ Res, 127 (2), 310-329.
https://doi.org/10.1161/circresaha.120.316851
Feil R, Lehners M, Stehle D, & Feil S. Visualising and understanding
cGMP signals in the cardiovascular system. British Journal of
Pharmacology, n/a (n/a).
https://doi.org/https://doi.org/10.1111/bph.15500
Ferrucci L, & Fabbri E. (2018). Inflammageing: chronic inflammation in
ageing, cardiovascular disease, and frailty. Nat Rev Cardiol,
15 (9), 505-522. https://doi.org/10.1038/s41569-018-0064-2
Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, & Griendling KK. (2018).
Reactive Oxygen Species in Metabolic and Inflammatory Signaling.Circ Res, 122 (6), 877-902.
https://doi.org/10.1161/CIRCRESAHA.117.311401
Forstermann U, Xia N, & Li H. (2017). Roles of Vascular Oxidative
Stress and Nitric Oxide in the Pathogenesis of Atherosclerosis.Circ Res, 120 (4), 713-735.
https://doi.org/10.1161/CIRCRESAHA.116.309326
Ganbaatar B, Fukuda D, Shinohara M, Yagi S, Kusunose K, Yamada H,
et al. (2020). Empagliflozin ameliorates endothelial dysfunction and
suppresses atherogenesis in diabetic apolipoprotein E-deficient mice.Eur J Pharmacol, 875 , 173040.
https://doi.org/10.1016/j.ejphar.2020.173040
Gaspari T, Spizzo I, Liu H, Hu Y, Simpson RW, Widdop RE, et al.(2018). Dapagliflozin attenuates human vascular endothelial cell
activation and induces vasorelaxation: A potential mechanism for
inhibition of atherogenesis. Diab Vasc Dis Res, 15 (1), 64-73.
https://doi.org/10.1177/1479164117733626
Giri B, Dey S, Das T, Sarkar M, Banerjee J, & Dash SK. (2018). Chronic
hyperglycemia mediated physiological alteration and metabolic distortion
leads to organ dysfunction, infection, cancer progression and other
pathophysiological consequences: An update on glucose toxicity.Biomed Pharmacother, 107 , 306-328.
https://doi.org/10.1016/j.biopha.2018.07.157
Griendling KK, Camargo LL, Rios FJ, Alves-Lopes R, Montezano AC, &
Touyz RM. (2021). Oxidative Stress and Hypertension. Circulation
Research, 128 (7), 993-1020.
https://doi.org/doi:10.1161/CIRCRESAHA.121.318063
Haymet AB, Bartnikowski N, Wood ES, Vallely MP, McBride A, Yacoub
S, et al. (2021). Studying the Endothelial Glycocalyx in vitro:
What Is Missing? Front Cardiovasc Med, 8 , 647086.
https://doi.org/10.3389/fcvm.2021.647086
Jin X, Liu L, Zhang Y, Xiang Y, Yin G, Lu Y, et al. (2018).
Advanced Glycation End Products Enhance Murine Monocyte Proliferation in
Bone Marrow and Prime Them into an Inflammatory Phenotype through MAPK
Signaling. J Diabetes Res, 2018 , 2527406.
https://doi.org/10.1155/2018/2527406
Juni RP, Kuster DWD, Goebel M, Helmes M, Musters RJP, van der Velden
J, et al. (2019). Cardiac Microvascular Endothelial Enhancement
of Cardiomyocyte Function Is Impaired by Inflammation and Restored by
Empagliflozin. JACC Basic Transl Sci, 4 (5), 575-591.
https://doi.org/10.1016/j.jacbts.2019.04.003
Juni RP, Al-Shama R, Kuster DWD, van der Velden J, Hamer HM, Vervloet
MG, et al. (2021). Empagliflozin restores chronic kidney
disease-induced impairment of endothelial regulation of cardiomyocyte
relaxation and contraction. Kidney Int, 99 (5), 1088-1101.
https://doi.org/10.1016/j.kint.2020.12.013
Kaji K, Nishimura N, Seki K, Sato S, Saikawa S, Nakanishi K, et
al. (2018). Sodium glucose cotransporter 2 inhibitor canagliflozin
attenuates liver cancer cell growth and angiogenic activity by
inhibiting glucose uptake. Int J Cancer, 142 (8), 1712-1722.
