Figure 9: The Conceptual Model Of Incorporating Geospatial Data For Oil Palm Sustainability Modelling Via Blockchains52
In spite of the pivotal role EO data plays in identifying the environmental impacts of agriculture, there is virtually no research looking into incorporating publicly available Eo data such as those obtained from Landsat within blockchain frameworks. Hence at this point, it is difficult to say which blockchain frameworks are best suited for developing geospatial blockchains for consistently establishing crop origins and their impacts.
Blockchain technology can enable businesses to comply with legislation and consumer demands, which will create a positive social and environmental impact50and even transform food systems53. However for blockchain technologies to be functional, global development and agreement on suitable data standards and governance are needed. Unless we have standard transparency norms for agribusinesses, we can have a situation in which they provide only limited information and even obscure data on commodity sourcing and yet claim to be sustainable or obtain third-party certification53.
Conclusions
Blockchain technology truly allows a pathway to improve sustainability and transparency throughout the agricultural supply chain from farm to fork. For agricultural transparency and supply chain sustainability, permissioned blockchain frameworks such as Hyperledger and permissionless blockchain frameworks such as Ethereum both have their strengths and weaknesses. While IoT data can support establishing provenance and ensuring benchmark growing conditions for meeting sustainability and organic standards, the use of EO data for minimizing deforestation has still not been widely adopted. While blockchain technology has been adopted for a variety of agricultural sustainability applications, but the lack of global data standards can hinder the widespread adoption of blockchain technology.
Acknowledgements : I am grateful to Dr Vallipuram Muthukkumarasamy of Griffith University (Australia) for his guidance.
Bibliography
1. Winkler K, Fuchs R, Rounsevell M, Herold M. Global land use changes are four times greater than previously estimated. Nat Commun. 2021;12(1):2501. doi:10.1038/s41467-021-22702-2
2. Pendrill F, Persson M, Godar J, Kastner T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environmental Research Letters. Published online March 6, 2019. doi:10.1088/1748-9326/ab0d41
3. Kopittke PM, Menzies NW, Wang P, McKenna BA, Lombi E. Soil and the intensification of agriculture for global food security. Environ Int. 2019;132:105078. doi:10.1016/j.envint.2019.105078
4. Zabel F, Delzeit R, Schneider JM, Seppelt R, Mauser W, Václavík T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat Commun. 2019;10(1):2844. doi:10.1038/s41467-019-10775-z
5. Zhao Z-H, Hui C, He D-H, Li B-L. Effects of agricultural intensification on ability of natural enemies to control aphids. Sci Rep. 2015;5:8024. doi:10.1038/srep08024
6. Richter CH, Custer B, Steele JA, Wilcox BA, Xu J. Intensified food production and correlated risks to human health in the Greater Mekong Subregion: a systematic review. Environ Health. 2015;14:43. doi:10.1186/s12940-015-0033-8
7. zu Ermgassen EKHJ, Ayre B, Godar J, et al. Using supply chain data to monitor zero deforestation commitments: an assessment of progress in the Brazilian soy sector. Environmental Research Letters. 2020;15(3):035003. doi:10.1088/1748-9326/ab6497
8. Lambin EF, Gibbs HK, Heilmayr R, et al. The role of supply-chain initiatives in reducing deforestation. Nat Clim Chang. 2018;8(2):109-116. doi:10.1038/s41558-017-0061-1
9. Mammadova A, Masiero M, Pettenella D. Embedded deforestation: the case study of the brazilian–italian bovine leather trade. Forests. 2020;11(4):472. doi:10.3390/f11040472
10. Demestichas K, Peppes N, Alexakis T, Adamopoulou E. Blockchain in agriculture traceability systems: A review. Appl Sci. 2020;10(12):4113. doi:10.3390/app10124113
11. Salah K, Nizamuddin N, Jayaraman R, Omar M. Blockchain-Based Soybean Traceability in Agricultural Supply Chain. IEEE Access. 2019;7:73295-73305. doi:10.1109/ACCESS.2019.2918000
12. Yadav VS, Singh AR, Raut RD, Cheikhrouhou N. Blockchain drivers to achieve sustainable food security in the Indian context. Ann Oper Res. Published online November 11, 2021. doi:10.1007/s10479-021-04308-5
