Figure 9: The Conceptual Model Of Incorporating Geospatial Data For Oil
Palm Sustainability Modelling Via Blockchains52
In spite of the pivotal role EO data plays in identifying the
environmental impacts of agriculture, there is virtually no research
looking into incorporating publicly available Eo data such as those
obtained from Landsat within blockchain frameworks. Hence at this point,
it is difficult to say which blockchain frameworks are best suited for
developing geospatial blockchains for consistently establishing crop
origins and their impacts.
Blockchain technology can enable businesses to comply with legislation
and consumer demands, which will create a positive social and
environmental impact50and even transform food systems53.
However for blockchain technologies to be functional, global development
and agreement on suitable data standards and governance are needed.
Unless we have standard transparency norms for agribusinesses, we can
have a situation in which they provide only limited information and even
obscure data on commodity sourcing and yet claim to be sustainable or
obtain third-party certification53.
Conclusions
Blockchain technology truly allows a pathway to improve sustainability
and transparency throughout the agricultural supply chain from farm to
fork. For agricultural transparency and supply chain sustainability,
permissioned blockchain frameworks such as Hyperledger and
permissionless blockchain frameworks such as Ethereum both have their
strengths and weaknesses. While IoT data can support establishing
provenance and ensuring benchmark growing conditions for meeting
sustainability and organic standards, the use of EO data for minimizing
deforestation has still not been widely adopted. While blockchain
technology has been adopted for a variety of agricultural sustainability
applications, but the lack of global data standards can hinder the
widespread adoption of blockchain technology.
Acknowledgements : I am grateful to Dr Vallipuram
Muthukkumarasamy of Griffith University (Australia) for his guidance.
Bibliography
1. Winkler K,
Fuchs R, Rounsevell M, Herold M. Global land use changes are four times
greater than previously estimated. Nat Commun. 2021;12(1):2501.
doi:10.1038/s41467-021-22702-2
2. Pendrill F,
Persson M, Godar J, Kastner T. Deforestation displaced: trade in
forest-risk commodities and the prospects for a global forest
transition. Environmental Research Letters. Published online
March 6, 2019. doi:10.1088/1748-9326/ab0d41
3. Kopittke PM,
Menzies NW, Wang P, McKenna BA, Lombi E. Soil and the intensification of
agriculture for global food security. Environ Int.
2019;132:105078. doi:10.1016/j.envint.2019.105078
4. Zabel F,
Delzeit R, Schneider JM, Seppelt R, Mauser W, Václavík T. Global impacts
of future cropland expansion and intensification on agricultural markets
and biodiversity. Nat Commun. 2019;10(1):2844.
doi:10.1038/s41467-019-10775-z
5. Zhao Z-H, Hui
C, He D-H, Li B-L. Effects of agricultural intensification on ability of
natural enemies to control aphids. Sci Rep. 2015;5:8024.
doi:10.1038/srep08024
6. Richter CH,
Custer B, Steele JA, Wilcox BA, Xu J. Intensified food production and
correlated risks to human health in the Greater Mekong Subregion: a
systematic review. Environ Health. 2015;14:43.
doi:10.1186/s12940-015-0033-8
7. zu Ermgassen
EKHJ, Ayre B, Godar J, et al. Using supply chain data to monitor zero
deforestation commitments: an assessment of progress in the Brazilian
soy sector. Environmental Research Letters. 2020;15(3):035003.
doi:10.1088/1748-9326/ab6497
8. Lambin EF,
Gibbs HK, Heilmayr R, et al. The role of supply-chain initiatives in
reducing deforestation. Nat Clim Chang. 2018;8(2):109-116.
doi:10.1038/s41558-017-0061-1
9. Mammadova A,
Masiero M, Pettenella D. Embedded deforestation: the case study of the
brazilian–italian bovine leather trade. Forests. 2020;11(4):472.
doi:10.3390/f11040472
10. Demestichas
K, Peppes N, Alexakis T, Adamopoulou E. Blockchain in agriculture
traceability systems: A review. Appl Sci. 2020;10(12):4113.
doi:10.3390/app10124113
11. Salah K,
Nizamuddin N, Jayaraman R, Omar M. Blockchain-Based Soybean Traceability
in Agricultural Supply Chain. IEEE Access. 2019;7:73295-73305.
doi:10.1109/ACCESS.2019.2918000
12. Yadav VS,
Singh AR, Raut RD, Cheikhrouhou N. Blockchain drivers to achieve
sustainable food security in the Indian context. Ann Oper Res.
Published online November 11, 2021. doi:10.1007/s10479-021-04308-5
13. How the JBS
blockchain platform will tackle deforestation in Brazil. Accessed
November 14, 2021.
https://www.thegrocer.co.uk/the-grocer-vision/how-the-jbs-blockchain-platform-will-tackle-deforestation-in-brazil/657838.article
14. Prashar D,
Jha N, Jha S, Lee Y, Joshi GP. Blockchain-Based Traceability and
Visibility for Agricultural Products: A Decentralized Way of Ensuring
Food Safety in India. Sustainability. 2020;12(8):3497.
doi:10.3390/su12083497
15. Aronzon S.
Blockchain and geographical indications: A natural fit? SSRN
Journal. Published online 2019. doi:10.2139/ssrn.3627352
16. Martos V,
Ahmad A, Cartujo P, Ordoñez J. Ensuring Agricultural Sustainability
through Remote Sensing in the Era of Agriculture 5.0. Appl Sci.
