References
Adams, R.I., Miletto, M., Taylor, J.W., Bruns, T.D., 2013. Dispersal in microbes: fungi in indoor air are dominated by outdoor air and show dispersal limitation at short distances. ISME J. 7, 1262–1273. https://doi.org/10.1038/ismej.2013.28
Amarasinghe, A., Knox, O.G.G., Fyfe, C., Lobry de Bruyn, L.A., Wilson, B.R., 2021. Response of soil microbial functionality and soil properties to environmental plantings across a chronosequence in south eastern Australia. Appl. Soil Ecol. 168, 104100. https://doi.org/10.1016/j.apsoil.2021.104100
Austin, K.G., Baker, J.S., Sohngen, B.L., Wade, C.M., Daigneault, A., Ohrel, S.B., Ragnauth, S., Bean, A., 2020. The economic costs of planting, preserving, and managing the world’s forests to mitigate climate change. Nat. Commun. 11, 5946. https://doi.org/10.1038/s41467-020-19578-z
Bastida, F., Eldridge, D.J., García, C., Kenny Png, G., Bardgett, R.D., Delgado-Baquerizo, M., 2021. Soil microbial diversity–biomass relationships are driven by soil carbon content across global biomes. ISME J. 15, 2081–2091. https://doi.org/10.1038/s41396-021-00906-0
Cavicchioli, R., Ripple, W.J., Timmis, K.N., Azam, F., Bakken, L.R., Baylis, M., Behrenfeld, M.J., Boetius, A., Boyd, P.W., Classen, A.T., Crowther, T.W., Danovaro, R., Foreman, C.M., Huisman, J., Hutchins, D.A., Jansson, J.K., Karl, D.M., Koskella, B., Mark Welch, D.B., Martiny, J.B.H., Moran, M.A., Orphan, V.J., Reay, D.S., Remais, J.V., Rich, V.I., Singh, B.K., Stein, L.Y., Stewart, F.J., Sullivan, M.B., van Oppen, M.J.H., Weaver, S.C., Webb, E.A., Webster, N.S., 2019. Scientists’ warning to humanity: microorganisms and climate change. Nat. Rev. Microbiol. 17, 569–586. https://doi.org/10.1038/s41579-019-0222-5
Chen, L., Xiang, W., Ouyang, S., Wu, H., Xia, Q., Ma, J., Zeng, Y., Lei, P., Xiao, W., Li, S., Kuzyakov, Y., 2021. Tight coupling of fungal community composition with soil quality in a Chinese fir plantation chronosequence. Land Degrad. Dev. 32, 1164–1178. https://doi.org/10.1002/ldr.3771
Cheng, L., Zhang, N., Yuan, M., Xiao, J., Qin, Y., Deng, Y., Tu, Q., Xue, K., Van Nostrand, J.D., Wu, L., He, Z., Zhou, X., Leigh, M.B., Konstantinidis, K.T., Schuur, E.A., Luo, Y., Tiedje, J.M., Zhou, J., 2017. Warming enhances old organic carbon decomposition through altering functional microbial communities. ISME J. 11, 1825–1835. https://doi.org/10.1038/ismej.2017.48
Du, X., Deng, Y., Li, S., Escalas, A., Feng, K., He, Q., Wang, Z., Wu, Y., Wang, D., Peng, X., Wang, S., 2021. Steeper spatial scaling patterns of subsoil microbiota are shaped by deterministic assembly process. Mol. Ecol. 30, 1072–1085. https://doi.org/10.1111/mec.15777
Fan, Y., Zhong, X., Lin, T.-C., Lyu, M., Wang, M., Hu, W., Yang, Z., Chen, G., Guo, J., Yang, Y., 2020. Effects of nitrogen addition on DOM-induced soil priming effects in a subtropical plantation forest and a natural forest. Biol. Fertil. Soils 56, 205–216. https://doi.org/10.1007/s00374-019-01416-0
Freilich, M.A., Wieters, E., Broitman, B.R., Marquet, P.A., Navarrete, S.A., 2018. Species co-occurrence networks: Can they reveal trophic and non-trophic interactions in ecological communities? Ecology 99, 690–699. https://doi.org/10.1002/ecy.2142
Gao, J., Liang, C., Shen, G., Lv, J., Wu, H., 2017. Spectral characteristics of dissolved organic matter in various agricultural soils throughout China. Chemosphere 176, 108–116. https://doi.org/10.1016/j.chemosphere.2017.02.104
Geisen, S., Hu, S., dela Cruz, T.E.E., Veen, G.F. (Ciska), 2021. Protists as catalyzers of microbial litter breakdown and carbon cycling at different temperature regimes. ISME J. 15, 618–621. https://doi.org/10.1038/s41396-020-00792-y
