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Abstract In this paper, to investigate the synthetic effect of PrEP (pre-exposure
prophylaxis) and ART (antiretrovial therapy) on HIV transmission among MSM (men
who have sex with men) in heterogenous environment, an realistic HIV epidemic model
with spatial diffusion is established. Here, HIV infectious people are divided into three
immunity based compartments, i.e., CD4+ T cell count less than 350, between 350 and
500, and more than 500, respectively. The basic reproduction number R0 is established
and proved as a threshold parameter: The global asymptotic stability of the disease-free
steady state holds for R0 < 1, and the disease will be present if R0 > 1. Considering
the substantial advantages of PrEP and ART in controlling HIV transmissions among
MSM, the optimal control problem is presented for the case of positive constant diffusion
coefficients, which minimize the total population of susceptible individual and HIV infected
individual, the cost of PrEP and ART thearpy. As an illustration of our theoretical
results, we conduct numerical simulations. We also conduct an optimal control case study
where model parameters are estimated from the demographic and epidemiological data
from China. This work suggests: (1) Spatial factors cannot be ignored during the HIV
intervention; (2)Taking the PrEP intervention measure for HIV transmissions among MSM
as early as possible will help to improve the control efficiency and reduces its cost; (3)
Reducing the PrEP drug costs will promote the efficiency of PrEP treatment in preventing
the spread of HIV among MSM.
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1 Introduction

The total number of HIV notifications in China has steadily increased in recent years
[1]. MSM group (men who have sex with men) turn out to be a crucial driving force
of the increase in HIV infection. In 2017, there were 34,385 new cases within the MSM
group, accounting for one quarter of the total new HIV/AIDS cases in China [2]. Hence,
the Chinese government has strengthened its intervention and control efforts, developed
national working policies and guidelines and control among MSM.

On the one hand, development of clinic treatment has made AIDS as a treatable chronic
disease [3]. There exist some models are presented to investigated the influence of ART on
HIV incidence [4, 5] and many compartment models also have been applied to studying
the impact of ART treatment on HIV infection [6, 7]. As one of the earliest mathematical
models, Williams et al.[?] established a model to investigated the effect of ART on the
transmission of HIV based on the HIV infected cases in adults in South Africa, and to
show how it could help to control the epidemic. Hosseini et al.[6] formulated a multi-scale
model of HIV infection in vitro and APOBEC3G-based ART to study the impact of ART
to HIV virus infection. However, the above work only studies the impact of ART therapy
on HIV infection, and did not consider the medical standards of ART treatment. This is
an important factor that cannot be ignored in mathematical modeling. In fact, in clinical
treatment, a decision as to whether a therapy should begin or not is dependent on CD4+
T cell count in patients. The report of World Heath Organization (WHO) suggests [8] that
ART should start when CD4+ T cell < 350. Meanwhile, infected persons having 350-500
CD4+ T cell within the host, then they are suggested to start ART, they should moderately
suggest to begin ART when CD4+ T cell > 500. Hence, the infected individuals immunity
can be divided into three levels: normal (> 500), moderate (350-500), and weak (< 350).
Based on the above discussions, Rahman et al.[9] divided the total HIV infected population
into three compartments dependent to their immunity level. Soon afterwards, Ishaku et
al.[10] established an HIV model to analysis and optimal control problem based on CD4+
T cell count. Shen et al.[11] presented an infection-age structured HIV-1 model linking
within-host and between-host dynamics, they divided the total infection population into
three stages with similar way in [9]. The results of those works have provided some useful
suggestions for the design of the clinical treatment strategy.

On the other hand, current studies have found that daily use of a fixed dose of Tenofovir
and Entreptabine (Truvada) can effectively prevent HIV infection effectively [12]. CDC
(centers for Disease Control) of the United States accepted the proposal and wrote it into
the latest edition of the guidelines. According to the guidelines, the CDC recommends the
following four measures for high-risk groups to receive PrEP: MSM (men who have sex with
men), IDUs (inject drugs users), Heterosexual sex workers with high-risk behaviors, People
in HIV-discordant couples [13]. Meanwhile, the medical results suggest that individuals
at substantial risk of HIV infection should be offered PrEP as an additional prevention
choice [14], it is an effective and safe mechanism for preventing HIV-infection [15]. In
recent times, there are many studies that focus on PrEP prevention. Rahman [16] divided
the total population into two groups: study group and general group to study the impact
of Tenofovir gel as a PrEP on HIV infection. Akudibillah et al.[17] considered a model to
study the benefits of ART and PrEP in resource-limited settings. Silva et al. [18] presented
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a compartment model with PrEP to cumulative cases of HIV infection from 1987 to 2014
in Cape Verde. Kim et al. [19] investigated HIV prevention strategies including PrEP on
HIV incidences in South Korea. Pinto et al. [20] presented a model that combine PrEP
with HCT (HIV counselling and testing).

Note that these works mentioned above are mainly based on ordinary differential equa-
tions (ODE) models to study the effect of PrEP treatment on the HIV transmission.
Epidemiologically, the spacial heterogeneity can not be ignored in epidemiological com-
partment model. That is, it is necessary to investigate the whole process of HIV/AIDS
transmission by mathematical modeling and experiment when heterogenous environment
and population diffusion are considered. In fact, reaction-diffusion epidemic models are
effective tools to understanding those situations [21, 22, 23]. Furthermore, Shen et al.[24]
studied the cost-effectiveness of oral HIV PrEP and early ART in the presence of drug resis-
tance among MSM in San Francisco, and they verified that high PrEP coverage and earlier
ART are expected to provide the greatest benefit. Therefore, in addition to considering
the heterogeneous spatial diffusion, it is also necessary to consider the optimal control
strategies that combines PrEP with ART treatments in this paper. Actually, optimal
strategy theory has been successfully applied to some reaction-diffusion epidemiological
and population models, e.g., general SIS model [25], SIR model [26], prey-predator model
[28], Cancer invasion model [29]. However, as far as we know, few HIV/AIDS epidemic
models have been formulated to study the adjoint effect of PrEP and ART treatments,
optimal control, and spatial heterogeneity on HIV infection among MSM group. Here,
we will consider those factors all together by investigating the following spatial diffusion
MSM HIV/AIDS model in a heterogeneous environment.



∂S(x, t)

∂t
=∇ (θ0(x)∇S(x, t)) + Λ(x)− (µ(x) + r(x))S(x, t)

− (β1(x)I1(x, t) + β2(x)I2(x, t) + β3(x)I3(x, t))S(x, t),

∂I1(x, t)

∂t
=∇ (θ1(x)∇I1(x, t)) + η2(x)I2(x, t)− (µ(x) + α1(x))I1(x, t)

+ (β1(x)I1(x, t) + β2(x)I2(x, t) + β3(x)I3(x, t))S(x, t),

∂I2(x, t)

∂t
=∇ (θ2(x)∇I2(x, t)) + α1(x)I1(x, t)

− (α2(x) + η2(x) + µ(x))I2(x, t) + η3(x)I3(x, t),

∂I3(x, t)

∂t
=∇ (θ3(x)∇I3(x, t)) + α2(x)I2(x, t)− (η3(x) + µ(x) + d(x))I3(x, t),

∂P (x, t)

∂t
=∇ (θ4(x)∇P (x, t)) + r(x)S(x, t)− µ(x)P (x, t),

(1.1)

with (x, t) ∈ ΩT = Ω× (0, T ). It is supplemented with the no-flux conditions

[θ0(x)∇S(x, t)] · ϑ = [θi(x)∇Ii(x, t)] · ϑ = [θ4(x)∇P (x, t)] · ϑ = 0, (x, t) ∈ ∂Ω× ∈ (0, T ),
(1.2)

and positive initial conditions

S(x, 0) = S0(x), P (x, 0) = P0(x), Ii(x, 0) = Ii0(x), i = 1, 2, 3, x ∈ Ω, (1.3)
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In this paper, we consider a MSM population and divide it into five groups at time t and
location x: a healthy compartment, S(t, x), three infected compartments (dependent on
CD4+ T cell count) with ART treatment, I1(t, x), I2(t, x), I3(t, x), and a susceptible group
under PrEP, P (t, x) (see Table 1). The meaning and symbols of the model parameters
and variables are summarized in Table 2. Since we mainly focus on the disease infected
among MSM in China.

Table 1. Biological meaning of variables in model (1.1)-(1.3)

Variables Description

S(x, t) Susceptible at time t and location x
P (x, t) Individuals under PrEP treatment at t and location x
I1(x, t) Infected compartment with CD4+ T cell count> 500
I2(x, t) Infected compartment with CD4+ T cell count 350− 500
I3(x, t) Infected compartment with CD4+ T cell count< 350

Table 2. Description of parameters in model (1.1)-(1.3)

Parameters Description Mean value
(year−1)

Sources

Λ(·) Recruitment rate of susceptible 830,000 [44]
β1(·) Infection rate of for I1(x, t) – –
β2(·) Infection rate of for I2(x, t) – –
β3(·) Infection rate of for I3(x, t) – –
µ(·) Natural death of individuals 0.0246 [45]
d(·) The rate of death-related AIDS 0.7114 [45]
α1(·) Transfer rate of I1(x, t) 0.33 [9]
α2(·) Transfer rate of I2(x, t) 0.34 [9]
η2(·) The ART failure rate of I2(x, t) 0.57 [9]
η3(·) The ART failure rate of I3(x, t) 0.32 [9]
r(·) Rate of individuals under PrEP treatment 0.2 [47]
θ0(·) Diffusion of susceptible 0.08 [23]
θ1(·) Diffusion of I1(x, t) 0.02 [23]
θ2(·) Diffusion of I2(x, t) 0.01 [23]
θ3(·) Diffusion of I3(x, t) 0.03 [23]
θ4(·) Diffusion of P (x, t) 0.1 Estimate

We first set b = minx∈Ω̄ b(·) and barb = maxx∈Ω̄ b(·), where b(·) = Λ(·), βi(·), µ(·), d(·),
α1(·), α2(·), r(·), η2(·), η3(·).
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2 Preliminaries

In this section, we are devoted to studying the well-posedness of system (1.1)-(1.3). More-
over, the existence of the global attractor of system (1.1)-(1.3) can be also established.