https://doi.org/10.1002/ijc.31193
Kay AM, Simpson CL, & Stewart JA, Jr. (2016). The Role of AGE/RAGE
Signaling in Diabetes-Mediated Vascular Calcification. J Diabetes
Res, 2016 , 6809703. https://doi.org/10.1155/2016/6809703
Khemais-Benkhiat S, Belcastro E, Idris-Khodja N, Park SH, Amoura L,
Abbas M, et al. (2020). Angiotensin II-induced redox-sensitive
SGLT1 and 2 expression promotes high glucose-induced endothelial cell
senescence. J Cell Mol Med, 24 (3), 2109-2122.
https://doi.org/10.1111/jcmm.14233
Kleinbongard P, Bøtker HE, Ovize M, Hausenloy DJ, & Heusch G. (2020).
Co-morbidities and co-medications as confounders of
cardioprotection—Does it matter in the clinical setting? British
Journal of Pharmacology, 177 (23), 5252-5269.
https://doi.org/https://doi.org/10.1111/bph.14839
Klug NR, Chechneva OV, Hung BY, & O’Donnell ME. (2021). High
glucose-induced effects on Na(+)-K(+)-2Cl(-) cotransport and Na(+)/H(+)
exchange of blood-brain barrier endothelial cells: involvement of SGK1,
PKCbetaII, and SPAK/OSR1. Am J Physiol Cell Physiol, 320 (4),
C619-C634. https://doi.org/10.1152/ajpcell.00177.2019
Kolijn D, Pabel S, Tian Y, Lódi M, Herwig M, Carrizzo A, et al.(2020). Empagliflozin improves endothelial and cardiomyocyte function in
human heart failure with preserved ejection fraction via reduced
pro-inflammatory-oxidative pathways and protein kinase Gα oxidation.Cardiovascular Research, 117 (2), 495-507.
https://doi.org/10.1093/cvr/cvaa123
Król M, & Kepinska M. (2021). Human Nitric Oxide Synthase—Its
Functions, Polymorphisms, and Inhibitors in the Context of Inflammation,
Diabetes and Cardiovascular Diseases. International Journal of
Molecular Sciences, 22 (1), 56.
Kruger-Genge A, Blocki A, Franke RP, & Jung F. (2019). Vascular
Endothelial Cell Biology: An Update. Int J Mol Sci, 20 (18).
https://doi.org/10.3390/ijms20184411
Kuno A, Kimura Y, Mizuno M, Oshima H, Sato T, Moniwa N, et al.(2020). Empagliflozin attenuates acute kidney injury after myocardial
infarction in diabetic rats. Sci Rep, 10 (1), 7238.
https://doi.org/10.1038/s41598-020-64380-y
Lehoux S. (2006). Redox signalling in vascular responses to shear and
stretch. Cardiovascular Research, 71 2 , 269-279.
Leng W, Ouyang X, Lei X, Wu M, Chen L, Wu Q, et al. (2016). The
SGLT-2 Inhibitor Dapagliflozin Has a Therapeutic Effect on
Atherosclerosis in Diabetic ApoE(-/-) Mice. Mediators Inflamm,
2016 , 6305735. https://doi.org/10.1155/2016/6305735
Li X, Römer G, Kerindongo RP, Hermanides J, Albrecht M, Hollmann
MW, et al. (2021). Sodium Glucose Co-Transporter 2 Inhibitors
Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch
through Inhibition of Reactive Oxygen Species. International
Journal of Molecular Sciences, 22 (11), 6044.
https://www.mdpi.com/1422-0067/22/11/6044
Lin M, Chen Y, Jin J, Hu Y, Zhou KK, Zhu M, et al. (2011).
Ischaemia-induced retinal neovascularisation and diabetic retinopathy in
mice with conditional knockout of hypoxia-inducible factor-1 in retinal
Muller cells. Diabetologia, 54 (6), 1554-1566.
https://doi.org/10.1007/s00125-011-2081-0
Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Worth CL, Lindberg
EL, et al. (2020). Cells of the adult human heart. Nature,
588 (7838), 466-472. https://doi.org/10.1038/s41586-020-2797-4
Luo J, Sun P, Zhang X, Lin G, Xin Q, Niu Y, et al. (2021).