Gross, C.D., Harrison, R.B., 2019. The Case for Digging Deeper: Soil Organic Carbon Storage, Dynamics, and Controls in Our Changing World. Soil Syst. 3, 28. https://doi.org/10.3390/soilsystems3020028
Hartman, W.H., Ye, R., Horwath, W.R., Tringe, S.G., 2017. A genomic perspective on stoichiometric regulation of soil carbon cycling. ISME J. 11, 2652–2665. https://doi.org/10.1038/ismej.2017.115
Heijboer, A., de Ruiter, P.C., Bodelier, P.L.E., Kowalchuk, G.A., 2018. Modulation of Litter Decomposition by the Soil Microbial Food Web Under Influence of Land Use Change. Front. Microbiol. 9, 2860. https://doi.org/10.3389/fmicb.2018.02860
Ho, A., Di Lonardo, D.P., Bodelier, P.L.E., 2017. Revisiting life strategy concepts in environmental microbial ecology. FEMS Microbiol. Ecol. 93. https://doi.org/10.1093/femsec/fix006
Hoffland, E., Kuyper, T.W., Comans, R.N.J., Creamer, R.E., 2020. Eco-functionality of organic matter in soils. Plant Soil 455, 1–22. https://doi.org/10.1007/s11104-020-04651-9
Hou, Y., Chen, Y., Chen, X., He, K., Zhu, B., 2019. Changes in soil organic matter stability with depth in two alpine ecosystems on the Tibetan Plateau. Geoderma 351, 153–162. https://doi.org/10.1016/j.geoderma.2019.05.034
Huang, M., Chai, L., Jiang, D., Zhang, M., Jia, W., Huang, Y., 2021. Spatial Patterns of Soil Fungal Communities Are Driven by Dissolved Organic Matter (DOM) Quality in Semi-Arid Regions. Microb. Ecol. 82, 202–214. https://doi.org/10.1007/s00248-020-01509-6
Huang, M., Chai, L., Jiang, D., Zhang, M., Jia, W., Huang, Y., 2020. Spatial Patterns of Soil Fungal Communities Are Driven by Dissolved Organic Matter (DOM) Quality in Semi-Arid Regions. Microb. Ecol. https://doi.org/10.1007/s00248-020-01509-6
Jiang, S., Xing, Y., Liu, G., Hu, C., Wang, X., Yan, G., Wang, Q., 2021. Changes in soil bacterial and fungal community composition and functional groups during the succession of boreal forests. Soil Biol. Biochem. 161, 108393. https://doi.org/10.1016/j.soilbio.2021.108393
Jiang, Y., Zhou, H., Chen, L., Yuan, Y., Fang, H., Luan, L., Chen, Y., Wang, X., Liu, M., Li, H., Peng, X., Sun, B., 2018. Nematodes and Microorganisms Interactively Stimulate Soil Organic Carbon Turnover in the Macroaggregates. Front. Microbiol. 9. https://doi.org/10.3389/fmicb.2018.02803
Jiao, S., Chen, W., Wang, J., Du, N., Li, Q., Wei, G., 2018. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6, 146. https://doi.org/10.1186/s40168-018-0526-0
Jiao, S., Yang, Y., Xu, Y., Zhang, J., Lu, Y., 2020. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 14, 202–216. https://doi.org/10.1038/s41396-019-0522-9
Jílková, V., Jandová, K., Sim, A., Thornton, B., Paterson, E., 2019. Soil organic matter decomposition and carbon sequestration in temperate coniferous forest soils affected by soluble and insoluble spruce needle fractions. Soil Biol. Biochem. 138, 107595. https://doi.org/10.1016/j.soilbio.2019.107595
Kaiser, K., Kalbitz, K., 2012. Cycling downwards – dissolved organic matter in soils. Soil Biol. Biochem. 52, 29–32. https://doi.org/10.1016/j.soilbio.2012.04.002
Kang, H., Gao, H., Yu, W., Yi, Y., Wang, Y., Ning, M., 2018. Changes in soil microbial community structure and function after afforestation depend on species and age: Case study in a subtropical alluvial island. Sci. Total Environ. 625, 1423–1432. https://doi.org/10.1016/j.scitotenv.2017.12.180
Kleber, M., Bourg, I.C., Coward, E.K., Hansel, C.M., Myneni, S.C.B., Nunan, N., 2021. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421. https://doi.org/10.1038/s43017-021-00162-y
Kramer, C., Gleixner, G., 2008. Soil organic matter in soil depth profiles: Distinct carbon preferences of microbial groups during carbon transformation. Soil Biol. Biochem. 40, 425–433. https://doi.org/10.1016/j.soilbio.2007.09.016