Consider the system as follows
∂w

∂ϑ
= ∇ (A (x)∇w)−B(x)w + F (x), t > 0, x ∈ Ω,

∂w

∂ϑ
= 0, x ∈ ∂Ω,

(2.4)

where

w =

(
S(·, t)
P (·, t)

)
,A (·) =

(
θ0(·) 0

0 θ4(·)

)
, F =

(
Λ(·)

0

)
,B(·) =

(
µ(·) + r(·) 0
−r(·) µ(·)

)
,

Using the similar methods in Lemma 1 in [30] , one has the following lemma

Lemma 2.1. System (2.4) has a globally asymptotically stable positive steady state w∗(x) =

(S∗(x), P ∗(x))T in C
(
Ω̄,R

)
. Moreover, w∗ =

(
Λ
µ+r ,

rΛ
µ(µ+r)

)T
if Λ, r, and µ are all posi-

tive constants.

Set X = C
(
Ω̄,R5

)
equip with the supermum norm || · ||X, X+ = C

(
Ω̄,R5

+

)
. Then

(X,X+) is an ordered Banach space. Define yj(t) : C
(
Ω̄,R

)
→ C

(
Ω̄,R

)
(j = 0, 1, 2, 3, 4)

as C0 semigroups with respect to ∇ (θ(x)∇)−mj(·) with the Neumann boundary condi-
tions, where m0(·) = µ(·) + r(·),m1(·) = µ(·) + α1(·),m2(·) = µ(·) + α2(·) + η2(·),m3(·) =
µ(·) + d(·) + η3(·),m4(·) = µ(·). Then we have

(yj(t)ϕ) (x) =

∫
Ω
Gj(x, t, a)ϕ(a)da, t > 0, φ ∈ C

(
Ω̄,R

)
,

where Gj(x, t, a) is the Green function with respect to ∇ (θ(x)∇)−mj(·), j = 0, 1, 2, 3, 4.
Based on the conclusion in [31], it is obvious that yj(t) (j = 0, 1, 2, 3, 4) is strongly positive
and compact for all t > 0. Then there admits an Q > 0 such that ||yi(t)|| 6 Qeεjt for
each t > 0. Here εj < 0 is the principal eigenvalue of ∇ (θ(x)∇)−mj(·) with the no-flux
condition.

Define Z = (Z0, Z1, Z2, Z3, Z4)T : X+ → X by

Z0(ψ)(·) =Λ(x)− (β1(·)ψ1(·) + β2(·)ψ2(·) + β3(·)ψ3(·))ψ0(·),
Z1(ψ)(·) = (β1(·)ψ1(·) + β2(·)ψ2(·) + β3(·)ψ3(·))ψ0(·) + η2(·)ψ2(·),
Z2(ψ)(·) =α1(·)ψ1(·) + η3(·)ψ3(·),
Z3(ψ)(·) =α2(·)ψ2(·),
Z4(ψ)(·) =r(·)ψ0(·),

where ψ = (ψ0, ψ1, ψ2, ψ3, ψ4)T ∈ X+. Then we can rewrite system (1.1)-(1.3) as follows

B(t) = B∗(t)ψ +

∫ t

0
B∗(t− s)Z(B(s))ds, (2.5)

whereB(t) = (S(t), E(t), I1(t), I2(t), I3(t), P (t))T , B∗(t) = diag(y0(t), y1(t), y2(t), y3(t), y4(t)).
Thus, similar with the result of Corollary 4 in [32], we have the following lemma
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Lemma 2.2. For system (1.1)-(1.3) with initial value ψ ∈ X+, it has a unique mild
solution B(t, ψ) ∈ X+ on [0, σ∞), σ∞ 6 +∞. Furthermore, the solution is a classical
solution.

2.1 Well-posedness and global attractor of system (1.1)-(1.3)

Theorem 2.3. For system (1.1)-(1.3) with initial value ψ ∈ X+, it admits a unique
solution B(x, t, ψ) ∈ X+ for t ≥ 0, and the semi-flow of solution Ψ(t) = B(t, ·, ψ) : X+ →
X+ admits a global attractor.

Proof. We complete the proof by the following two steps.

Step 1: The uniqueness, existence, and positivity of the solutions can be obtained from
Lemma 2.2. Assume σ∞ < +∞, ||B(t, x, ψ)|| → +∞(t → +∞) (see Theorem 2 in [32]).
It follows from S(x, t) equation of system (1.1) that

∂S(x, t)

∂t
6 ∇ (θ(x)∇S(x, t)) + Λ̄− (µ+ r)S(x, t), x ∈ Ω, t ∈ [0, σ∞). (2.6)

From Lemma 2.1, we obtain that there admits M1 > 0 such that S(x, t) 6M1, x ∈ Ω̄, t ∈
[0, σ∞). Next, we consider the following system

∂ω1

∂t
= ∇ (θ1(x)∇ω1) +M1

3∑
i=1

β̄iωi + η̄2ω2 − (µ+ α1)ω1, x ∈ Ω, t > 0,

∂ω2

∂t
= ∇ (θ2(x)∇ω2) + ᾱ1ω1 − (α2 + η

2
+ µ̄)ω2 + η̄3ω3, x ∈ Ω, t > 0,

∂ω3

∂t
= ∇ (θ3(x)∇ω3) + ᾱ2ω2 − (d+ η

3
+ µ)ω3, x ∈ Ω, t > 0,

∂ω4

∂t
= ∇ (θ4(x)∇ω4) + r̄M1 − µω4, x ∈ Ω, t > 0,

∂ω1

ϑ
=
∂ω2

ϑ
=
∂ω3

ϑ
=
∂ω4

ϑ
= 0, x ∈ ∂Ω.

(2.7)

From Theorem 7.6.1 in [31], we know that the eigenvalue problem associated with system
(2.7) admits a principal eigenvalue λ with respect to a strongly positive eigenfunction
ϕ=(ϕ1,ϕ2,ϕ3,ϕ4). Hence, system (2.7) admits a solution δeλtϕ(t) for t > 0, where δ
satisfies

δφ = (ω1(0, x), ω2(0, x), ω3(0, x), ω4(0, x)) > (I10(x), I20(x), I30(x), I40(x), p0(x)) for x ∈ Ω̄.

Thus, we obtain that

(I1(x, t), I2(x, t), I3(x, t), P (x, t)) 6 δeλtϕ(x), t ∈ [0, σ∞), x ∈ Ω̄,

which indicates that there has a positive constant Q2, such that P (t, x) 6 Q2, Ii(t, x) 6
Q2, i = 1, 2, 3, x ∈ Ω̄, t ∈ [0, σ∞). If σ∞ < +∞, it leads to a contradiction. Accordingly,
the global existence of solution follows.
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Step 2: We further prove that the dissipativeness of the semiflow of solution. Applying
the standard comparison principle, formula (2.6) and Lemma 2.1, it can be verified that
there exist N0, t0 > 0 such that S(t, x) 6 N0, t > t0, x ∈ Ω̄.

Denote N (t) =
∫

Ω(S(t, x)+ I1(t, x)+ I2(t, x)+ I3(t, x)+P (t, x))dx, then we have that

∂N

∂t
6
∫

Ω
Λ(x)dx− (µ(x) + d(x))N (x), t > 0.

Thus, there admits N∗ > 0 and t1 > 0 such that N 6 N∗ for all t > t1. It follows from
Chapter 5 in [34] that G1(t, x, y) =

∑
n>1 e

σntφn(x)ϕn(y). Here σi is the eigenvalue for
∇ (θ1(x)∇) − m1(x) subjects to the no-flux condition associated with φn(x), and σ1 >
σ2 > σ3 > ... > σn > .... Since ϕn is uniformly bounded, then we know that G1(t, x, y) 6
$1
∑

n>1 e
σnt, t > 0, for some φ1 > 0.

Let ϑn (n=1,2,3...) be the eigenvalue of ∇ (θ1(x)∇) −m1 with the no-flux condition
and satisfy ϑ1 = −m1 > ϑ2 > ϑ3 > ... > ϑn > ..., we obtain that ϑi > τi for any i ∈ N+

from Theorem 2.4.7 in [35], For ϑn decreases like −n2, then we have

G1(t, x, y) 6 $1

∑
n>1

eϑnt 6 $eϑ1t = $e−m1t, t > 0,

for t > 0 and some $ > 0.

Set t3 = max{t0, t1}. From (2.5), we have

I1(t, x) = y1(t)I1(t3, x) +

∫ t

t3

y1(t− s)

(
S(s, x)

3∑
i=1

βi(x)Ii(s, x) +

3∑
k=2

ηk(x)Ik(s, x)

)
ds

6M1e
ε1(t−t3)||I1(t3, x)||+

∫ t

t3

∫
Ω

G1(t− s, x, y)

(
S(s, y)

3∑
i=1

βi(y)Ii(s, y) +

3∑
k=2

ηk(y)Ik(s, y)

)
dyds

6M1e
ε1(t−t3)||I1(t3, x)||+

∫ t

t3

$e−m1(t−s)
∫

Ω

(
N0

3∑
i=1

βi(y)Ii(s, y) +N∗
3∑
k=2

ηk(y)

)
dyds

6M1e
ε1(t−t3)||I1(t3, x)||+$N∗

(
N0

3∑
i=1

β̄i +

3∑
k=2

η̄k

)∫ t

t3

e−m1(t−s)ds

6 $N∗

(
N0

3∑
i=1

β̄i +

3∑
k=2

η̄k

)/
m1,

for t > t3, which implies lim sup
t→∞

||I1(t, x)|| 6 $N∗
(
N0

∑3
i=1 β̄i +

∑3
k=2 η̄k

)/
m1. Similarly, there

exists N1, N2, N3, N4 > 0 such that

lim sup
t→∞

||I2(t, x)|| 6 N2, lim sup
t→∞

||I3(t, x)|| 6 N3, lim sup
t→∞

||P (t, x)|| 6 N4.

Thus, the dissipativeness of the system follows. Accordingly, the compactness of Ψ(t)
holds for all t > 0 (Theorem 2.2.6 in [35]). Hence, the existence of the global attractor of
Ψ(t) follows (Theorem 3.4.8 in [36]).
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3 The basic reproduction ratio R0 and the dynamics of disease-
free steady state E0

In fact, Lemma 2.1 implies that system (1.1)-(1.3) always has a disease-free steady state

E0 = (S0(x), 0, 0, 0, P 0(x)), where
(
S0(x), P 0(x)

)T
= w∗(x).

The linearized system (1.1) around E0 is given by

∂q1

∂t
= ∇ (θ1(x)∇q1) + S0

3∑
i=1

βi(x)qi + η2(x)q2 − (µ(x) + α1(x))q1, t > 0, x ∈ Ω,

∂q2

∂t
= ∇ (θ2(x)∇q2) + α1(x)q1 − (α2(x) + η2(x) + µ(x))q2 + η3(x)q3, t > 0, x ∈ Ω,

∂q3

∂t
= ∇ (θ3(x)∇q3) + α2(x)q2 − (d(x) + η3(x) + µ(x))q3, t > 0, x ∈ Ω,

∂q1

ϑ
=
∂q2

ϑ
=
∂q3

ϑ
= 0, x ∈ ∂Ω.

