References
Allevato, D.M., Kiyota, E., Mazzafera, P. & Nixon, K.C. (2019).
Ecometabolomic analysis of wild populations of Pilocarpus
pennatifolius (Rutaceae) using unimodal analyses. Frontiers in Plant
Science, 10, 258. https://doi-org/10.3389/fpls.2019.00258.
Alverson, W.S., Waller, D.M. & Solheim, S.L. (1988). Forests too deer:
Edge effects in northern Wisconsin. Conservation Biology, 2(4), 348-358.
https://doi.org/10.1111/j.1523-1739.1988.tb00199.x.
Anderson, R.C. & Katz, A.J. (1993). Recovery of browse-sensitive tree
species following release from white-tailed deer Odocoileus
virginianus Zimmerman browsing pressure. Biological Conservation,
63(3), 203-208. https://doi.org/10.1016/0006-3207(93)90713-B.
Aronson, M.F., Handel, S.N., La Puma, I.P. & Clemants, S.E. (2015).
Urbanization promotes non-native woody species and diverse plant
assemblages in the New York metropolitan region. Urban Ecosystems,
18(1), 31-45. https://doi.org/10.1007/s11252-014-0382-z.
Averill, K.M., Mortensen, D.A., Smithwick, E.A. & Post, E. (2016). Deer
feeding selectivity for invasive plants. Biological Invasions, 18(5),
1247-1263. https://doi.org/10.1007/s10530-016-1063-z.
Baldwin, I.T. & Schultz, J.C. (2015). Rapid changes in tree leaf
chemistry induced by damage: Evidence for communication between plants.
Science, 221(4607), 277-279.
https://doi.org/10.1126/science.221.4607.277.
Ballaré, C.L. (2014). Light regulation of plant defense. Annual Review
of Plant Biology, 65(1), 335-363.
https://doi.org/10.1146/annurev-arplant-050213-040145.
Batzli, G.O. & Dejaco, C.E. (2013). White-tailed deer (Odocoileus
virginianus ) facilitate the development of nonnative grasslands in
central Illinois. American Midland Naturalist, 170(2), 323-334.
https://doi.org/10.1674/0003-0031-170.2.323.
Berini, J.L., Brockman, S.A., Hegeman, A.D., Reich, P.B., Muthukrishnan,
R., Montgomery, R.A. & Forester, J.D. (2018). Combinations of abiotic
factors differentially alter production of plant secondary metabolites
in five woody plant species in the boreal-temperate transition zone.
Frontiers in Plant Science, 9, 1257.
https://doi.org/10.3389/fpls.2018.01257.
Blossey, B., Curtis, P., Boulanger, J. & Dávalos, A. (2019). Red oak
seedlings as indicators of deer browse pressure: Gauging the outcome of
different white‐tailed deer management approaches. Ecology and
Evolution, 9(23), 13085-13103. https://doi.org/10.1002/ece3.5729.
Bressette, J.W., Beck, H. & Beauchamp, V.B. (2012). Beyond the browse
line: Complex cascade effects mediated by white-tailed deer. Oikos,
121(11), 1749-1760.
https://doi.org/10.1111/j.1600-0706.2011.20305.x.
Brown, M.J. & Parker, G.G. (1994). Canopy light transmittance in a
chronosequence of mixed-species deciduous forests. Canadian Journal of
Forest Research, 24(8), 1694-1703.
https://doi.org/10.1139/x94-219.
Bruce, T.J.A. (2014). Variation in plant responsiveness to defence
elicitors caused by genotype and environment. Frontiers in Plant
Science, 5, 349. https://doi.org/10.3389/fpls.2014.00349.
Cash, V.W. & Fulbright, T.E. (2005). Nutrient enrichment, tannins, and
thorns: Effects on browsing of shrub seedlings. The Journal of Wildlife
Management, 69(2), 782-793.
https://doi.org/10.2193/0022-541X(2005)069[0782:NETATE]2.0.CO;2.
Cipollini, D., Walters, D. & Voelckel, C. (2014). Costs of resistance
in plants: From theory to evidence. Annual Plant Reviews (eds C.
Voelckel & G. Jander), pp. 263-307. John Wiley & Sons, Ltd,
Chichester, UK.
Côté, S.D., Rooney, T.P., Tremblay, J.P., Dussault, C. & Waller, D.M.
(2004). Ecological impacts of deer overabundance. Annual Review of
Ecology and Systematics, 35, 113-147.
https://doi.org/10.1146/annurev.ecolsys.35.021103.105725.
Crandall, S.G., Gold, K.M., Jimenez-Gasco, M.d.M., Filgueiras, C.C. &
Willett, D.S. (2020). A multi-omics approach to solving problems in
plant disease ecology. PloS One, 15(9), e0237975.
https://doi.org/10.1371/journal.pone.0237975.
Crawley, M.J. (1985). Reduction of oak fecundity by low-density
herbivore populations. Nature, 314(6007), 163-164.
https://doi.org/10.1038/314163a0.
Culbert, P.D., Radeloff, V.C., Flather, C.H., Kellndorfer, J.M.,
Rittenhouse, C.D. & Pidgeon, A.M. (2013). The influence of vertical and
horizontal habitat structure on nationwide patterns of avian
biodiversity. The Auk, 130(4), 656-665.
https://doi.org/10.1525/auk.2013.13007.
Dodd, L.E., Lacki, M.J., Britzke, E.R., Buehler, D.A., Keyser, P.D.,
Larkin, J.L., Rodewald, A.D., Wigley, T.B., Wood, P.B. & Rieske, L.K.
(2012). Forest structure affects trophic linkages: How silvicultural
disturbance impacts bats and their insect prey. Forest Ecology and
Management, 267, 262-270.
https://doi.org/10.1016/j.foreco.2011.12.016.