Li, D., Yu, S., Zeng, M., Liu, X., Yang, J., Li, C., 2020. Selection and Validation of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis in Needles of Larix olgensis under Abiotic Stresses. Forests 11, 193. https://doi.org/10.3390/f11020193
Li, H., Yang, S., Semenov, M.V., Yao, F., Ye, J., Bu, R., Ma, R., Lin, J., Kurganova, I., Wang, X., Deng, Y., Kravchenko, I., Jiang, Y., Kuzyakov, Y., 2021. Temperature sensitivity of SOM decomposition is linked with a K‐selected microbial community. Glob. Change Biol. 27, 2763–2779. https://doi.org/10.1111/gcb.15593
Liu, H., Xu, H., Wu, Y., Ai, Z., Zhang, J., Liu, G., Xue, S., 2021. Effects of natural vegetation restoration on dissolved organic matter (DOM) biodegradability and its temperature sensitivity. Water Res. 191, 116792. https://doi.org/10.1016/j.watres.2020.116792
Liu, T., Wang, X., Zhu, E., Liu, Z., Zhang, X., Guo, J., Liu, X., He, C., Hou, S., Fu, P., Shi, Q., Feng, X., 2021. Evolution of the Dissolved Organic Matter Composition along the Upper Mekong (Lancang) River. ACS Earth Space Chem. 5, 319–330. https://doi.org/10.1021/acsearthspacechem.0c00292
Liu, T., Wu, X., Li, H., Alharbi, H., Wang, J., Dang, P., Chen, X., Kuzyakov, Y., Yan, W., 2020. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. For. Ecol. Manag. 477, 118473. https://doi.org/10.1016/j.foreco.2020.118473
Liu, Y., Zhang, J., Yang, W., Wu, F., Xu, Z., Tan, B., Zhang, L., He, X., Guo, L., 2018. Canopy gaps accelerate soil organic carbon retention by soil microbial biomass in the organic horizon in a subalpine fir forest. Appl. Soil Ecol. 125, 169–176. https://doi.org/10.1016/j.apsoil.2018.01.002
Lorenz, K., Lal, R., 2005. The Depth Distribution of Soil Organic Carbon in Relation to Land Use and Management and the Potential of Carbon Sequestration in Subsoil Horizons, in: Advances in Agronomy. Academic Press, pp. 35–66. https://doi.org/10.1016/S0065-2113(05)88002-2
Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277. https://doi.org/10.1126/science.aaf4507
Ma, J., Liu, H., Zhang, C., Ding, K., Chen, R., Liu, S., 2020. Joint response of chemistry and functional microbial community to oxygenation of the reductive confined aquifer. Sci. Total Environ. 720, 137587. https://doi.org/10.1016/j.scitotenv.2020.137587
Maron, P.-A., Sarr, A., Kaisermann, A., Lévêque, J., Mathieu, O., Guigue, J., Karimi, B., Bernard, L., Dequiedt, S., Terrat, S., Chabbi, A., Ranjard, L., 2018. High Microbial Diversity Promotes Soil Ecosystem Functioning. Appl. Environ. Microbiol. 84. https://doi.org/10.1128/AEM.02738-17
Mayer, M., Prescott, C.E., Abaker, W.E.A., Augusto, L., Cécillon, L., Ferreira, G.W.D., James, J., Jandl, R., Katzensteiner, K., Laclau, J.-P., Laganière, J., Nouvellon, Y., Paré, D., Stanturf, J.A., Vanguelova, E.I., Vesterdal, L., 2020. Tamm Review: Influence of forest management activities on soil organic carbon stocks: A knowledge synthesis. For. Ecol. Manag. 466, 118127. https://doi.org/10.1016/j.foreco.2020.118127
McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T., Andersen, D.T., 2001. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 46, 38–48. https://doi.org/10.4319/lo.2001.46.1.0038
Mori H., Maruyama F., Kato H., Toyoda A., Dozono A., Ohtsubo Y., Nagata Y., Fujiyama A., Tsuda M., Kurokawa K., 2014. Design and Experimental Application of a Novel Non-Degenerate Universal Primer Set that Amplifies Prokaryotic 16S rRNA Genes with a Low Possibility to Amplify Eukaryotic rRNA Genes. DNA Res. 21, 217–227. https://doi.org/10.1093/dnares/dst052
Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S., Kennedy, P.G., 2016. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248. https://doi.org/10.1016/j.funeco.2015.06.006
