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ABSTRACT 18 

Integration of heterologous DNA in yeast can proceed either by non-homologous end joining 19 

(NHEJ), with the foreign DNA inserted into the genome at a random locus, or by homologous 20 

recombination (HR), with the foreign DNA targeted to a specific site in the genome by 21 

homology to the site of interest. Gene targeting is key for studying gene function and 22 

investigating cell physiology, and usually relies on HR. Although HR is the dominant 23 

mechanism in S. cerevisiae, NHEJ is the dominant repairing mechanism in Brettanomyces 24 

bruxellensis, a microorganism with broad biotechnological potential and responsible for 25 

significant economic losses during the production of fermented beverages. One strategy to 26 

increase HR in NHEJ-proficient strains is to delete the genes responsible for NHEJ. Thus, we 27 

attempted to produce a homologous-recombining B. bruxellensis strain by deleting the KU80 28 

gene. Stimulation of homologous recombination was then tested by targeting two different 29 

genomic loci for deletion via HR in the ∆KU80 strain. While it was possible to obtain large 30 

numbers of transformants, homologous recombination was no observed. These results 31 

indicate that KU80 deletion does not improve homologous recombination in B. bruxellensis. 32 

 33 

INTRODUCTION 34 

A common approach to stable gene modification in yeast is the integration of heterologous 35 

DNA cassettes into the genome. This integration can be mediated by either non-homologous 36 

end joining (NHEJ) or homologous recombination (HR), two independent mechanisms that 37 

compete with each other (Shrivastav, et al. 2008). While NHEJ mediates the integration of a 38 

DNA fragment into essentially random sites within the host genome, HR targets the fragment 39 

to a specific site in the genome via stretches of DNA homology between the heterologous 40 

fragment and the site of interest (Löbs, et al. 2017). Targeted gene deletion (targeted gene 41 

knockout), which involves the precise removal/substitution of specific genomic loci is an 42 

essential tool for studying gene function and investigating cell physiology, and is completely 43 

dependent on efficient HR. While HR is the dominant mechanism in S. cerevisiae (Fraczek, et 44 

al. 2018), providing the means for rapid genomic engineering, NHEJ is the dominant repairing 45 



mechanism in several non-conventional yeast species (Klinner and Schafer 2004, Wang, et 46 

al. 2001). 47 

 48 

One strategy to increase HR in NHEJ-dominant strains is to mutate the genes responsible for 49 

NHEJ. This is often performed using targeted gene deletion, however given the dominance of 50 

NHEJ in these species, very long homologous flanking sequences are required to increase 51 

HR and large numbers of transformants must be screened to find the rare, targeted events 52 

from within the background of random integrants. Accordingly, deletion of genes encoding the 53 

NHEJ components such as KU70 or KU80 resulted in enhanced gene targeting efficiency in 54 

several non-conventional yeast and fungal species of biotechnological interest, including 55 

Candida glabrata (Ueno, et al. 2007), Cryptococcus neoformans (Goins, et al. 2006), 56 

Hansenula polymorpha (Saraya, et al. 2012), Kluyveromyces lactis (Kooistra, et al. 2004), 57 

Kluyveromyces marxianus (Choo, et al. 2014), Penicillium chrysogenum (Snoek, et al. 2009), 58 

Pichia pastoris (Näätsaari, et al. 2012), Pichia stipitis (Maassen, et al. 2008), Rhodosporidium 59 

toruloides (Koh, et al. 2014) and Yarrowia lipolytica (Kretzschmar, et al. 2013).  60 

 61 

Although Brettanomyces bruxellensis is well known for the spoilage of fermented beverages 62 

including, wine, beer and cider (Curtin, et al. 2015, Varela and Borneman 2017), this yeast 63 

species has several significant attributes for industrial applications (Conterno, et al. 2006, 64 

Curtin, et al. 2015, de Barros Pita, et al. 2013, Reis, et al. 2014). In addition, B. bruxellensis 65 

has a positive role during the production of Belgian lambic and gueze ales (Vanbeneden, et 66 

al. 2008), cachaça, a distilled spirit made from sugar cane (Parente, et al. 2015) and 67 

bioethanol (Blomqvist, et al. 2011, Galafassi, et al. 2011). Despite the biotechnological 68 

potential and the significant economic impact of this species, targeted genome editing tools in 69 

B. bruxellensis have only been reported recently (Varela, et al. 2020). Thus, targeting gene 70 

deletion in this species was possible using an expression-free CRISPR-Cas9 system (Varela, 71 

et al. 2020).  72 

 73 



In this work, we describe the development of a B. bruxellensis strain lacking the KU80 gene 74 

with the aim of enhancing homologous recombination in this species.  75 

 76 

MATERIALS AND METHODS 77 

Strain and media 78 

The haploid B. bruxellensis AWRI2804 strain (UC Davis collection UCD2041) was obtained 79 

from the Australian Wine Research Institute (AWRI) Wine Microorganism Culture Collection 80 