13. How the JBS blockchain platform will tackle deforestation in Brazil. Accessed November 14, 2021. https://www.thegrocer.co.uk/the-grocer-vision/how-the-jbs-blockchain-platform-will-tackle-deforestation-in-brazil/657838.article
14. Prashar D, Jha N, Jha S, Lee Y, Joshi GP. Blockchain-Based Traceability and Visibility for Agricultural Products: A Decentralized Way of Ensuring Food Safety in India. Sustainability. 2020;12(8):3497. doi:10.3390/su12083497
15. Aronzon S. Blockchain and geographical indications: A natural fit? SSRN Journal. Published online 2019. doi:10.2139/ssrn.3627352
16. Martos V, Ahmad A, Cartujo P, Ordoñez J. Ensuring Agricultural Sustainability through Remote Sensing in the Era of Agriculture 5.0. Appl Sci. 2021;11(13):5911. doi:10.3390/app11135911
17. Kamilaris A, Fonts A, Prenafeta-Boldύ FX. The rise of blockchain technology in agriculture and food supply chains. Trends Food Sci Technol. 2019;91:640-652. doi:10.1016/j.tifs.2019.07.034
18. Galvez JF, Mejuto JC, Simal-Gandara J. Future challenges on the use of blockchain for food traceability analysis. TrAC Trends in Analytical Chemistry. 2018;107:222-232. doi:10.1016/j.trac.2018.08.011
19. Xu J, Guo S, Xie D, Yan Y. Blockchain: A new safeguard for agri-foods.Artificial Intelligence in Agriculture. 2020;4:153-161. doi:10.1016/j.aiia.2020.08.002
20. Tsolakis N, Niedenzu D, Simonetto M, Dora M, Kumar M. Supply network design to address United Nations Sustainable Development Goals: A case study of blockchain implementation in Thai fish industry. J Bus Res. 2021;131:495-519. doi:10.1016/j.jbusres.2020.08.003
21. Chan KY, Abdullah J, Shahid A. A Framework for Traceable and Transparent Supply Chain Management for Agri-food Sector in Malaysia using Blockchain Technology. ijacsa. 2019;10(11). doi:10.14569/IJACSA.2019.0101120
22. M S H, R S, M R. Block chain based agricultural supply chain-A review. Global Transitions Proceedings. 2021;2(2):220-226. doi:10.1016/j.gltp.2021.08.041
23. Torky M, Hassanein AE. Integrating blockchain and the internet of things in precision agriculture: Analysis, opportunities, and challenges.Computers and Electronics in Agriculture. Published online September 2020:105476. doi:10.1016/j.compag.2020.105476
24. Ronaghi MH. A blockchain maturity model in agricultural supply chain.Information Processing in Agriculture. 2021;8(3):398-408. doi:10.1016/j.inpa.2020.10.004
25. Shoker A. Blockchain technology as a means of sustainable development. One Earth. 2021;4(6):795-800. doi:10.1016/j.oneear.2021.05.014
26. Kshetri N. Blockchain and sustainable supply chain management in developing countries. Int J Inf Manage. 2021;60:102376. doi:10.1016/j.ijinfomgt.2021.102376
27. Bringing traceability and accountability to the supply chain through the power of Hyperledger Sawtooth’s distributed ledger technology. Accessed November 22, 2021. https://sawtooth.hyperledger.org/examples/seafood.html
28. Xiong H, Dalhaus T, Wang P, Huang J. Blockchain technology for agriculture: applications and rationale. Front Blockchain. 2020;3. doi:10.3389/fbloc.2020.00007
29. Wang L, Xu L, Zheng Z, et al. Smart Contract-Based Agricultural Food Supply Chain Traceability. IEEE Access. 2021;9:9296-9307. doi:10.1109/ACCESS.2021.3050112
30. Collart AJ, Canales E. How might broad adoption of blockchain‐based traceability impact theU.S. fresh produce supply chain? Applied Economic Perspectives and Policy. Published online January 14, 2021. doi:10.1002/aepp.13134
31. UCC COFFEE LAUNCHES UK’S FIRST FARMER CONNECT BLOCKCHAIN PARTNERSHIP. Accessed November 17, 2021. https://www.ucc-coffee.co.uk/ucc-coffee-launches-uks-first-farmer-connect-blockchain-partnership/
32. Kamath R. Food Traceability on Blockchain: Walmart’s Pork and Mango Pilots with IBM.The JBBA. 2018;1(1):1-12. doi:10.31585/jbba-1-1-(10)2018
33. Jaiyen J, Pongnumkul S, Chaovalit P. A Proof-of-Concept of Farmer-to-Consumer Food Traceability on Blockchain for Local Communities. In: 2020 International Conference on Computer Science and Its Application in Agriculture (ICOSICA). IEEE; 2020:1-5. doi:10.1109/ICOSICA49951.2020.9243172
34. Marchese A, Tomarchio O. An Agri-Food Supply Chain Traceability Management System based on Hyperledger Fabric Blockchain. In: Proceedings of the 23rd International Conference on Enterprise Information Systems. SCITEPRESS - Science and Technology Publications; 2021:648-658. doi:10.5220/0010447606480658