Ohno, T., 2002. Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environ. Sci. Technol. 36, 742–746. https://doi.org/10.1021/es0155276
Parikh, S.J., Goyne, K.W., Margenot, A.J., Mukome, F.N.D., Calderón, F.J., 2014. Chapter One - Soil Chemical Insights Provided through Vibrational Spectroscopy, in: Sparks, D.L. (Ed.), Advances in Agronomy. Academic Press, pp. 1–148. https://doi.org/10.1016/B978-0-12-800132-5.00001-8
Qin, S., Kou, D., Mao, C., Chen, Y., Chen, L., Yang, Y., 2021. Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Sci. Adv. 7, eabe3596. https://doi.org/10.1126/sciadv.abe3596
Ramírez, P.B., Calderón, F.J., Fonte, S.J., Santibáñez, F., Bonilla, C.A., 2020a. Spectral responses to labile organic carbon fractions as useful soil quality indicators across a climatic gradient. Ecol. Indic. 111, 106042. https://doi.org/10.1016/j.ecolind.2019.106042
Ramírez, P.B., Fuentes-Alburquenque, S., Díez, B., Vargas, I., Bonilla, C.A., 2020b. Soil microbial community responses to labile organic carbon fractions in relation to soil type and land use along a climate gradient. Soil Biol. Biochem. 141, 107692. https://doi.org/10.1016/j.soilbio.2019.107692
Roth, V.-N., Lange, M., Simon, C., Hertkorn, N., Bucher, S., Goodall, T., Griffiths, R.I., Mellado-Vázquez, P.G., Mommer, L., Oram, N.J., Weigelt, A., Dittmar, T., Gleixner, G., 2019. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12, 755–761. https://doi.org/10.1038/s41561-019-0417-4
Shao, P., Liang, C., Rubert-Nason, K., Li, X., Xie, H., Bao, X., 2019. Secondary successional forests undergo tightly-coupled changes in soil microbial community structure and soil organic matter. Soil Biol. Biochem. 128, 56–65. https://doi.org/10.1016/j.soilbio.2018.10.004
Shen, C., Wang, L., Li, M., 2016. The altitudinal variability and temporal instability of the climate–tree-ring growth relationships for Changbai larch (Larix olgensis Henry) in the Changbai mountains area, Jilin, Northeastern China. Trees 30, 901–912. https://doi.org/10.1007/s00468-015-1330-0
Shen, F., Wu, J., Fan, H., Liu, W., Guo, X., Duan, H., Hu, L., Lei, X., Wei, X., 2019. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest. Plant Soil 436, 91–107. https://doi.org/10.1007/s11104-018-03912-y
Shi, X., Zhao, X., Ren, J., Dong, J., Zhang, H., Dong, Q., Jiang, C., Zhong, C., Zhou, Y., Yu, H., 2021. Influence of Peanut, Sorghum, and Soil Salinity on Microbial Community Composition in Interspecific Interaction Zone. Front. Microbiol. 12, 1306. https://doi.org/10.3389/fmicb.2021.678250
Shi, Y., Delgado-Baquerizo, M., Li, Y., Yang, Y., Zhu, Y.-G., Peñuelas, J., Chu, H., 2020. Abundance of kinless hubs within soil microbial networks are associated with high functional potential in agricultural ecosystems. Environ. Int. 142, 105869. https://doi.org/10.1016/j.envint.2020.105869
Sun, T., Wang, Y., Hui, D., Jing, X., Feng, W., 2020. Soil properties rather than climate and ecosystem type control the vertical variations of soil organic carbon, microbial carbon, and microbial quotient. Soil Biol. Biochem. 148, 107905. https://doi.org/10.1016/j.soilbio.2020.107905
Tong, X., Brandt, M., Yue, Y., Ciais, P., Rudbeck Jepsen, M., Penuelas, J., Wigneron, J.-P., Xiao, X., Song, X.-P., Horion, S., Rasmussen, K., Saatchi, S., Fan, L., Wang, K., Zhang, B., Chen, Z., Wang, Y., Li, X., Fensholt, R., 2020. Forest management in southern China generates short term extensive carbon sequestration. Nat. Commun. 11, 129. https://doi.org/10.1038/s41467-019-13798-8
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10, 4841. https://doi.org/10.1038/s41467-019-12798-y