(WMCC). Cryogenically preserved (-80°C) strains were cultured and maintained on YMPG 81 

plates (3 g/L malt extract, 3 g/L yeast extract, 5 g/L peptone, 10 g/L glucose, 40 g/L CaCO3, 82 

20 g/L agar) and stored at 4°C. Strains were grown in YPD medium (yeast extract 10 g/l; 83 

peptone 20 g/l; glucose 20 g/l) or in minimal medium containing 5 g/L glucose and 6.7 g/L 84 

YNB (yeast nitrogen base) with amino acids pH 3.5 (MM5). Media for transformation and/or 85 

selection included YPD agar containing clonNAT at 50 g/mL, YPD agar containing G418 at 86 

200 g/mL, YNB agar with and without uracil (20 mg/L) and YNB agar containing a limited 87 

amount of adenine (10 mg/L). 88 

 89 

Construction of DNA deletion cassettes  90 

Two different types of DNA cassettes were used to transform B. bruxellensis and target 91 

specific genes. Cassettes targeting the genes KU80 and SSU1 contained long flanking regions 92 

(1.0-1.5 kb) and were constructed as follows. The up- and down-stream regions of the targeted 93 

ORF were cloned in plasmid pMA-TDH1pr-natMX and pMK-T-TDH1pr-kanMX, respectively. 94 

Up- and down-stream regions to KU80 and SSU1 were synthesised by Invitrogen GeneArt 95 

(ThermoFisher Scientific, Massachusetts, USA) and cloned using BamHI/XbaI sites for 96 

upstream regions and SpeI for downstream regions. A cassette targeting URA3 contained 97 

short flanking regions (60 bp) and was obtained by amplifying the kanMX cassette from the 98 

plasmid pMK-T-TDH1pr-kanMX (Varela, et al. 2018). Primers containing 60 bp flanking 99 

regions corresponding to up- and down-stream regions outside URA3 were used to amplify 100 



this cassette. All plasmids used in this study are listed in Table 1, while all primers used in the 101 

construction of the cassettes are listed in Table 2. For transformation, DNA cassettes were 102 

amplified from the respective vectors using the primers M13-F and M13-R. PCR products 103 

obtained from all cassettes were purified using the Wizard® SV Gel and PCR clean-up system 104 

(Promega, Madison, USA) and used for transformation as indicated below. 105 

 106 

Transformation and confirmation of positive transformants 107 

B. bruxellensis strains were transformed by electroporation following the protocol described 108 

by Miklenic et al. (2015). Confirmation of positive transformants was performed by PCR with 109 

primers complementary to the DNA cassette and to the up- and down-stream sequences of 110 

the targeted ORF, as described previously (Kutyna, et al. 2014). DNA was extracted from 111 

transformant colonies according to the method of Looke et al. (Looke, et al. 2011) using deep 112 

well 96-well plates. Transformants with a potentially deleted URA3 gene were replica plated 113 

on minimal media with and without uracil.  114 

 115 

Genome sequencing and bioinformatic processing 116 

Chromosomal DNA was isolated using the Gentra Puregene Yeast/Bact. kit (Qiagen, Hilden, 117 

Germany) as described previously (Varela, et al. 2020). Whole genome sequencing was 118 

performed using the MinION platform (Oxford Nanopore Technologies, Oxford, UK) as 119 

described previously (Varela, et al. 2020). Genome assembly was performed using Canu 120 

v.1.7.1 (Koren, et al. 2017) and polished with Nanopolish v. 0.11.2. Sequencing reads included 121 

in this study are available in NCBI under Bioproject PRJNA827945. 122 

 123 

RESULTS AND DISCUSSION 124 

Despite the increasing biotechnological potential of B. bruxellensis and the significant 125 

economic losses caused by this yeast for fermented beverages industries, targeted genome 126 

editing tools have only been reported recently (Varela, et al. 2020). B. bruxellensis, similar to 127 

other non-conventional yeast (Klinner and Schafer 2004, Wang, et al. 2001), favours NHEJ 128 



for DNA repair, making targeted gene deletion, which relies on HR, very challenging in these 129 

species. While very short homology (50 bp) is sufficient for HR in S. cerevisiae (Cai, et al. 130 

2019), often very long homology sequences (over 1 kb) are needed in other species (Klinner 131 

and Schafer 2004, Löbs, et al. 2017, Wang, et al. 2001). One strategy to increase HR in non-132 

conventional yeast is the deletion of some of the genes involved in NHEJ (Dudasova, et al. 133 