Set (q1, q2, q3) = eλt(ψ1(x), ψ2(x), ψ3(x)). Then we can rewrite the system as
λψ1 = ∇ (θ1(x)∇ψ1) + S0

3∑
i=1

βi(x)ψi + η2(x)ψ2 − (µ(x) + α1(x))ψ1, x ∈ Ω,

λψ2 = ∇ (θ2(x)∇ψ2) + α1(x)ψ1 − (α2(x) + η2(x) + µ(x))ψ2 + η3(x)ψ3, x ∈ Ω,

λψ3 = ∇ (θ3(x)∇ψ3) + α2ψ2 − (d(x) + η3(x) + µ(x))ψ3, x ∈ Ω.

(3.8)

It follows from Theorem 7.6.1 in [31] that system (3.8) has a unique principle eigenvalue
λ0(S0) with a strongly positive eigenfunction (ψ1(x), ψ2(x), ψ3(x)).

Define Φ(t) : C(Ω̄,R3)→ C(Ω̄,R3) as the solution semigroup of the following system

∂q1

∂t
= ∇ (θ1(x)∇q1) + η2(x)q2 − (µ(x) + α1(x))q1, t > 0, x ∈ Ω,

∂q2

∂t
= ∇ (θ2(x)∇q2) + α1(x)q1 − (α2(x) + η2(x) + µ(x))q2 + η3(x)q3, t > 0, x ∈ Ω,

∂q3

∂t
= ∇ (θ3(x)∇q3) + α2(x)q2 − (d(x) + η3(x) + µ(x))q3, t > 0, x ∈ Ω,

∂q1

ϑ
=
∂q2

ϑ
=
∂q3

ϑ
= 0, x ∈ ∂Ω,

and set

H(x) =

 β1(x)S0 β2(x)S0 β3(x)S0

0 0 0
0 0 0

 .

Denote the density of initial value as ψ = (ψ1(x), ψ2(x), ψ3(x)). Thus, Φ(t)ψ is the density
of those HIV infected individuals as time goes by. Accordingly, the density of total new
HIV infective individuals is L (ψ)(x) =

∫∞
0 H(x)Φ(t)ψdt. Thus, the basic reproduction

number is obtained R0 = ρ (L ) by the next generation operator.

From [37], we have the lemma as follows
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Lemma 3.1. λ0 has the same sign as R0− 1 and E0 is stable when R0 < 1, otherwise, it
is unstable.

Theorem 3.2. The disease-free steady state E0 of system (1.1)-(1.3) is globally asymp-
totically stable (g.a.s) when R0 < 1.

Proof. From lemma 3.1, we can verify that there admits a σ > 0 such that λ0(S0 +σ) < 0
and λ0(P 0 + σ) < 0. From system (1.1), we can obatin that

∂S

∂t
6 ∇ (θ0(x)∇S) + Λ(x)− (µ(x) + r(x))S, t > 0, x ∈ Ω,

∂P

∂t
6 ∇ (θ4(x)∇P ) + r(x)(S0 + σ)− µ(x)P, t > 0, x ∈ Ω,

which indicates S(t, x) 6 S0 + σ and P (t, x) 6 P 0 + σ for all t > t1 > 0 and x ∈ Ω̄. Thus,
we obtain

∂I1

∂t
6 ∇ (θ1(x)∇I1) + (S0 + σ)

3∑
i=1

βi(x)Ii + η2(x)I2 − (µ(x) + α1(x))I1, t > t1, x ∈ Ω,

∂I2

∂t
6 ∇ (θ2(x)∇I2) + α1(x)I1 − (α2(x) + η2(x) + µ(x))I2 + η3(x)I3, t > t1, x ∈ Ω,

∂I3

∂t
6 ∇ (θ3(x)∇I3) + α2(x)I2 − (d(x) + η3(x) + µ(x))I3, t > t1, x ∈ Ω.

Assume that ε (ϕ̄1(x), ϕ̄2(x), ϕ̄3(x)) > (I1(t1, x), I2(t1, x), I3(t1, x)), where (ϕ̄1(x), ϕ̄2(x),
ϕ̄3(x)) is the eigenfunction associated with the principle eigenvalue λ0(S0 +σ) > 0. Then,
we get

(I1(t, x), I2(t, x), I3(t, x)) 6 ε (ϕ̄1(x), ϕ̄2(x), ϕ̄3(x)) eλ0(S0+σ)(t−t1).

Hence, limt→∞(I1(t, x), I2(t, x), I3(t, x)) = 0, S(t, x) and P (t, x) are asymptotic to Eq.
(2.4). Moreover, it is easy to obtain that limt→∞ S(t, x) = S0, limt→∞ P (t, x) = P 0. The
proof is completed.

In the next part, we further show that the uniform persistence of the disease. For this
purpose, we first give the following denotations.

Let

X0 =
{
ϕ = (S, I1, I2, I3, P ) ∈ X+; Ii(·) 6= 0, i = 1, 2, 3

}
,

∂X0 =
{

(S, I1, I2, I3, P ) ∈ X+ : I1(·) ≡ 0 or I2(·) ≡ 0 or I3(·) ≡ 0
}
.

Then, it follows from Hopf boundary lemma [38] and the maximum principle that X0 is
positively invariant of Φ(t). Let M∂ = {ϕ ∈ ∂X0, ∀t > 0}, ω(ϕ) be the omega limit set
of γ+(ϕ) = {Φ(t)(ϕ) : t > 0}.

Lemma 3.3. ∪ϕ∈M∂
ω(ϕ) = E0.

Proof. Note that φ ∈M∂ , it follows that I1(x, t, ϕ) ≡ 0 or I2(x, t, ϕ) ≡ 0 or I3(x, t, ϕ) ≡
0. Assume that I3(x, t, ϕ) ≡ 0, it follows from the forth equation of system (1.1) that
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I2(t, x, ϕ) ≡ 0, and then we obtain that I1(t, x, ϕ) ≡ 0 from the third equation of system
(1.1). Therefore, S(t, x, ϕ)→ S0, P (t, x, ϕ)→ P 0 as t→∞. If there admits a t0 > 0 such
that I3(t, x, ϕ) 6= 0, we can verify that I3(t, x, ϕ) > 0 for all t > t0, that is, I1(t, x, ϕ) ≡ 0
or I2(t, x, ϕ) ≡ 0 for all t > t0. If I1(t, x, ϕ) ≡ 0, then it follows from the second equation
of system (1.1) and positivity of Ii(t, x, ϕ), i = 1, 2, 3 that I3(t, x, ϕ) → 0 as t → ∞. If
I2(t, x, ϕ) ≡ 0, then it follows from system (1.1) that I3(t, x, ϕ) → 0 as t → ∞. Then
S(t, x, ϕ), P (t, x, ϕ) are asymptotic to Eq. (2.4). Thus, S(t, x, ϕ) → S0 and P (t, x, ϕ) →
P 0 uniformly for x ∈ Ω̄ as t→∞.

Lemma 3.4. lim sup
t→∞

||Φ(t)(ϕ)− E0|| > ς, ϕ ∈ X0.

Proof. We proof lemma 3.4 by contradiction. Since R0 > 1, then there admits a σ > 0 such
that λ0(S0−ς) > 0. Suppose that there exists ϕ0 ∈ X0 such that lim sup

t→∞
||Φ(t)(ϕ0)−E0|| >

ς. Then, we have S(t, x, ϕ0) > S0 − ς, ∀t > t1. Hence, we can obtain that

∂I1

∂t
> ∇ (θ1(x)∇I1) + (S0 − ς)

3∑
i=1

βi(x)Ii + η2(x)I2 − (µ(x) + α1(x))I1, t > t1, x ∈ Ω,

∂I2

∂t
> ∇ (θ2(x)∇I2) + α1(x)I1 − (α2(x) + η2(x) + µ(x))I2 + η3(x)I3, t > t1, x ∈ Ω,

∂I3

∂t
> ∇ (θ3(x)∇I3) + α2(x)I2 − (d(x) + η3(x) + µ(x))I3, t > t1, x ∈ Ω,

Denote the principle eigenvalue λ0(S0−ς) > 0 as (ϕ̄1(x), ϕ̄2(x), ϕ̄3(x)). Suppose α > 0 and
satisfies α(ϕ̄1(x), ϕ̄2(x), ϕ̄3(x)) 6 (I1(t1, x), I2(t1, x), I3(t1, x)). Then, (I1(x, t), I2(x, t), I3(x, t))
> α(ϕ̄1(x), ϕ̄2(x), ϕ̄3(x))eλ0(S0−ς)(t−t1), t > t1, which implies that lim

t→∞
(I1(t, x), I2(t, x), I3(t, x))

= (+∞,+∞,+∞), it leads to a contradiction.

Theorem 3.5. If R0 > 1, then there admits a ς∗ > 0 such that the solution (S(x, t),I1(x, t),
I2(x, t),I3(x, t),P (x, t)) of system (1.1)-(1.3) with S0(x) 6= 0,I10(x) 6= 0,I20(x) 6= 0,I30(x) 6=
0, and P0(x) 6= 0 satisfies

lim inf
t→∞

S(t, x) > ς∗, lim inf
t→∞

P (t, x) > ς∗, lim inf
t→∞

Ii(t, x) > ς∗, x ∈ Ω̄, i = 1, 2, 3.

Further, system (1.1)-(1.3) admits at least one endemic steady state.

Proof. Define F : X+ → [0,∞] by

F (ϕ) = min

{
min
x∈Ω̄

ϕ1(x),min
x∈Ω̄

ϕ2(x),min
x∈Ω̄

ϕ3(x)

}
, ϕ ∈ X+.