Canagliflozin Modulates Hypoxia-Induced Metastasis, Angiogenesis and
Glycolysis by Decreasing HIF-1α Protein Synthesis via AKT/mTOR Pathway.Int J Mol Sci, 22 (24).
https://doi.org/10.3390/ijms222413336
Madonna R, Barachini S, Moscato S, Ippolito C, Mattii L, Lenzi C,
et al. (2021). Sodium-glucose cotransporter type 2 inhibitors prevent
ponatinib-induced endothelial senescence and disfunction: A potential
rescue strategy. Vascul Pharmacol, 142 , 106949.
https://doi.org/10.1016/j.vph.2021.106949
Mancini SJ, Boyd D, Katwan OJ, Strembitska A, Almabrouk TA, Kennedy
S, et al. (2018). Canagliflozin inhibits
interleukin-1beta-stimulated cytokine and chemokine secretion in
vascular endothelial cells by AMP-activated protein kinase-dependent and
-independent mechanisms. Sci Rep, 8 (1), 5276.
https://doi.org/10.1038/s41598-018-23420-4
Meza CA, La Favor JD, Kim DH, & Hickner RC. (2019). Endothelial
Dysfunction: Is There a Hyperglycemia-Induced Imbalance of NOX and NOS?Int J Mol Sci, 20 (15). https://doi.org/10.3390/ijms20153775
Monteiro JP, Bennett M, Rodor J, Caudrillier A, Ulitsky I, & Baker AH.
(2019). Endothelial function and dysfunction in the cardiovascular
system: the long non-coding road. Cardiovascular Research,
115 (12), 1692-1704. https://doi.org/10.1093/cvr/cvz154
Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N,
et al. (2017). Canagliflozin and Cardiovascular and Renal Events in
Type 2 Diabetes. N Engl J Med, 377 (7), 644-657.
https://doi.org/10.1056/NEJMoa1611925
Nikolaou PE, Efentakis P, Abu Qourah F, Femminò S, Makridakis M, Kanaki
Z, et al. (2021). Chronic Empagliflozin Treatment Reduces
Myocardial Infarct Size in Nondiabetic Mice Through STAT-3-Mediated
Protection on Microvascular Endothelial Cells and Reduction of Oxidative
Stress. Antioxidants Redox Signaling, 34 (7), 551-571.
https://doi.org/10.1089/ars.2019.7923
Ohgaki R, Wei L, Yamada K, Hara T, Kuriyama C, Okuda S, et al.(2016). Interaction of the Sodium/Glucose Cotransporter (SGLT) 2
inhibitor Canagliflozin with SGLT1 and SGLT2. J Pharmacol Exp
Ther, 358 (1), 94-102. https://doi.org/10.1124/jpet.116.232025
Ohishi M. (2018). Hypertension with diabetes mellitus: physiology and
pathology. Hypertens Res, 41 (6), 389-393.
https://doi.org/10.1038/s41440-018-0034-4
Okonkwo UA, & DiPietro LA. (2017). Diabetes and Wound Angiogenesis.Int J Mol Sci, 18 (7). https://doi.org/10.3390/ijms18071419
Ortega R, Collado A, Selles F, Gonzalez-Navarro H, Sanz M-J, Real
JT, et al. (2019). SGLT-2 (Sodium-Glucose Cotransporter 2)
Inhibition Reduces Ang II (Angiotensin II)-Induced Dissecting Abdominal
Aortic Aneurysm in ApoE (Apolipoprotein E) Knockout Mice.Arteriosclerosis, Thrombosis, and Vascular Biology, 39 (8),
1614-1628. https://doi.org/doi:10.1161/ATVBAHA.119.312659
Packer M. (2020). Molecular, Cellular, and Clinical Evidence That
Sodium-Glucose Cotransporter 2 Inhibitors Act as Neurohormonal
Antagonists When Used for the Treatment of Chronic Heart Failure.J Am Heart Assoc, 9 (16), e016270.
https://doi.org/10.1161/jaha.120.016270
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P,
et al. (2020). Cardiovascular and Renal Outcomes with Empagliflozin in
Heart Failure. N Engl J Med, 383 (15), 1413-1424.
https://doi.org/10.1056/NEJMoa2022190
Park SH, Belcastro E, Hasan H, Matsushita K, Marchandot B, Abbas
M, et al. (2021). Angiotensin II-induced upregulation of SGLT1
and 2 contributes to human microparticle-stimulated endothelial
senescence and dysfunction: protective effect of gliflozins.Cardiovasc Diabetol, 20 (1), 65.