35. Hao Z, Mao D, Zhang B, Zuo M, Zhao Z. A novel visual analysis method of food safety risk traceability based on blockchain. Int J Environ Res Public Health. 2020;17(7). doi:10.3390/ijerph17072300
36. Chen C-L, Shang X, Tsaur W-J, et al. An Anti-Counterfeit and Traceable Management System for Brand Clothing with Hyperledger Fabric Framework.Symmetry. 2021;13(11):2048. doi:10.3390/sym13112048
37. Miatton F, Amado L. Fairness, Transparency and Traceability in the Coffee Value Chain through Blockchain Innovation. In: 2020 International Conference on Technology and Entrepreneurship - Virtual (ICTE-V). IEEE; 2020:1-6. doi:10.1109/ICTE-V50708.2020.9113785
38. Zhang L, Zeng W, Jin Z, Su Y, Chen H. A research on traceability technology of agricultural products supply chain based on blockchain and IPFS.Security Comm Networks. 2021;2021:1-12. doi:10.1155/2021/3298514
39. Pranto TH, Noman AA, Mahmud A, Haque AB. Blockchain and smart contract for IoT enabled smart agriculture. PeerJ Comput Sci. 2021;7:e407. doi:10.7717/peerj-cs.407
40. Thakur V, Doja MN, Dwivedi YK, Ahmad T, Khadanga G. Land records on Blockchain for implementation of Land Titling in India. Int J Inf Manage. 2020;52:101940. doi:10.1016/j.ijinfomgt.2019.04.013
41. Grecuccio J, Giusto E, Fiori F, Rebaudengo M. Combining Blockchain and IoT: Food-Chain Traceability and Beyond. Energies. 2020;13(15):3820. doi:10.3390/en13153820
42. Jha N, Prashar D, Khalaf OI, Alotaibi Y, Alsufyani A, Alghamdi S. Blockchain based crop insurance: A decentralized insurance system for modernization of indian farmers. Sustainability. 2021;13(16):8921. doi:10.3390/su13168921
43. Iyer V, Shah K, Rane S, Shankarmani R. Decentralised Peer-to-Peer Crop Insurance. In:Proceedings of the 3rd ACM International Symposium on Blockchain and Secure Critical Infrastructure. ACM; 2021:3-12. doi:10.1145/3457337.3457837
44. Shih D-H, Lu K-C, Shih Y-T, Shih P-Y. A simulated organic vegetable production and marketing environment by using ethereum. Electronics. 2019;8(11):1341. doi:10.3390/electronics8111341
45. dos Santos R, Torrisi N, Yamada E, Pantoni R. IGR Token-Raw Material and Ingredient Certification of Recipe Based Foods Using Smart Contracts.Informatics. 2019;6(1):11. doi:10.3390/informatics6010011
46. Salmerón-Manzano E, Manzano-Agugliaro F. The role of smart contracts in sustainability: worldwide research trends. Sustainability. 2019;11(11):3049. doi:10.3390/su11113049
47. Awan SH, Ahmad S, Khan Y, Safwan N, Qurashi SS, Hashim MZ. A Combo Smart Model of Blockchain with the Internet of Things (IoT) for the Transformation of Agriculture Sector. Wireless Pers Commun. 2021;121(3):2233-2249. doi:10.1007/s11277-021-08820-6
48. Chun-Ting P, Meng-Ju L, Nen-Fu H, Jhong-Ting L, Jia-Jung S. Agriculture Blockchain Service Platform for Farm-to-Fork Traceability with IoT Sensors. In:2020 International Conference on Information Networking (ICOIN). IEEE; 2020:158-163. doi:10.1109/ICOIN48656.2020.9016535
49. Feng H, Wang X, Duan Y, Zhang J, Zhang X. Applying blockchain technology to improve agri-food traceability: A review of development methods, benefits and challenges. J Clean Prod. 2020;260:121031. doi:10.1016/j.jclepro.2020.121031
50. Hang L, Ullah I, Kim D-H. A secure fish farm platform based on blockchain for agriculture data integrity. Computers and Electronics in Agriculture. 2020;170:105251. doi:10.1016/j.compag.2020.105251
51. Miloudi L, Rezeg K, Kazar O, Miloudi MK. Smart sustainable farming management using integrated approach of iot, blockchain & geospatial technologies. In: Ezziyyani M, ed. Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) Volume 2 - Advanced Intelligent Systems for Sustainable Development Applied to Agriculture and Health. Vol 1103. Advances in intelligent systems and computing. Springer International Publishing; 2020:340-347. doi:10.1007/978-3-030-36664-3_38
52. Hirbli T.Palm Oil Traceability: Blockchain Meets Supply Chain. Published online June 1, 2018.
53. Yang L, Zhang J, Shi X. Can blockchain help food supply chains with platform operations during the COVID-19 outbreak? Electron Commer Res Appl. 2021;49:101093. doi:10.1016/j.elerap.2021.101093