It is obvious that F−1(0,∞) ⊆ X0. Note that F (ϕ) = 0 and ϕ ∈ X0 or F (ϕ) > 0.
Thus, F (Ψ(t), ϕ) > 0. Therefore, F is a generalized distance function with respect to
Ψ(t) : X+ → X+. By the above lemmas 3.3-3.4, it indicated that any forward orbit of Ψ(t)
in M∂ converges to E0, and W s(E0) ∩X0 = ∅. Furthermore, E0 is an isolated invariant
set in X+ and no set of {E0} from a cycle in ∂X0. From Theorem 3 in [39] we can verify
that there exists a ς1 > 0 such that

lim inf
t→∞

Ii(t, x, ϕ) > ς1,∀ φ ∈ X0, i = 1, 2, 3.
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By similar discussions as those in Theorem 2.3, we obtain that there exists positive con-
stants K > 0 and t2 > 0 such that Ii(x, t, ϕ) 6 K, t > t2, ∀ x ∈ Ω̄, i = 1, 2, 3. Then

S(x, t) and P (x, t) satisfies ∂S
∂t > ∇ (θ0(x)∇S) + Λ −

(
µ̄+K

∑3
i=1 β̄i

)
S, t > t2, x ∈ Ω,

which implies lim inf
t→∞

S(t, x, φ) > ς2 := Λ/(µ̄+ (β̄1 + β̄2 + β̄3)K). Hence

∂P

∂t
> ∇ (θ0(x)∇P ) + rσ2 − µ̄P, t > t2, x ∈ Ω,

which implies lim inf
t→∞

P (t, x, ϕ) > ς3 := rσ2/µ̄. By the comparison principle, Lemmas 2.1,

3.3,3.4, let ς∗ = min{ς1, ς2, ς3}, then the uniform persistence follows.

Finally, we show system (1.1)-(1.3) admits at least one positive steady state. From
Theorem 3 in [22], it follows that system (1.1)-(1.3) has at least one steady state in X0.
In next, we suppose (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) is a steady state in X0. Then ϕk 6≡ 0 (k = 1, 2, 3).
Applying the Hopf lemma and maximum principle, we can obtain that ϕk > 0, ϕ0 > 0 (or
ϕ0 ≡ 0), and ϕ4 > 0 (or ϕ4 ≡ 0). Suppose ϕ0 ≡ 0, then we can obtain that ϕk ≡ 0 from
the first steady state system of system (1.1), which leads to a contradiction. If ϕ4 ≡ 0, then
ϕ0 ≡ 0, by the last equation of system (1.1), which implies that ϕk ≡ 0, a contradiction
too. Accordingly, the positivity of (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) holds. This completes the proof.

4 Optimal control of model (1.1)-(1.3)

In this section, we study the optimal problems of the following reaction-diffusion HIV
model with PrEP and ART treatments. In the rest of the part, we consider the positive
constant diffusion coefficients, namely θj(x) = θj , j = 0, 1, 2, 3, 4. Furthermore, let Λ(x) =
Λ, r(x) = r, ηk(x) = ηk, k = 2, 3 as positive constants. We give the following controlled
system



∂S(x, t)

∂t
=θ0∆S(x, t) + Λ− (β1(x)I1(x, t) + β2(x)I2(x, t) + β3(x)I3(x, t))S(x, t)

− (µ(x) + ru1(x, t))S(x, t),

∂I1(x, t)

∂t
=θ1∆I1(x, t) + (β1(x)I1(x, t) + β2(x)I2(x, t) + β3(x)I3(x, t))S(x, t)

+ η2u2(x, t)I2(x, t)− (µ(x) + α1(x))I1(x, t),

∂I2(x, t)

∂t
=θ2∆I2(x, t) + α1(x)I1(x, t)− (α2(x) + η2u2(x, t) + µ(x))I2(x, t)

+ η3u3(x, t)I3(x, t),

∂I3(x, t)

∂t
=θ3∆I3(x, t) + α2(x)I2(x, t)− (η3u3(x, t) + µ(x) + d(x))I3(x, t),

∂P (x, t)

∂t
=θ4∆P (x, t) + α2(x)I2(x, t) + ru1(x, t)S(x, t)− µ(x)P (x, t),

(4.9)
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with (x, t) ∈ Ω×ΩT = (0, τ). The corresponding Neumann boundary and initial conditions
as follows

∂S(x, t)

∂ϑ
=
∂I1(x, t)

∂ϑ
=
∂I2(x, t)

∂ϑ
=
∂I3(x, t)

∂ϑ
=
∂P (x, t)

∂ϑ
= 0, (t, x) ∈ (0, τ)× ∂Ω,

S(0, x) = S0(x), P (0, x) = P0(x), Ii(0, x) = Ii0(x), x ∈ Ω.
(4.10)

We let the admissible control set as follows

U =
{
u = (u1, u2, u3) ∈

(
L2 (ΩT )

)3
, 0 6 ui 6 1, a.e. on ΩT , i = 1, 2, 3

}
. (4.11)

The optimal control strategy is formulated to minimize the population of susceptible and
HIV infected people with different stages and minimize the cost of PrEP and ART. For
this purpose, we structure the objective functional as follows

J (S, I1, I2, I3, u) =

∫
ΩT

[
c0(x, t)S(x, t) +

3∑
i=1

ci(x, t)Ii(x, t) +

3∑
i=1

ωi(x, t)ui(x, t)

]
dxdt

+

∫
Ω

[
ζ0(x)S(τ, x) +

3∑
i=1

ζi(x)Ii(τ, x) +

3∑
i=1

ρi(x)ui(τ, x)

]
dx,

(4.12)
where the positive functions c0, c1, c2, c3 ∈ L∞ (ΩT ) and ωi ∈ L∞ (ΩT ) , i = 1, 2, 3 are
weight functions; ζ0, ζ1, ζ2, ζ3 ∈ L∞ (ΩT ) and ρi ∈ L∞ (ΩT ) , i = 1, 2, 3 are the control
measures of the cost of HIV intervention among MSM corresponding to the control for
PrEP and ART treatments in (t, x) ∈ ΩT . (S, I1, I2, I3, P ) is the solution for state system
(4.9)-(4.10) with the optimal control u. Thus, the purpose of the optimal control strategy
is to minimize the control cost functional (4.12) subjects to the state system (4.9)-(4.10),
i.e., to find an optimal control u∗ ∈ U satisfies

J (S, I1, I2, I3, u
∗) = inf

u∈U
J (S, I1, I2, I3, u). (4.13)

4.1 Preliminaries and basic assumptions

Define Π =
(
L2 (Ω)

)5
as Hilbert space. Suppose that A : D(A) ⊆ Π → Π is a linear

operator and given by

A = diag(θ0∆, θ1∆, θ2∆, θ3∆, θ4∆) (4.14)

with

D(A) ,

{
(S, I1, I2, I3) ∈

(
Π2 (Ω)

)5
,
∂S(x, t)

∂ϑ
=
∂I1(x, t)

∂ϑ
=
∂I2(x, t)

∂ϑ
=
∂I3(x, t)

∂ϑ
=
∂P (x, t)

∂ϑ
= 0

}
.

(4.15)
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Denote byQ = (S, I1, I2, I3, P ), Θ(t, Q) = (Θ0(t, Q),Θ1(t, Q),Θ2(t, Q),Θ3(t, Q),Θ4(t, Q))
with

Θ0(t, Q) =Λ− (β1(x)I1(x, t) + β2(x)I2(x, t) + β3(x)I3(x, t))S(x, t)

− (µ(x) + r(x)u1(x, t))S(x, t),

Θ1(t, Q) = (β1(x)I1(x, t) + β2(x)I2(x, t) + β3(x)I3(x, t))S(x, t) + η2u2(x, t)I2(x, t)

− (µ(x) + α1(x))I1(x, t),

Θ2(t, Q) =α1(x)I1(x, t)− (α2(x) + η2u2(x, t) + µ(x))I2(x, t) + η3u3(x, t)I3(x, t),

Θ3(t, Q) =α2(x)I2(x, t)− (η3u3(x, t) + µ(x) + d(x))I3(x, t),

Θ4(t, Q) =α2(x)I2(x, t) + ru1(x, t)S(x, t)− µ(x)P (x, t),
(4.16)

where Q = (S, I1, I2, I3, P ) ∈ D(Θ) , {Q ∈ Π, Θ(t, Q) ∈ Π, ∀ t ∈ [0, τ ]}. Then system
(4.9)-(4.10) can be rewritten as

∂Q

∂t
= AQ+ Θ(t, Q), t ∈ [0, τ ],

Q(0) = Q0.
(4.17)

To prove system (4.17) admits a unique strong solution, we introduce the results from
literature [40] as follows

Theorem 4.1. Denote a real Banach space by F, A : D(A ⊆ F → F a C0-semigroup
infinitesimal generator of continuous {S̃(t), t > 0} on F. If Q0 ∈ F, then system (4.17)
has a unique mild solution Q ∈ ([0, τ ];F) as follows

Q(t) = S̃(t)Q0 +

∫ t

0
S̃(t− s)Θ(s,Q(s))ds, t ∈ [0, τ ]. (4.18)

Moreover, if F is a Hilbert space, A is dissipative and self-adjoint on F, then the mild
solution satisfy with Q ∈W 1,2(0, τ ;F) ∩ L2(0, τ ; D(A)).

Assumption 4.2. Suppose that S0(x), Ii0(x) ∈ Π2(Ω), and ∂S0(x)
∂ϑ = ∂P0(x)

∂ϑ = ∂Ii0(x)
∂ϑ =

0, x ∈ ∂Ω, i = 1, 2, 3.

By the similar arguments as those in [26], we have the following the existence and
uniqueness theorem of the solution in state system (4.9)-(4.10). For more details, the
reader is referred to Theorem 3.1 in [26].

Theorem 4.3. For bounded domain Ω in Rk, k 6 4, with the boundary of class C2+ξ, ξ >
0. Suppose that Assumption 4.2 holds. Then for any optimal control pairs u = (u1, u2, u3) ∈
U , there admits a unique globally positive strong solution Q for state system (4.9)-(4.10),
satisfying Q = (S, I1, I2, I3, P ) ∈W 1,2(0, τ ; Π) and

S(x, t) ∈ L2(0, τ ; Π2(Ω)) ∩ L∞(0, τ ; Π1(Ω)) ∩ L∞(ΩT ),

P (x, t) ∈ L2(0, τ ; Π2(Ω)) ∩ L∞(0, τ ; Π1(Ω))∩ ∈ L∞(ΩT ) ∩ L∞(ΩT ),

Ii(x, t) ∈ L∞(0, τ ; Π1(Ω)) ∩ L2(0, τ ; Π2(Ω)), i = 1, 2, 3.

(4.19)
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Furthermore, there admits a % > 0 such that

||∂S/∂t||L2(ΩT ) + ||S||L2(0,τ ;Π2(Ω)) + ||S||L∞(ΩT ) 6 %,

||∂P/∂t||L2(ΩT ) + ||P ||L2(0,τ ;Π2(Ω)) + ||P ||L∞(ΩT ) 6 %,

||∂Ii/∂t||L2(ΩT ) + ||Ii||L2(0,τ ;Π2(Ω)) + ||Ii||L∞(ΩT ) 6 %, i = 1, 2, 3,

||∂S/∂t||Π1(ΩT ) 6 %, ||∂P/∂t||Π1(ΩT ) 6 %, ||∂Ii/∂t||Π1(ΩT ) 6 %, ∀ t ∈ [0, τ ], i = 1, 2, 3.