https://doi.org/10.1186/s12933-021-01252-3
Rastogi R, Geng X, Li F, & Ding Y. (2016). NOX Activation by Subunit
Interaction and Underlying Mechanisms in Disease. Front Cell
Neurosci, 10 , 301. https://doi.org/10.3389/fncel.2016.00301
Ritchie RH, & Abel ED. (2020). Basic Mechanisms of Diabetic Heart
Disease. Circulation Research, 126 (11), 1501-1525.
https://doi.org/doi:10.1161/CIRCRESAHA.120.315913
Saeidnia S, Manayi A, & Abdollahi M. (2015). From in vitro Experiments
to in vivo and Clinical Studies; Pros and Cons. Curr Drug Discov
Technol, 12 (4), 218-224.
https://doi.org/10.2174/1570163813666160114093140
Salim HM, Fukuda D, Yagi S, Soeki T, Shimabukuro M, & Sata M. (2016).
Glycemic Control with Ipragliflozin, a Novel Selective SGLT2 Inhibitor,
Ameliorated Endothelial Dysfunction in Streptozotocin-Induced Diabetic
Mouse. Front Cardiovasc Med, 3 , 43.
https://doi.org/10.3389/fcvm.2016.00043
Salvatore T, Caturano A, Galiero R, Di Martino A, Albanese G, Vetrano
E, et al. (2021). Cardiovascular Benefits from Gliflozins:
Effects on Endothelial Function. Biomedicines, 9 (10).
https://doi.org/10.3390/biomedicines9101356
Sayour AA, Korkmaz-Icoz S, Loganathan S, Ruppert M, Sayour VN, Olah
A, et al. (2019). Acute canagliflozin treatment protects against
in vivo myocardial ischemia-reperfusion injury in non-diabetic male rats
and enhances endothelium-dependent vasorelaxation. J Transl Med,
17 (1), 127. https://doi.org/10.1186/s12967-019-1881-8
Seferovic PM, Petrie MC, Filippatos GS, Anker SD, Rosano G, Bauersachs
J, et al. (2018). Type 2 diabetes mellitus and heart failure: a
position statement from the Heart Failure Association of the European
Society of Cardiology. Eur J Heart Fail, 20 (5), 853-872.
https://doi.org/10.1002/ejhf.1170
Shah AK, Bhullar SK, Elimban V, & Dhalla NS. (2021). Oxidative Stress
as A Mechanism for Functional Alterations in Cardiac Hypertrophy and
Heart Failure. Antioxidants (Basel), 10 (6).
https://doi.org/10.3390/antiox10060931
Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, et al.(2018). Prevalence and correlates of coronary microvascular dysfunction
in heart failure with preserved ejection fraction: PROMIS-HFpEF.Eur Heart J, 39 (37), 3439-3450.
https://doi.org/10.1093/eurheartj/ehy531
Shi Y, & Vanhoutte PM. (2017). Macro- and microvascular endothelial
dysfunction in diabetes. J Diabetes, 9 (5), 434-449.
https://doi.org/10.1111/1753-0407.12521
Siu KL, Gao L, & Cai H. (2016). Differential Roles of Protein Complexes
NOX1-NOXO1 and NOX2-p47phox in Mediating Endothelial Redox Responses to
Oscillatory and Unidirectional Laminar Shear Stress. J Biol Chem,
291 (16), 8653-8662. https://doi.org/10.1074/jbc.M115.713149
Toldo S, Mezzaroma E, Buckley LF, Potere N, Di Nisio M, Biondi-Zoccai
G, et al. (2021). Targeting the NLRP3 inflammasome in
cardiovascular diseases. Pharmacol Ther, 236 , 108053.
https://doi.org/10.1016/j.pharmthera.2021.108053
Tomlinson B, Hu M, Zhang Y, Chan P, & Liu ZM. (2017). Evaluation of the
pharmacokinetics, pharmacodynamics and clinical efficacy of
empagliflozin for the treatment of type 2 diabetes. Expert Opin
Drug Metab Toxicol, 13 (2), 211-223.