2004, Koh, et al. 2014, Verbeke, et al. 2013).  134 

 135 

To attempt to engineer a HR-dominant B. bruxellensis strain, the B. bruxellensis ortholog of 136 

the KU80 gene was targeted for gene deletion using a low-efficiency, long-flanking targeting 137 

DNA cassette. From PCR screening of 110 transformants, only one putative deletant strain 138 

was obtained. Whole genome sequencing of this transformant indicated that a copy of the 139 

natMX cassette had integrated into the KU80 locus with no other copies of the cassette 140 

detectable in the genome (Figure 1). This strain was named AWRI5224. 141 

 142 

To evaluate the suitability of the ∆KU80 strain as a platform for HR-dominant engineering, this 143 

strain was transformed with DNA cassettes which targeted either the gene URA3 or SSU1. 144 

While URA3 was targeted with a cassette containing short flanking regions, SSU1 was 145 

targeted with a cassette containing long flanking regions. Despite targeting these two different 146 

genomic loci and screening over 100 colonies for each locus, it was not possible to detect 147 

homologous recombination at either of the two targeted loci.  148 

 149 

Although deletion of KU80 has been shown to improve gene deletion frequency in other yeast 150 

species (Choo, et al. 2014, Colombo, et al. 2014, Kretzschmar, et al. 2013, Ueno, et al. 2007), 151 

this was not the case in B. bruxellensis, indicating that the DNA repair machinery in this 152 

species is not easy to manipulate. It is possible that targeting other genes involved in NHEJ, 153 

such as YKU70, NEJ1 or DNL4  (Abdel-Banat, et al. 2010, Nambu-Nishida, et al. 2017, 154 

Valencia, et al. 2001) may increase HR in B. bruxellensis. 155 

 156 
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 262 

Figure 1. B. bruxellensis KU80 locus in AWRI2804 and AWRI2804 KU80.263 



Table 1. Plasmids used in this study. 264 

 265 

Plasmid 

 

Description/genotype Source/reference 

pMA-TDH1pr-natMX 

 

natR flanked by the B. bruxellensis TDH1 promoter and the TEF2 

terminator, ampicillinR 

(Varela, et al. 2018) 

pMK-T-TDH1pr-kanMX 

 

kanR flanked by the B. bruxellensis TDH1 promoter and the TEF2 

terminator, kanamycinR 

(Varela, et al. 2018) 

pMK-T-TDH1pr-kanMX 

KU80 up/down 

kanR cassette flanked by 1.2 kb flanking regions up- and down-stream 

of KU80 

This study 

pMA-TDH1pr-natMX 

SSU1 up/down 

natR cassette flanked by 1.5 kb flanking regions up- and down-stream 

of SSU1 

This study 

  266 



Table 2. Primers used in this study. 267 

 268 

Primer Sequence (5’ → 3’) Aim 

KU80up_BamHI-F catg ggatcc atctgctctttttcctcctgtttat Amplify upstream region of KU80 for cloning 

KU80up_XbaI-R catg tctaga tttcggttgcttatgttagttaatg Amplify upstream region of KU80 for cloning 

KU80down_SpeI-F catg actagt aaagcaaggagaaatcggcacagga Amplify downstream region of KU80 for cloning 

KU80down_SpeI-R catg actagt gggagtcaacggaccaaagacggac Amplify downstream region of KU80 for cloning 

SSU1up_BamHI-F catg ggatcc taaatgcaagcgtcacctgc Amplify upstream region of SSU1 for cloning 

SSU1up_XbaI-R catg tctaga tgtttgcttgctctgctcg Amplify upstream region of SSU1 for cloning 

SSU1down_SpeI-F catg actagt atttgcaatgactaacccgc Amplify downstream region of SSU1 for cloning 

SSU1down_SpeI-R catg actagt aggcggaaatgttaaccacg Amplify downstream region of SSU1 for cloning 

M13-F gtaaaacgacggccagtg Amplify DNA cassettes for transformation 

M13-R ggaaacagctatgaccatg Amplify DNA cassettes for transformation 

TDH1pr-R accgtcatactgatttgagcc Anneals on the TDH1 promoter, used to confirm positive transformants 

marker-F ttcgcatctgggcagatgatgtcga Anneals on the TEF2 terminator, used to confirm positive transformants 

ampKU80-F ccactcatctctaaagccttc Used to confirm positive transformants for KU80 deletion  

ampKU80-R ggttttaccactcattttccagg Used to confirm positive transformants for KU80 deletion  



ampSSU1-F taaatgcaagcgtcacctgc Used to confirm positive transformants for SSU1 deletion  

ampSSU1-R cgtgtcgttatgggtcagat Used to confirm positive transformants for SSU1 deletion  

coURA3-F gacatctgcttctgctcaac Used to confirm positive transformants for URA3 deletion  

coURA3-R atgcgttgcgagtgaaaatg Used to confirm positive transformants for URA3 deletion  

 269 