(4.20)

4.2 The existence of the optimal control pair of state system (4.9)-(4.10)

Theorem 4.4. If Assumption 4.2 holds, then there admits an optimal control (S∗, I∗1 , I∗2 ,
I∗3 , P ∗, u∗1, u∗2, u∗3) of system (4.9)-(4.10).

Proof. Let

G (S, I1, I2, I3, u)(x, t) = c0(x, t)S(x, t) +
3∑
i=1

ci(x, t)Ii(x, t) +
3∑
i=1

ωi(x, t)ui(x, t),

K (S, I1, I2, I3, u)(x, T ) = ζ0(x)S(x, τ) +

3∑
i=1

ζi(x)Ii(x, τ) +

3∑
i=1

ρi(x)ui(x, τ).

Then

J (S, I1, I2, I3, u) =

∫ τ

0

∫
Ω

G (S, I1, I2, I3, u)(t, x)dxdt+

∫
Ω

K (S, I1, I2, I3, u)(τ, x)dx.

It follows from (4.19) in Theorem 4.3 that the cost functional is bounded blew. Ac-
cordingly, there exists a minimizing sequence {um1 , um2 , um3 }m>1 and a positive constant
a1 = inf

u∈U
J (S, I1, I2, I3, u) such that

a1 = lim
m→∞

J (Sm, Im1 , I
m
2 , I

m
3 , u

m) = inf
u∈U

J (S, I1, I2, I3, u), (4.21)
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where (Sm, Im1 , I
m
2 , I

m
3 ) is the solution of the system as follows



∂Sm(x, t)

∂t
=θ0∆Sm(x, t) + Λ− (β1(x)Im1 (x, t) + β2(x)Im2 (x, t) + β3(x)Im3 (x, t))Sm(x, t)

− (µ(x) + rum1 (x, t))Sm(x, t),

∂Im1 (x, t)

∂t
=θ1∆Im1 (x, t) + (β1(x)Im1 (x, t) + β2(x)Im2 (x, t) + β3(x)Im3 (x, t))Sm(x, t)

+ η2u2(x, t)Im2 (x, t)− (µ(x) + α1(x))Im1 (x, t),

∂Im2 (x, t)

∂t
=θ2∆Im2 (x, t) + α1(x)Im1 (x, t)− (α2(x) + η2u

m
2 (x, t) + µ(x))Im2 (x, t)

+ η3u
m
3 (x, t)Im3 (x, t),

∂Im3 (x, t)

∂t
=θ3∆Im3 (x, t) + α2(x)Im2 (x, t)− (η3u

m
3 (x, t) + µ(x) + d(x))Im3 (x, t),

∂Pm(x, t)

∂t
=θ4∆Pm(x, t) + α2(x)Im2 (x, t) + rum1 (x, t)Sm(x, t)− µ(x)Pm(x, t),

∂Sm(x, t)

∂ϑ
=
∂Im1 (x, t)

∂ϑ
=
∂Im2 (x, t)

∂ϑ
=
∂Im3 (x, t)

∂ϑ
= 0,

Sm(x, 0) =Sm0 (x) > 0, Pm(x, 0) = Pm0 (x) > 0, Imi (x, 0) = Imi0 (x) > 0, i = 1, 2, 3.
(4.22)

On basis of the result of Theorem 4.3, we can verify that Sm, Imi , P
m ∈W 1,2(0, τ ; Π), i =

1, 2, 3, which means that Sm, Pm, Imi ∈ C([0, τ ];L2(Ω)). Further, by (4.19), the uniformly
boundedness of Sm, Imi follows, i.e., there exists a independent of m positive constant $
such that

||Imi ||Π1(ΩT ) + ||∂Imi /∂t||L2(ΩT ) + ||Imi ||L2(0,τ ;Π2(Ω)) + ||Imi ||L∞(ΩT ) 6 $, ∀ t ∈ [0, τ ],

||Sm||Π1(ΩT ) + ||∂Sm/∂t||L2(ΩT ) + ||Sm||L2(0,τ ;Π2(Ω)) + ||Sm||L∞(ΩT ) 6 $, ∀ t ∈ [0, τ ],

||Pm||Π1(ΩT ) + ||∂Pm/∂t||L2(ΩT ) + ||Pm||L2(0,τ ;Π2(Ω)) + ||Pm||L∞(ΩT ) 6 $, ∀ t ∈ [0, τ ].

(4.23)
Thus, we have the equicontinuity of the family {(Sm(t), Pm(t), Im1 (t), Im2 (t), Im3 (t))} from
(4.23). Since Π1(Ω) is compactly embedded into L2(Ω), it follows that {(Sm(t),Pm(t),Im1 (t),
Im2 (t),Im3 (t),)}m>1 is relatively compact in (L2(Ω))5 and ||Sm||L2(Ω) 6 $,||Pm||L2(Ω) 6
$,||Imi ||L2(Ω) 6 $, ∀ t ∈ [0, τ ], i = 1, 2, 3. From Ascoli-Arzela Theorem [41], we obtain

there exists (S∗, P ∗, I∗1 , I
∗
2 , I
∗
3 ) ∈ (C[0, τ ] : L2(Ω))5 and a subsequence of {(Sm(t), Pm(t),

Im1 (t),Im2 (t),Im3 (t), )}m>1, still defined as itself, such that



lim
m→∞

sup
t∈[0,τ ]

||Sm(t)− S∗(t)||L2(Ω) = 0,

lim
m→∞

sup
t∈[0,τ ]

||Pm(t)− P ∗(t)||L2(Ω) = 0,

lim
m→∞

sup
t∈[0,τ ]

||Imi (t)− I∗i (t)||L2(Ω) = 0, i = 1, 2, 3.

(4.24)

Therefore, we can show that (S∗, I∗1 , I
∗
2 , I
∗
3 , P

∗) is an optimal control pair of (4.9)-(4.13) by
lettingm→∞ in system (4.22). From (4.23), it can be choose a {(Sm(t),Im1 (t),Im2 (t),Im3 (t),Pm(t))}
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such that 

∂Sm

∂t
→ ∂S∗

∂t
, weakly in L2(0, τ ;L2(Ω)),

∂Pm

∂t
→ ∂P ∗

∂t
, weakly in L2(0, τ ;L2(Ω)),

∂Imi
∂t
→ ∂I∗i

∂t
, weakly in L2(0, τ ;L2(Ω)), i = 1, 2, 3.

(4.25)


Sm → S∗, weakly in L∞(0, τ ; Π1(Ω)),

Pm → P ∗, weakly in L∞(0, τ ; Π1(Ω)),

Imi → I∗i , weakly in L∞(0, τ ; Π1(Ω)), i = 1, 2, 3.

(4.26)


∆Sm → ∆S∗, weakly in L2(0, τ ;L2(Ω)),

∆Pm → ∆P ∗, weakly in L2(0, τ ;L2(Ω)),

∆Imi → ∆I∗i , weakly in L2(0, τ ;L2(Ω)), i = 1, 2, 3.

(4.27)

Furthermore, note that umi , i = 1, 2, 3 are all bounded in L2(ΩT ), there admits an optimal
control pairs u∗i and subsequence of {umi ;m > 1, i = 1, 2, 3}, still defined as themselves,
such that

umi → u∗i , weakly in L
2(ΩT ), i = 1, 2, 3. (4.28)

Considering U is convex and closed set in L2(ΩT ), which implies it is weakly closed.
Therefore, we can obtain that u∗i ∈ U from (4.28). Hence, from (4.20), (4.26), (4.28), we
can prove that

SnImi → S∗I∗i , in L
2(0, τ ;L2(Ω)), i = 1, 2, 3, (4.29)

and

Smum1 → S∗u∗1, I
m
2 u

m
2 → I∗2u

∗
2, I

m
3 u

m
3 → I∗3u

∗
3, weakly in L

2(0, τ ;L2(Ω)). (4.30)

Noting that SmImi −S∗I∗i = Sm(Imi − I∗i ) + I∗i (Sm−S∗), um1 Sm−u∗1S∗ = um1 (Sm−S∗) +
S∗(um1 − u∗1) and Imk u

m
k − I∗ku∗k = umk (Imk − I∗k) + I∗k(umk − u∗k), k = 2, 3 and employing the

Aubin compactness theorem (Theorem 3.1.1 in [42]), (4.25)-(4.26), we can show that Sn

and Ini strongly converges to S∗ and I∗i in L2(ΩT ), respectively. Moreover, on the basis of
the uniformly boundedness of Sm, Pm, Imi in L∞(Ω), we have (4.29)-(4.30). Hence, it is
obvious to see that (S∗, I∗1 , I

∗
2 , I
∗
3 , P

∗) is an optimal control pair of state system (4.9)-(4.13)
when m→ +∞ in system (4.22).
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4.3 The first order necessary condition for optimal control

In this subsection, the system which including the adjoint states of the state variables
given by

∂Ŝ

∂t
= −θ0∆Ŝ + (β1I

∗
1 + β2I

∗
2 + β3I

∗
3 + µ+ ru∗1)Ŝ − β1I

∗
1 Î1 − β2I

∗
2 Î2 − β3I

∗
3 Î3 + c0,

∂Î1

∂t
= −θ1∆Î1 + β1S

∗Ŝ − (β1I
∗
1 − µ− α1)Î1 − α2Î2 + c1,

∂Î2

∂t
= −θ2∆Î2 − α2Î3 + β2S

∗Ŝ − β2I
∗
1 Î1 − η2u

∗
2Î1 + η2u

∗
2Î2 + (α2 + µ)Î2 + c2,

∂Î3

∂t
= −θ3∆Î3 + β3S

∗Ŝ − η3u
∗
3Î2 + η3u

∗
3Î3 + (µ+ d)Î3 − β3S

∗Î1 + c3,

∂Ŝ

∂ϑ
=
∂Î1

∂ϑ
=
∂Î2

∂ϑ
=
∂Î3

∂ϑ
= 0, on (0, τ)× ∂Ω,

Ŝ(τ, x) = −ζ0, Îi(τ, x) = −ζi, in Ω, i = 1, 2, 3,
(4.31)

where (S∗, I∗1 , I
∗
2 , I
∗
3 , u
∗) is an optimal pair. Replacing the variable t with τ − t and setting

ς0(x, t) = Ŝ(x, τ − t), ςi(x, t) = Îi(x, τ − t), i = 1, 2, 3, then we can rewrite system (4.31)
as follows