https://doi.org/10.1080/17425255.2017.1258401
Trum M, Riechel J, & Wagner S. (2021). Cardioprotection by SGLT2
Inhibitors-Does It All Come Down to Na(+)? Int J Mol Sci, 22 (15).
https://doi.org/10.3390/ijms22157976
Umapathy A, Chamley LW, & James JL. (2020). Reconciling the distinct
roles of angiogenic/anti-angiogenic factors in the placenta and maternal
circulation of normal and pathological pregnancies. Angiogenesis,
23 (2), 105-117. https://doi.org/10.1007/s10456-019-09694-w
Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT,
Koeman A, et al. (2018). Class effects of SGLT2 inhibitors in
mouse cardiomyocytes and hearts: inhibition of Na(+)/H(+) exchanger,
lowering of cytosolic Na(+) and vasodilation. Diabetologia,
61 (3), 722-726. https://doi.org/10.1007/s00125-017-4509-7
Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann
MW, et al. (2018). Direct Cardiac Actions of Sodium Glucose
Cotransporter 2 Inhibitors Target Pathogenic Mechanisms Underlying Heart
Failure in Diabetic Patients. Front Physiol, 9 , 1575.
https://doi.org/10.3389/fphys.2018.01575
Uthman L, Homayr A, Juni RP, Spin EL, Kerindongo R, Boomsma M, et
al. (2019). Empagliflozin and Dapagliflozin Reduce ROS Generation and
Restore NO Bioavailability in Tumor Necrosis Factor alpha-Stimulated
Human Coronary Arterial Endothelial Cells. Cell Physiol Biochem,
53 (5), 865-886. https://doi.org/10.33594/000000178
Uthman L, Kuschma M, Romer G, Boomsma M, Kessler J, Hermanides J,
et al. (2020). Novel Anti-inflammatory Effects of Canagliflozin
Involving Hexokinase II in Lipopolysaccharide-Stimulated Human Coronary
Artery Endothelial Cells. Cardiovasc Drugs Ther .
https://doi.org/10.1007/s10557-020-07083-w
Uthman L, Li X, Baartscheer A, Schumacher CA, Baumgart P, Hermanides
J, et al. (2022). Empagliflozin reduces oxidative stress through
inhibition of the novel inflammation/NHE/[Na+]c/ROS-pathway in human
endothelial cells. Biomedicine & Pharmacotherapy, 146 , 112515.
https://doi.org/https://doi.org/10.1016/j.biopha.2021.112515
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, et al.(2019). Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes.N Engl J Med, 380 (4), 347-357.
https://doi.org/10.1056/NEJMoa1812389
Yuan T, Yang T, Chen H, Fu D, Hu Y, Wang J, et al. (2019). New
insights into oxidative stress and inflammation during diabetes
mellitus-accelerated atherosclerosis. Redox Biol, 20 , 247-260.
https://doi.org/10.1016/j.redox.2018.09.025
Zhang WJ, Li PX, Guo XH, & Huang QB. (2017). Role of moesin, Src, and
ROS in advanced glycation end product-induced vascular endothelial
dysfunction. Microcirculation, 24 (3).
https://doi.org/10.1111/micc.12358
Zhou H, Wang S, Zhu P, Hu S, Chen Y, & Ren J. (2018). Empagliflozin
rescues diabetic myocardial microvascular injury via AMPK-mediated
inhibition of mitochondrial fission. Redox Biol, 15 , 335-346.
https://doi.org/10.1016/j.redox.2017.12.019
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et
al. (2015). Empagliflozin, Cardiovascular Outcomes, and Mortality in
Type 2 Diabetes. N Engl J Med, 373 (22), 2117-2128.
https://doi.org/10.1056/NEJMoa1504720
Zuurbier CJ, Demirci C, Koeman A, Vink H, & Ince C. (2005). Short-term
hyperglycemia increases endothelial glycocalyx permeability and acutely
decreases lineal density of capillaries with flowing red blood cells.J Appl Physiol (1985), 99 (4), 1471-1476.
https://doi.org/10.1152/japplphysiol.00436.2005
Zuurbier CJ, Baartscheer A, Schumacher CA, Fiolet JWT, & Coronel R.
(2021). SGLT2 inhibitor empagliflozin inhibits the cardiac Na+/H+
exchanger 1: persistent inhibition under various experimental
conditions. Cardiovasc Res .
https://doi.org/10.1093/cvr/cvab129