2021;11(13):5911. doi:10.3390/app11135911
17. Kamilaris A,
Fonts A, Prenafeta-Boldύ FX. The rise of blockchain technology in
agriculture and food supply chains. Trends Food Sci Technol.
2019;91:640-652. doi:10.1016/j.tifs.2019.07.034
18. Galvez JF,
Mejuto JC, Simal-Gandara J. Future challenges on the use of blockchain
for food traceability analysis. TrAC Trends in Analytical
Chemistry. 2018;107:222-232. doi:10.1016/j.trac.2018.08.011
19. Xu J, Guo S,
Xie D, Yan Y. Blockchain: A new safeguard for agri-foods.Artificial Intelligence in Agriculture. 2020;4:153-161.
doi:10.1016/j.aiia.2020.08.002
20. Tsolakis N,
Niedenzu D, Simonetto M, Dora M, Kumar M. Supply network design to
address United Nations Sustainable Development Goals: A case study of
blockchain implementation in Thai fish industry. J Bus Res.
2021;131:495-519. doi:10.1016/j.jbusres.2020.08.003
21. Chan KY,
Abdullah J, Shahid A. A Framework for Traceable and Transparent Supply
Chain Management for Agri-food Sector in Malaysia using Blockchain
Technology. ijacsa. 2019;10(11).
doi:10.14569/IJACSA.2019.0101120
22. M S H, R S, M
R. Block chain based agricultural supply chain-A review. Global
Transitions Proceedings. 2021;2(2):220-226.
doi:10.1016/j.gltp.2021.08.041
23. Torky M,
Hassanein AE. Integrating blockchain and the internet of things in
precision agriculture: Analysis, opportunities, and challenges.Computers and Electronics in Agriculture. Published online
September 2020:105476. doi:10.1016/j.compag.2020.105476
24. Ronaghi MH. A
blockchain maturity model in agricultural supply chain.Information Processing in Agriculture. 2021;8(3):398-408.
doi:10.1016/j.inpa.2020.10.004
25. Shoker A.
Blockchain technology as a means of sustainable development. One
Earth. 2021;4(6):795-800. doi:10.1016/j.oneear.2021.05.014
26. Kshetri N.
Blockchain and sustainable supply chain management in developing
countries. Int J Inf Manage. 2021;60:102376.
doi:10.1016/j.ijinfomgt.2021.102376
27. Bringing
traceability and accountability to the supply chain through the power of
Hyperledger Sawtooth’s distributed ledger technology. Accessed November
22, 2021. https://sawtooth.hyperledger.org/examples/seafood.html
28. Xiong H,
Dalhaus T, Wang P, Huang J. Blockchain technology for agriculture:
applications and rationale. Front Blockchain. 2020;3.
doi:10.3389/fbloc.2020.00007
29. Wang L, Xu L,
Zheng Z, et al. Smart Contract-Based Agricultural Food Supply Chain
Traceability. IEEE Access. 2021;9:9296-9307.
doi:10.1109/ACCESS.2021.3050112
30. Collart AJ,
Canales E. How might broad adoption of blockchain‐based traceability
impact theU.S. fresh produce supply chain? Applied Economic
Perspectives and Policy. Published online January 14, 2021.
doi:10.1002/aepp.13134
31. UCC COFFEE
LAUNCHES UK’S FIRST FARMER CONNECT BLOCKCHAIN PARTNERSHIP. Accessed
November 17, 2021.
https://www.ucc-coffee.co.uk/ucc-coffee-launches-uks-first-farmer-connect-blockchain-partnership/
32. Kamath R. Food
Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM.The JBBA. 2018;1(1):1-12. doi:10.31585/jbba-1-1-(10)2018
33. Jaiyen J,
Pongnumkul S, Chaovalit P. A Proof-of-Concept of Farmer-to-Consumer Food
Traceability on Blockchain for Local Communities. In: 2020
International Conference on Computer Science and Its Application in
Agriculture (ICOSICA). IEEE; 2020:1-5.
doi:10.1109/ICOSICA49951.2020.9243172
34. Marchese A,
Tomarchio O. An Agri-Food Supply Chain Traceability Management System
based on Hyperledger Fabric Blockchain. In: Proceedings of the
23rd International Conference on Enterprise Information Systems.