∂ς0
∂t

= −θ0∆ς0 + (β1I
∗
1 + β2I

∗
2 + β3I

∗
3 + µ+ ru∗1)ς0 − β1I

∗
1 ς1 − β2I

∗
2 ς2 − β3I

∗
3 ς3 + c0,

∂ς1
∂t

= −θ1∆ς1 + β1S
∗ς0 − (β1I

∗
1 − µ− α1)ς1 − α1ς2 + c1,

∂ς2
∂t

= −θ2∆ς2 − α2ς3 + β2S
∗ς0 − β2I

∗
1 ς1 − η2u

∗
2ς1 + η2u

∗
2ς2 + (α2 + µ)ς2 + c2,

∂ς3
∂t

= −θ3∆ς3 + β3S
∗ς0 − η3u

∗
3ς2 + η3u

∗
3ς3 + (µ+ d)ς3 − β3S

∗ς1 + c3,

∂ς0
∂ϑ

=
∂ς1
∂ϑ

=
∂ς2
∂ϑ

=
∂ς3
∂ϑ

= 0, on (0, τ)× ∂Ω,

ς0(0, x) = −ζ0, ςi(0, x) = −ζi, in Ω, i = 1, 2, 3.
(4.32)

Using the similar methods in Theorem 4.3, we show the uniqueness and existence of the
solution for (4.32), then the well-posedness of system (4.31) follows. Besides, similar to
the proof of Theorem 4.3, we have

Lemma 4.5. Supposing the conditions for Theorem 4.3 hold, and (S∗, I∗1 , I
∗
2 , I
∗
3 , u
∗) is an

optimal control pair. Then system (4.32) has a unique strong positive solution (Ŝ, Î1, Î2, Î3)
such that Ŝ, Î1, Î2, Î3 ∈W 1,2(0, τ ; Π). Furthermore, Ŝ, Î1, Î2, Î3 ∈ L∞(ΩT )∩L2(0, τ ; Π2(Ω))∩
L∞(0, τ ; Π1(Ω)).

Lemma 4.6. Suppose that the conditions of Theorem 4.3 hold. For ũ ∈ L2(ΩT ) and a
positive κ, let uκi = u∗i + κũi ∈ U , i = 1, 2, 3. Then optimal control strategy problem
(4.9)-(4.13) with u = uκ admits a unique solution Qκ = (Sκ, Iκ1 , I

κ
2 , I

κ
3 , P

κ). Further,
||Qκ||L∞(Ω) is uniformly bounded in regard to κ in ΩT .
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Proof. Employing the similar methods mentioned in Theorem 4.3, the existence and
uniqueness of the positive strong solution immediately follow. To show ||Qκ||L∞(Ω) is
uniformly bounded, we introduce the system as follows

∂W(x, t)

∂t
= θ0∆W(x, t) + Λ, in ΩT ,

∂W(x, t)

∂ϑ
= 0, on (0, τ)× ∂Ω,

W(x, 0) = S0(x), in Ω.

(4.33)

Together system (4.33) with system (4.9)-(4.12) associated with u = uκ and using Gron-
wall’s inequality and comparison principle, yields

0 6 ||Sκ(x, t)||L∞(Ω) 6 ||W(x, t)||L∞(Ω) 6 $1 + Λτ, (t, x) ∈ ΩT ,

where $1 > 0 is a constant independent of κ. Thus, we know that ||Sκ||L∞(Ω) is uniformly
bounded with respect to κ in ΩT . Using similar method, we can obtain ||P κ||L∞(Ω), and
||Iκi ||L∞(Ω), i = 1, 2, 3 are all uniformly bounded in regard to κ in ΩT .

For further analysis, we assumed that (S∗, I∗1 , I
∗
2 , I
∗
3 , P

∗, u∗) is an optimal pair and
Qκ = (Sκ, Iκ1 , I

κ
2 , I

κ
3 , P

κ) is the solution of optimal control problem (4.9)-(4.13) subjects
to uκ denoted by in lemma 4.6. Let

Y κ
0 = lim

κ→0

Sκ − S∗

κ
, Y κ

4 = lim
κ→0

P κ − P ∗

κ
, Y κ

i = lim
κ→0

Iκi − I∗i
κ

, i = 1, 2, 3.

Then we obtain the following system

∂Y κ
0

∂t
= θ0∆Y κ

0 −
3∑
i=1

βi(I
κ
i Y

κ
0 + S∗Y κ

i )− r(u∗1Y κ
0 + Sκũ1)− µY κ

0 ,

∂Y κ
1

∂t
= θ1∆Y κ

1 +
3∑
i=1

βi(I
κ
i Y

κ
0 + S∗Y κ

i ) + η2(u∗2Y
κ

2 + Iκ2 ũ2)− (µ+ α1)Y κ
1 ,

∂Y κ
2

∂t
= θ2∆Y κ

2 + α1Y
κ

1 − (α2 + µ)Y κ
2 − η2(u∗2Y

κ
2 + Iκ2 ũ2) + η3(u∗3Y

κ
3 + Iκ3 ũ3),

∂Y κ
3

∂t
= θ3∆Y κ

3 + α2Y
κ

2 − (µ+ d)Y κ
3 − η3(u∗3Y

κ
3 + Iκ3 ũ3),

∂Y κ
4

∂t
= θ4∆Y κ

4 − µY κ
4 + r(u∗1Y

κ
0 + Sκũ1),

∂Y κ
j

∂ϑ
= 0, on (0, τ)× ∂Ω, j = 0, 1, 2, 3, 4,

Y κ
j (0, x) = 0, in Ω, j = 0, 1, 2, 3.

(4.34)

Lemma 4.7. If Theorem 4.3 conditions remain hold. The problem (4.34) has a unique
strong solution Y κ which satisfies Y κ = (Y κ

0 , Y
κ

1 , Y
κ

2 , Y
κ

3 , Y
κ

4 )T ∈ W 1,2(0, τ ; Π) and Y κ
i ∈

L2(0, τ ; Π2(Ω)) ∩ L∞(0, τ ; Π1(Ω)). Furthermore, it can be verified that Sκ → S∗, P κ →
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P ∗, Iκi → I∗i , in L2(ΩT ) and Y κ → Y , in L2(ΩT ) as κ→ 0. Here, Y = (Y0, Y1, Y2, Y3, Y4)T

is the solution of the system as follows

∂Y0

∂t
= θ0∆Y0 −

3∑
i=1

βi(I
∗
i Y0 + S∗Yi)− r(u∗1Y0 + S∗ũ1)− µY0,

∂Y1

∂t
= θ1∆Y1 +

3∑
i=1

βi(I
∗
i Y0 + S∗Yi) + η2(u∗2Y2 + I∗2 ũ2)− (µ+ α1)Y1,

∂Y2

∂t
= θ2∆Y2 + α1Y1 − (α2 + µ)Y2 − η2(u∗2Y2 + I∗2 ũ2) + η3(u∗3Y3 + I∗3 ũ3),

∂Y3

∂t
= θ3∆Y3 + α2Y2 − (µ+ d)Y3 − η3(u∗3Y3 + I∗3 ũ3),

∂Y4

∂t
= θ4∆Y4 − µY4 + r(u∗1Y0 + S∗ũ1),

∂Yj
∂ϑ

= 0, on (0, τ)× ∂Ω, j = 0, 1, 2, 3,

Yj(0, x) = 0, in Ω, j = 0, 1, 2, 3.

(4.35)

Proof. By the same methods in Theorem 4.3, we have that system (4.35) admits a strong
solution. In the next, we show that Y κ

j , j = 0, 1, 2, 3 are all bounded in L2(ΩT ) uniformly
in regard to κ and

lim
κ→0
||Sκ − S∗||L2(ΩT ) = 0, lim

κ→0
||Iκi − I∗i ||L2(ΩT ) = 0, i = 1, 2, 3. lim

κ→0
||P κ − P ∗||L2(ΩT ) = 0,

For this purpose, let

Uκ =


−rSκũ1

η2I
κ
2 ũ2

η3I
κ
3 ũ3 − η2I

κ
2 ũ2

−η3I
κ
3 ũ3rS

κũ1

 , U∗ =


−rS∗ũ1

η2I
∗
2 ũ2

η3I
∗
3 ũ3 − η2I

∗
2 ũ2

−η3I
∗
3 ũ3rS

∗ũ1

 , (4.36)

Tκ =


−
(∑3

i=1 βiI
κ
i + µ+ ru∗1

)
−β1S

∗ −β2S
∗ −β3S

∗ 0∑3
i=1 βiI

κ
i β1S

∗ − µ− α1 η2u
∗
2 0 0

0 α1 −(α2 + µ+ η2u
∗
2) η3u

∗
3 0

0 0 α2 −(µ+ d+ η3u
∗
3) 0

ru∗1 0 0 0 µ

 ,

(4.37)

T∗ =


−
(∑3

i=1 βiI
∗
i + µ+ ru∗1

)
−β1S

∗ −β2S
∗ −β3S

∗ 0∑3
i=1 βiI

∗
i β1S

∗ − µ− α1 η2u
∗
2 0 0

0 α1 −(α2 + µ+ η2u
∗
2) η3u

∗
3 0

0 0 α2 −(µ+ d+ η3u
∗
3) 0

ru∗1 0 0 0 µ

 .

(4.38)
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Then we can rewrite system (4.34) as follows
∂Y κ

∂t
= AY κ(t) + Tκ(t)Y κ(t) + Uκ(t), in ΩT ,

Y κ(0) = 0, in Ω.
(4.39)

We suppose that A generates semigroup {S(t) : t > 0}. Then we have the following
expression of Y κ(t) from [43]

Y κ(t) =

∫ t

0
S(t− s)Tκ(s)Y κ(s)ds+

∫ t

0
S(t− s)Uκ(s)ds, t ∈ [0, τ ]. (4.40)

From Lemmas 4.5, 4.6 and Theorem 4.3, the uniformly boundedness of the elements of U
in (4.36) and T in (4.37) in regard to t holds. Hence, we can choose positive constants B1

and B2 such that

||Y κ||L2(Ω) 6 B1 +B2

∫ t

0
||Y κ(s)||L2(Ω)ds, t ∈ [0, τ ].