Wang, K., Bi, Y., Cao, Y., Peng, S., Christie, P., Ma, S., Zhang, J., Xie, L., 2021. Shifts in composition and function of soil fungal communities and edaphic properties during the reclamation chronosequence of an open-cast coal mining dump. Sci. Total Environ. 767, 144465. https://doi.org/10.1016/j.scitotenv.2020.144465
Wu, Y., Chen, W., Entemake, W., Wang, J., Liu, H., Zhao, Z., Li, Y., Qiao, L., Yang, B., Liu, G., Xue, S., 2021. Long-term vegetation restoration promotes the stability of the soil micro-food web in the Loess Plateau in North-west China. CATENA 202, 105293. https://doi.org/10.1016/j.catena.2021.105293
Xue, D., Chen, H., Zhan, W., Huang, X., He, Y., Zhao, C., Zhu, D., Liu, J., 2021. How do water table drawdown, duration of drainage, and warming influence greenhouse gas emissions from drained peatlands of the Zoige Plateau? Land Degrad. Dev. 32, 3351–3364. https://doi.org/10.1002/ldr.4013
Yang K., Zhu J., Zhang M., Yan Q., Sun O.J., 2010. Soil microbial biomass carbon and nitrogen in forest ecosystems of Northeast China: a comparison between natural secondary forest and larch plantation. J. Plant Ecol. 3, 175–182. https://doi.org/10.1093/jpe/rtq022
Yang, M., Wang, S., Zhao, X., Gao, X., Liu, S., 2020. Soil properties of apple orchards on China’s Loess Plateau. Sci. Total Environ. 723, 138041. https://doi.org/10.1016/j.scitotenv.2020.138041
Ye, Q., Wang, Y.-H., Zhang, Z.-T., Huang, W.-L., Li, L.-P., Li, J., Liu, J., Zheng, Y., Mo, J.-M., Zhang, W., Wang, J.-J., 2020. Dissolved organic matter characteristics in soils of tropical legume and non-legume tree plantations. Soil Biol. Biochem. 148, 107880. https://doi.org/10.1016/j.soilbio.2020.107880
Yu, J., Liu, Q., 2020. Larix olgensis growth–climate response between lower and upper elevation limits: an intensive study along the eastern slope of the Changbai Mountains, northeastern China. J. For. Res. 31, 231–244. https://doi.org/10.1007/s11676-018-0788-1
Zhang, J., Zhang, N., Liu, Y.-X., Zhang, X., Hu, B., Qin, Y., Xu, H., Wang, H., Guo, X., Qian, J., Wang, W., Zhang, P., Jin, T., Chu, C., Bai, Y., 2018. Root microbiota shift in rice correlates with resident time in the field and developmental stage. Sci. China Life Sci. 61, 613–621. https://doi.org/10.1007/s11427-018-9284-4
Zhang, S., Wang, Y., Sun, L., Qiu, C., Ding, Y., Gu, H., Wang, L., Wang, Z., Ding, Z., 2020. Organic mulching positively regulates the soil microbial communities and ecosystem functions in tea plantation. BMC Microbiol. 20, 103. https://doi.org/10.1186/s12866-020-01794-8
Zheng, H., Yang, T., Bao, Y., He, P., Yang, K., Mei, X., Wei, Z., Xu, Y., Shen, Q., Banerjee, S., 2021. Network analysis and subsequent culturing reveal keystone taxa involved in microbial litter decomposition dynamics. Soil Biol. Biochem. 157, 108230. https://doi.org/10.1016/j.soilbio.2021.108230
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M., Herbold, C.W., Eichorst, S.A., Woebken, D., Richter, A., Wanek, W., 2019. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521
Zhong, Y., Yan, W., Wang, R., Wang, W., Shangguan, Z., 2018. Decreased occurrence of carbon cycle functions in microbial communities along with long-term secondary succession. Soil Biol. Biochem. 123, 207–217. https://doi.org/10.1016/j.soilbio.2018.05.017
Zhou, J., Bai, X., Zhao, R., 2017. Microbial communities in the native habitats of Agaricus sinodeliciosus from Xinjiang Province revealed by amplicon sequencing. Sci. Rep. 7, 15719. https://doi.org/10.1038/s41598-017-16082-1
Zhu, J., Zhou, X., Fang, W., Xiong, X., Zhu, B., Ji, C., Fang, J., 2017. Plant Debris and Its Contribution to Ecosystem Carbon Storage in Successional Larix gmelinii Forests in Northeastern China. Forests 8, 191. https://doi.org/10.3390/f8060191