SCITEPRESS - Science and Technology Publications; 2021:648-658.
doi:10.5220/0010447606480658
35. Hao Z, Mao D,
Zhang B, Zuo M, Zhao Z. A novel visual analysis method of food safety
risk traceability based on blockchain. Int J Environ Res Public
Health. 2020;17(7). doi:10.3390/ijerph17072300
36. Chen C-L,
Shang X, Tsaur W-J, et al. An Anti-Counterfeit and Traceable Management
System for Brand Clothing with Hyperledger Fabric Framework.Symmetry. 2021;13(11):2048. doi:10.3390/sym13112048
37. Miatton F,
Amado L. Fairness, Transparency and Traceability in the Coffee Value
Chain through Blockchain Innovation. In: 2020 International
Conference on Technology and Entrepreneurship - Virtual (ICTE-V). IEEE;
2020:1-6. doi:10.1109/ICTE-V50708.2020.9113785
38. Zhang L, Zeng
W, Jin Z, Su Y, Chen H. A research on traceability technology of
agricultural products supply chain based on blockchain and IPFS.Security Comm Networks. 2021;2021:1-12. doi:10.1155/2021/3298514
39. Pranto TH,
Noman AA, Mahmud A, Haque AB. Blockchain and smart contract for IoT
enabled smart agriculture. PeerJ Comput Sci. 2021;7:e407.
doi:10.7717/peerj-cs.407
40. Thakur V,
Doja MN, Dwivedi YK, Ahmad T, Khadanga G. Land records on Blockchain for
implementation of Land Titling in India. Int J Inf Manage.
2020;52:101940. doi:10.1016/j.ijinfomgt.2019.04.013
41. Grecuccio J,
Giusto E, Fiori F, Rebaudengo M. Combining Blockchain and IoT:
Food-Chain Traceability and Beyond. Energies. 2020;13(15):3820.
doi:10.3390/en13153820
42. Jha N,
Prashar D, Khalaf OI, Alotaibi Y, Alsufyani A, Alghamdi S. Blockchain
based crop insurance: A decentralized insurance system for modernization
of indian farmers. Sustainability. 2021;13(16):8921.
doi:10.3390/su13168921
43. Iyer V, Shah
K, Rane S, Shankarmani R. Decentralised Peer-to-Peer Crop Insurance. In:Proceedings of the 3rd ACM International Symposium on Blockchain
and Secure Critical Infrastructure. ACM; 2021:3-12.
doi:10.1145/3457337.3457837
44. Shih D-H, Lu
K-C, Shih Y-T, Shih P-Y. A simulated organic vegetable production and
marketing environment by using ethereum. Electronics.
2019;8(11):1341. doi:10.3390/electronics8111341
45. dos Santos R,
Torrisi N, Yamada E, Pantoni R. IGR Token-Raw Material and Ingredient
Certification of Recipe Based Foods Using Smart Contracts.Informatics. 2019;6(1):11. doi:10.3390/informatics6010011
46.
Salmerón-Manzano E, Manzano-Agugliaro F. The role of smart contracts in
sustainability: worldwide research trends. Sustainability.
2019;11(11):3049. doi:10.3390/su11113049
47. Awan SH,
Ahmad S, Khan Y, Safwan N, Qurashi SS, Hashim MZ. A Combo Smart Model of
Blockchain with the Internet of Things (IoT) for the Transformation of
Agriculture Sector. Wireless Pers Commun. 2021;121(3):2233-2249.
doi:10.1007/s11277-021-08820-6
48. Chun-Ting P,
Meng-Ju L, Nen-Fu H, Jhong-Ting L, Jia-Jung S. Agriculture Blockchain
Service Platform for Farm-to-Fork Traceability with IoT Sensors. In:2020 International Conference on Information Networking (ICOIN).
IEEE; 2020:158-163. doi:10.1109/ICOIN48656.2020.9016535
49. Feng H, Wang
X, Duan Y, Zhang J, Zhang X. Applying blockchain technology to improve
agri-food traceability: A review of development methods, benefits and
challenges. J Clean Prod. 2020;260:121031.
doi:10.1016/j.jclepro.2020.121031
50. Hang L, Ullah
I, Kim D-H. A secure fish farm platform based on blockchain for
agriculture data integrity. Computers and Electronics in
Agriculture. 2020;170:105251. doi:10.1016/j.compag.2020.105251
51. Miloudi L,
Rezeg K, Kazar O, Miloudi MK. Smart sustainable farming management using
integrated approach of iot, blockchain & geospatial technologies. In:
Ezziyyani M, ed. Advanced Intelligent Systems for Sustainable
Development (AI2SD’2019) Volume 2 - Advanced Intelligent Systems for
Sustainable Development Applied to Agriculture and Health. Vol 1103.
Advances in intelligent systems and computing. Springer International
Publishing; 2020:340-347. doi:10.1007/978-3-030-36664-3_38
52. Hirbli T.Palm Oil Traceability: Blockchain Meets Supply Chain. Published
online June 1, 2018.
53. Yang L, Zhang
J, Shi X. Can blockchain help food supply chains with platform
operations during the COVID-19 outbreak? Electron Commer Res
Appl. 2021;49:101093. doi:10.1016/j.elerap.2021.101093