It follows from Gronwall inequality that Y κ is bounded in L2(Ω). Then we have ||Sκ −
S||L2(ΩT ) = κ||Sκ||L2(ΩT ) → 0, ||P κ − P ||L2(ΩT ) = κ||P κ||L2(ΩT ) → 0, ||Iκi − Ii||L2(ΩT ) =
κ||Iκi ||L2(ΩT ) → 0 as κ → 0, i = 1, 2, 3. In the next, we show that Y κ → Y , in L2(ΩT ).
System (4.35) can be rewritten as

∂Y

∂t
= AY (t) + T∗(t)Y (t) + U∗(t), in ΩT ,

Y (0) = 0, in Ω.
(4.41)

Then we have the following expression of the solution of system (4.41)

Y (t) =

∫ t

0
S(t− s)T∗(s)Y (s)ds+

∫ t

0
S(t− s)U∗(s)ds, t ∈ [0, τ ]. (4.42)

Combination of (4.40) and (4.42), yields

Y κ(t)− Y κ(t) =

∫ t

0
S(t− s)(TκY κ −T∗Y )(s)ds, t ∈ [0, τ ].

Considering that the elements for Tκ(t) are all uniformly bounded and converge to the
elements of T∗(t) in L2(ΩT ), respectively. Thus, we can deduce that Y κ → Y in L2(ΩT )
by applying the Gronwall inequality.

Theorem 4.8. Assume that Theorem 4.3 conditions remain hold. If (S∗, I∗1 , I
∗
2 , I
∗
3 , u
∗) is

an optimal control pair of the optimal control problem (4.9)-(4.13) and (Ŝ, Î1, Î2, Î3, P̂ ) is
the solution to system (4.31), then∫

ΩT

(rŜS∗ + ω1)(û1 − u∗1)(t, x)dxdt+

3∑
k=2

∫
ΩT

(ηk ÎkI
∗
k + ωk)(ûk − u∗k)dxdt

> −
3∑
i=1

∫
Ω

ρi(x)(ûi − u∗i )(T, x)dx.

(4.43)
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Moreover, if ρi(x) ≡ 0 in Ω, i = 1, 2, 3, then we have

u∗1 =

1, in
{

(t, x) ∈ Ω : (rS∗Ŝ + ω1)(t, x) 6 0
}
,

0, in
{

(t, x) ∈ Ω : (rS∗Ŝ + ω1)(t, x) > 0
}
,

(4.44)

u∗k|(k=2,3) =

1, in
{

(t, x) ∈ Ω : (ηkI
∗
k Îk + ωk)(t, x) 6 0

}
,

0, in
{

(t, x) ∈ Ω : (ηkI
∗
k Îk + ωk)(t, x) > 0

}
,

(4.45)

Proof. Suppose that (S∗, I∗1 , I
∗
2 , I
∗
3 , P

∗, u∗) is an optimal control pair, the control cost
function J (S,I1,I2,I3, u), which is given by (4.12). Hence

J (S∗, I∗1 , I
∗
2 , I
∗
3 , u
∗) 6 J (Sκ, Iκ1 , I

κ
2 , I

κ
3 , u

κ), ∀ κ > 0. (4.46)

That is to say ∫
ΩT

[
c0(Sκ − S∗) +

3∑
i=1

ci(I
κ
i − I∗i ) +

3∑
i=1

κωiũi

]
(t, x)dtdx

+

∫
Ω

[
ζ0(Sκ − S∗) +

3∑
i=1

ζ(Iκi − I∗i ) +

3∑
i=1

κρiũi

]
(τ, x)dx

> 0.

(4.47)

Dividing both sides of inequality (4.47) by κ, yields∫
ΩT

(
c0Y

κ
0 +

3∑
i=1

ciY
κ
i +

3∑
i=1

ωiũi

)
(t, x)dtdx+

∫
Ω

(
ζ0Y

κ
0 +

3∑
i=1

ζiY
κ
i +

3∑
i=1

ρiũi

)
(T, x)dx > 0.

(4.48)
Furthermore, if follows from Lemma 4.7 that

Y κ0 → Y0, Y
κ
1 → Y1, Y

κ
2 → Y2, Y

κ
3 → Y3, ∈ L2(ΩT ), as κ→ 0,

Y κ0 → Y0, Y
κ
1 → Y1, Y

κ
2 → Y2, Y

κ
3 → Y3, in L

1(ΩT ), as κ→ 0,

Y κ0 (τ)→ Y0(τ), Y κ1 (τ)→ Y1(τ), Y κ2 (τ)→ Y2(τ), Y κ3 (τ)→ Y3(τ), in L1(ΩT ), as κ→ 0.

Then we can obtain the following results from (4.48) by sending κ→ 0∫
ΩT

(
c0Y0 +

3∑
i=1

ciYi +

3∑
i=1

ωiũi

)
(t, x)dtdx+

∫
Ω

(
ζ0Y0 +

3∑
i=1

ζiYi +

3∑
i=1

ρiũi

)
(τ, x)dx > 0.

(4.49)

From system (4.31) and (4.35), we can obtain that

∂Ŝ

∂t
Y0 +

∂Y0

∂t
Ŝ +

3∑
i=1

(
∂Îi
∂t
Yi +

∂Yi
∂t

Îi

)

= θ0

(
∆Y0Ŝ −∆ŜY0

)
+

3∑
i=1

θi

(
∆YiÎi −∆ÎiYi

)
+

3∑
i=1

ciYi − rS∗Ŝũ1 −
3∑

k=2

ηkI
∗
k Îkũk.

(4.50)
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Recalling the initial boundary conditions of (Ŝ, Î1, Î2, Î3) and integrating (4.50) over ΩT ,
we have the result by the Green formula as follows∫

Ω

(
Y0Ŝ +

3∑
i=1

YiÎi

)
(τ, x)dx =

∫
ΩT

3∑
i=1

ciYi(t, x)dxdt− r
∫

ΩT

S∗Ŝũ1dxdt

−
∫

ΩT

3∑
k=2

ηkÎkI
∗
k ũkdxdt.

(4.51)

Further, from the last equation of system (4.31) and (4.51), yields∫
Ω

(
ζ0Y0 +

3∑
i=1

ζiYi

)
(τ, x)dx+

∫
ΩT

3∑
i=1

ciYi(t, x)dxdt

= r

∫
ΩT

S∗Ŝũ1dxdt+

∫
ΩT

3∑
k=2

ηkÎkI
∗
k ũkdxdt.

(4.52)

Then by (4.49), yields∫
ΩT

rS∗Ŝũ1dxdt+

∫
ΩT

3∑
k=2

ηiI
∗
k Îkũkdxdt > −

∫
ΩT

3∑
i=1

(ωiũi)(t, x)dxdt−
∫

Ω

3∑
i=1

(ρiũi)(τ, x)dx.

On the basis of ũ = (ũ1, ũ2, ũ3) ∈ L2(ΩT ) is arbitrary, we can set ũi = ûi − u∗i , ∀ ûi ∈
U , i = 1, 2, 3. Then the inequality (4.43) in Theorem 4.8 is obtained. This completes the
proof.

We study numerically the optimal control problem (4.13) in the next section.

5 Numerical simulations

5.1 Estimation of the model parameters and initial values

In this subsection, we mainly focus on the estimation of model (1.1)-(1.3) parameters and
initial values. The mean values of the some parameters in model (1.1)-(1.3) are taken
as in Table 2, we set b(x) as constant b > 0, where b = r, α1, α2, η2, η3, µ, d. We choose
r = 0.01, α1 = 0.33, α2 = 0.34, η2 = 0.57, η3 = 0.32 are taken from the literature [9] in
Table 2. The natural death rate µ = 0.0246 and AID-related death rate d = 0.7114 are
taken from the literature [45] in Table 2.

From [44], we can assume that Λ = 830, 000. From the HIV/AID reported case in
2018 [46], we can obtain the new HIV/AIDS cases through homosexual transmission is
34,358 (25.5% of the total new reported cases), where 35.8% of the case under ART
treatment [47]. Hence, we assume that I10(x) = 34, 358× (1− 25.8%) = 22, 058, I20(x) =
10, 000, I30(x) = 2, 300. Meanwhile, let S0(x) = 20 million, P0(x) = 20 million ×20% =
4 million. Similar with the form is given by literature [22], we choose β1(x) = 1.2 ×
10−7, β2(x) = 1.8× 10−7(1 + 0.5 cos(2x)), β3(x) = 6.3× 10−8(1 + 0.5 cos(2x)). We set Ω =
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[0, 1] for simplification. The diffusion coefficients of the MSM in different compartments
can be set to θ0 = 0.008, θ1 = 0.002, θ2 = 0.001, θ3 = 0.003, θ4 = 0.006.

(a) (b)

(c) (d)

(e)

Figure 1. The solution surface to system (1.1)-(1.3) when R0 < 1, on ΩT = [0, 10]× [0, 1].

5.2 Dynamical behaviors of system (1.1)-(1.3)

In this subsection, we first choose β1(x) = 1.2×10−8, β2(x) = 1.4×10−8(1+0.5 cos(2x)), β3(x) =
1.3 × 10−8(1 + 0.5 cos(2x)) and obtain R0 ≈ 0.942 < 1. From Figure 1, we can see
that the solution of system (1.1-1.3) approaches the disease-free equilibrium as t → ∞.
This result is lines in with Theorem 3.2, i.e. E0 is g.a.s if R0 < 1. When we choose
β1(x) = 1.2× 10−8, β2(x) = 3.8× 10−8(1 + 0.5 cos(2x)), β3(x) = 3× 10−8(1 + 0.5 cos(2x))
and obtain R0 ≈ 1.209 > 1. Figure 2 shows that the disease will be present in the MSM
group.
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(a) (b)

(c) (d)

(e)

Figure 2. The solution surface to system (1.1)-(1.3) when R0 > 1, on ΩT = [0, 10]× [0, 1].
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Figure 3. The influence of the spatial heterogeneity on R0. (a) β1(x) = 1.2× 10−8(1 +k sin(2x)).
(b) β1(x) = 1.2× 10−8(1 + k sin(2x)) and β1(x) = 1.2× 10−8(1 + k cos(2x)). (c) µ(x) = 0.0246×
(1 + k sin(2x)). (d) r(x) = 0.01 × (1 + k sin(2x)). (e) β2(x) = 3.8 × 10−8(1 + k sin(2x)). (f)
d(x) = 0.7114× (1 + k sin(2x)). Other parameters as their means value in Table 2.

Obviously, we know that an increase in R0 will increase the risk of HIV transmission
among MSM group. Hence, we now study the effect of the heterogenous parameters on
R0, which denotes the key threshold value of the disease transmission. In Figure 3 (a)
and (e), we can see that R0 increases as parameter k increases when we set β1(x) =
1.2×10−8(1 +k sin(2x)) and β2(x) = 3.8×10−8(1 +k sin(2x)), respectively. Furthermore,
R0 in the case of β1(x) = 1.2 × 10−8(1 + k sin(x)) (red dotted line in Figure 3 (b)) is
larger than R0 in the case of β1(x) = 1.2 × 10−8(1 + k sin(2x)) (red solid line in Figure
3 (b)). It is revealed that choosing the average the infection the infection ability of HIV
will underestimate the risk of HIV transmission. Set d(x) = 0.7114× (1 + k sin(2x)) and
other parameters are fixed as their values in Table 2. Then k increases will lead to R0

decreases (see Figure 3 (f)). In Figure 3 (c), the influence of the heterogeneity of µ(x)
on HIV infections risk R0 can be obtained similarly. Moreover, from Figure 3 (d), it is
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indicated that R0 decreases as k increases, which implies that increasing the coverage of
PrEP will effectively reduce the risk of HIV transmission among MSM group.

5.3 Application to the optimal control among MSM in China

In this subsection, we mainly focus on the optimal control of the reaction-diffusion model
(4.9)-(4.10) with PrEP and ART treatment. Studies have shown that taking PrEP
drug on time and in quantities according to doctor’s instructions can effectively pre-
vent HIV transmission through unprotected sexual behaviors. In fact, Gilead’s Truvada
(PrEP drugs) costs 6,500 (3,675-8,963) USD (United States Dollar) per person each year
through the health care system, and private purchases may be more expensive [47]. For
private purchases DTG (Dolutegravir) drugs, it almost costs 3,394 USD per HIV in-
fected individual each year [47]. For the sake of simplicity, we choose the mean value
of ck(x), ζk(x), k = 0, 1, 2, 3 [26, 27], and ωi, i = 1, 2, 3 in cost functional in (4.12) as
follows:

c0 = 1, c1 = 1, c2 = 1, c3 = 1.2, ζ0 = 0.1, ζ1 = 0.02, ζ2 = 0.04, ζ3 = 0.02,

ω1 = 6500, ω2 = 3394, ω3 = 3394.

We now solve the optimal control problem proposed in (4.13) for ρi(x, τ) = 0, i = 1, 2, 3,
τ = 1 year. It is easy to see from Figure 4 that the optimal controls u∗i (i = 1, 2, 3) are
all of the Bang-Bang form. From Figure 5, it is revealed that the strategy associated
with controls leads to a significant decrease on the number of HIV infected individuals
at various stages among MSM. The corresponding cost of optimal control (u∗1, u

∗
2, u
∗
3) is

1.582 billion USD (see Case 2 in Table 3 and Table 4), which is significantly less than
the predicted costs in [47]. In fact, the authors in this paper estimate the total spending
on PrEP would be 29.6 (22.2-37.1) billion USD over the period from 2018 to 2037 if 20%
MSM initiated daily oral Truvada for usage period of 5 years per person, namely, PrEP
treatment costs an average of 1.48 billion USD per year.
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Figure 4. (a) the surface of u∗1; (b) the surface of u∗2; (c) the surface of u∗3.
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(a) (b)

(c) (d)

Figure 5. The solution surface to controlled equations (4.9)-(4.10) on ΩT = [0, 1]× [0, 1].

5.3.1 The impact of diffusive coefficients on the optimal control strategy for
HIV/AIDS among MSM
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Figure 6. (a)-(c): The optimal control for θ1 = 0.001, θ2 = 0.001, θ3 = 0.001. (d)-(f): The
optimal control for θ1 = 0.008, θ2 = 0.007, θ3 = 0.009.
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From the standpoint of epidemiology, it is very meaningful to study whether the diffusion
coefficients affect the optimal control strategy. For this purpose, we choose three cases
of the diffusive coefficient pairs (θ1, θ2, θ3) in Table 3. From Figures 6 (a)-(f) and Table
3, it can be seen that the strength and cost of the optimal control strategies (u∗1, u

∗
2, u
∗
3)

increased by the diffusive coefficients, which range from 1.338 to 1.845 billion USD. This
indicates that the diffusion of infected individuals is one of the key factors in controlling
HIV transmission within the MSM group on account of HIV carriers do not need to be
hospitalized to receive ART treatment.

Case Case 1 Case 2 Case 3

(θ1, θ2, θ3) (0.001,0.001,0.001) (0.002,0.001,0.003) (0.008,0.007,0.009)

J (u∗1, u
∗
2, u
∗
3) 1.338 billion USD 1.582 billion USD 1.845 billion USD

Table 3. The value of cost functional J (u∗1, u
∗
2, u
∗
3) with respect to the diffusion coefficients

(θ1, θ2, θ3).

5.3.2 The impact of initial values on the optimal control strategy for HIV/AIDS
among MSM

0
1

1

0.5

O
p
ti
m

a
l 
c
o
n
tr

o
l 
u

* 1

t

0.5

x

1

0.5

0 0

(a)

0
1

1

0.5

O
p
ti
m

a
 c

o
n
tr

o
l 
u

* 2

t

0.5

x

1

0.5

0 0

(b)

0
1

1

0.5

O
p
ti
m

a
l 
c
o
n
tr

o
l 
u

* 3

t

0.5

x

1

0.5

0 0

(c)

0
1

1

0.5

O
p
ti
m

a
l 
c
o
n
tr

o
l 
u

* 1

t

0.5

x

1

0.5

0 0

(d)

0
1

1

0.5

O
p
ti
m

a
 c

o
n
tr

o
l 
u

* 2

t

0.5

x

1

0.5

0 0

(e)

0
1

1

0.5

O
p
ti
m

a
l 
c
o
n
tr

o
l 
u

* 3

t

0.5

x

1

0.5

0 0

(f)

Figure 7. (a)-(c): The optimal control for I1(0) = 1500, I2(0) = 800, I3(0) = 500. (d)-(f): The
optimal control for I1(0) = 24000, I2(0) = 20000, I3(0) = 13000.
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Although the initial values do not affect the global behaviors of system (1.1-1.3), we
are still interested in the effect of initial values on the optimal control strategy for HIV
transmission among MSM. For this purpose, we choose three cases of (I1(0), i2(0), i3(0))
in Table 4. It can be seen that the strength and cost of the optimal control are increased
by the initial values in Figures 7 (a)-(f), which range from 0.874 to 2.645 billion USD. This
indicates that the increasing number of HIV infected individuals among MSM will increase
the difficulty and effect of the optimal control. Based on the fact of the number of HIV
infections among MSM group in China has increased year by year in the past decade, this
means that the earlier the PrEP intervention and prevention of HIV transmission among
MSM, the lower cost and the less difficulty of the optimal control, thereby increasing the
efficiency of optimal control for HIV transmission among MSM group.

Case Case 1 Case 2 Case 3

(I1(0), I2(0), I3(0)) (8000, 4000, 600) (22,058,10,000, 2,300) (44000, 20000,13000)

J (u∗1, u
∗
2, u
∗
3) 0.717 billion USD 1.582 billion USD 2.645 billion USD

Table 4. The value of cost functional J (u∗1, u
∗
2, u
∗
3) with respect to the initial values

(I1(0), I2(0), I3(0)).

5.3.3 The impact of the cost of PrEP therapy on the optimal control strategy
for HIV/AIDS among MSM
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Figure 8. (a)-(c): The optimal control for ω1 = 3675. (d)-(f): The optimal control for ω1 = 8963.
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From the data mentioned in [47], we know that the cost of Gilead’s Truvada range from
3,675 USD to 8,963 USD. Hence, in this subsection, we devote to discussing the effect of
the cost of the PrEP drug on the optimal control strategy for HIV transmission among
MSM. For this purpose, we choose three cases of the initial values ω1 in Table 5. It can
be seen that the strength and cost of the optimal control strategy are increased by the
cost of the PrEP drug in Figure 8 (a)-(f), which range from 1.061 to 2.142 billion USD
in Table 5. This indicates that high drug prices pose a big challenge to the promotion of
PrEP treatment among the MSM group. In fact, this also brings great intervention costs
to the national public medical system. Therefore, in order to better play the role of PrEP
drugs in preventing the spread of HIV among MSM group in China, the cost of PrEP drug
needs to be reduced so that most people can pay for PrEP drug treatment.

Case Case 1 Case 2 Case 3

ω1 3,675 6,500 8,963

J (u∗1, u
∗
2, u
∗
3) 1.061 billion USD 1.582 billion USD 2.142 billion USD

Table 5. The value of cost functional J (u∗1, u
∗
2, u
∗
3) with respect to the cost ω1 of PrEP therapy.

6 Conclusion

In this paper, we formulate a realistic HIV/AIDS epidemic model with spatial diffusion
to study the combination effect of PrEP and ART on HIV infections among MSM group
in heterogenous environment. We derive the basic reproduction number R0 and demon-
strated as a threshold parameters for the dynamical behaviors of the model: the disease
dies out when R0 < 1 and presents when R0 > 1 in MSM group.

On the basis of PrEP and ART have substantial advantages in controlling HIV in-
fections among MSM group, we establish an optimal control strategy for the model with
positive constant diffusion coefficients. The purpose of the optimal control is minimize
the total number of MSM susceptible population and HIV infected population, the cost
of PrEP intervention and ART treatment for MSM group. By virtue of minimal sequence
techniques and the methods of convex perturbation, we show the existence and the first
order necessary optimality conditions of the optimal treatment strategies, respectively.
Furthermore, it is worth mentioning that we give the Bang-Bang form for optimal treat-
ment strategies in the case of ρi(τ, x) = 0, i = 1, 2, 3.

Finally, on the basis of the MSM group data in China, we conduct some numerical
simulations to reinforce the analytical results. More specifically, by analyzing the influence
of diffusion coefficients on the optimal control, we found that the increase in the diffusion
coefficients of MSM group increases the density of maximum control (see Figure 6), and
it also increase the cost of control (see Table 3). This implies that spatial diffusion cannot
be ignored during intervention for HIV transmissions among MSM group. We are also
interested in whether the initial data of HIV infections among MSM group affects the
optimal control strategies. By analyzing the influence of initial values on the optimal
control (see Figure 7, Table 4) and considering a practical situation, the numbers of HIV
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infections among MSM group increase year by year in China. Our works suggest: (1) it
will be help to improve control efficacies and reduce its cost if the PrEP intervention and
ART treatment measures for MSM group are taken as early as possible; (2) in order to
better play the role of PrEP drugs in preventing the spread of HIV among MSM group
in China, the price of PrEP drug needs to be reduced so that most people among MSM
group can pay for PrEP drug treatment. From the view of practical, the model established
in our paper can be applied to comprehend and control the transmission of the disease
among MSM in China, which can help the department of health to implement preventive
intervention for HIV infections among MSM group.
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