Dorion, S., Ouellet, J.C. & Rivoal, J. (2021). Glutathione metabolism
in plants under stress: Beyond reactive oxygen species detoxification.
Metabolites, 11(9), 641. https://doi.org/10.3390/metabo11090641.
Dubreuil-Maurizi, C. & Poinssot, B. (2012). Role of glutathione in
plant signaling under biotic stress. Plant Signaling & Behavior, 7(2),
210-212. https://doi.org/10.4161/psb.18831.
Duncan, A.J., Hartley, S.E., Thurlow, M., Young, S. & Staines, B.W.
(2001). Clonal variation in monoterpene concentrations in Sitka spruce
(Picea sitchensis ) saplings and its effect on their
susceptibility to browsing damage by red deer (Cervus elaphus ).
Forest Ecology and Management, 148(1), 259-269.
https://doi.org/10.1016/S0378-1127(00)00540-5.
Endara, M. & Coley, P.D. (2011). The resource availability hypothesis
revisited: A meta‐analysis. Functional Ecology, 25(2), 389-398.
https://doi.org/10.1111/j.1365-435.2010.01803.x.
Endara, M., Weinhold, A., Cox, J.E., Wiggins, N.L., Coley, P.D. &
Kursar, T.A. (2015). Divergent evolution in antiherbivore defences
within species complexes at a single Amazonian site. Journal of Ecology,
103(5), 1107-1118. http://dx.doi.org/10.1111/1365-2745.12431.
Feeney, P. (1976). Plant apparency and chemical defense. Recent Advances
in Phytochemistry, 10, 1-40.
https://doi.org/10.1007/978-1-4684-2646-5_1.
Fineblum, W.L. & Rausher, M.D. (1995). Tradeoff between resistance and
tolerance to herbivore damage in a morning glory. Nature, 377(6549),
517-520. https://doi.org/10.1038/377517a0.
Gargallo-Garriga, A., Sardans, J., Granda, V., Llusià, J., Peguero, G.,
Asensio, D., Ogaya, R., Urbina, I., Van Langenhove, L., Verryckt, L.T.,
Chave, J., Courtois, E.A., Stahl, C., Grau, O., Klem, K., Urban, O.,
Janssens, I.A. & Peñuelas, J. (2020). Different ”metabolomic niches” of
the highly diverse tree species of the French Guiana rainforests.
Scientific Reports, 10(1), 6937.
https://doi.org/10.1038/s41598-020-63891-y.
Gómez, J.M. & Zamora, R. (2002). Thorns as induced mechanical defense
in a long-lived shrub (Hormathophylla spinosa , Cruciferae).
Ecology, 83(4), 885-890.
https://doi-org.ezproxy.tcnj.edu/10.1890/0012-9658(2002)083[0885:TAIMDI]2.0.CO;2.
Habeck, C.W. & Schultz, A.K. (2015). Community-level impacts of
white-tailed deer on understorey plants in North American forests: A
meta-analysis. AoB PLANTS, 7, 10.1093/aobpla/plv119.
https://doi.org/10.1093/aobpla/plv119.
Hansen, A.J., Knight, R.L., Marzluff, J.M., Powell, S., Brown, K., Gude,
P. & Jones, K. (2005). Effects of exurban development on biodiversity:
Patterns, mechanisms, and research needs. Ecological Applications,
15(6), 1893-1905. https://doi.org/10.1890/05-5221.
Haukioja, E. & Koricheva, J. (2000). Tolerance to herbivory in woody
vs. herbaceous plants. Evolutionary Ecology, 14(4), 551-562.
https://doi.org/10.1023/A:1011091606022.
Herms, D.A. & Mattson, W.J. (1992). The dilemma of plants: To grow or
defend. Quarterly Review of Biology, 67(3), 283-335.
https://doi.org/10.1086/417659.
Herron, P.M., Martine, C.T., Latimer, A.M. & Leicht-Young, S.A. (2007).
Invasive plants and their ecological strategies: Prediction and
explanation of woody plant invasion in New England. Diversity &
Distributions, 13(5), 633-644.
https://doi.org/10.1111/j.1472-4642.2007.00381.x.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I.,
Geiselhardt, S., Hincha, D.K., Kunze, R., Mueller-Roeber, B., Rillig,
M.C., Rolff, J., Romeis, T., Schmülling, T., Steppuhn, A., van Dongen,
J., Whitcomb, S.J., Wurst, S., Zuther, E. & Kopka, J. (2016). Priming
and memory of stress responses in organisms lacking a nervous system.
Biological Review, 91(4), 1118-1133.
https://doi.org/10.1111/brv.12215.
Hill, E.M., Robinson, L.A., Abdul-Sada, A., Vanbergen, A.J., Hodge, A.
& Hartley, S.E. (2018). Arbuscular mycorrhizal fungi and plant chemical
defence: Effects of colonisation on aboveground and belowground
metabolomes. Journal of Chemical Ecology, 44(2), 198-208.
https://doi.org/10.1007/s10886-017-0921-1.
Horsley, S.B., Stout, S.L. & deCalesta, D.S. (2003). White-tailed deer
impact on the vegetation dynamics of a northern hardwood forest.
Ecological Applications, 13(1), 98-118.
https://doi.org/10.1890/1051-0761(2003)013[0098:WTDIOT]2.0.CO;2.
Huberty, M., Choi, Y.H., Heinen, R., Bezemer, T.M. & Chapman, S.
(2020). Above‐ground plant metabolomic responses to plant–soil
feedbacks and herbivory. The Journal of Ecology, 108(4), 1703-1712.
https://doi.org/10.1111/1365-2745.13394.
Hunter, J.C. & Mattice, J.A. (2002). The spread of woody exotics into
the forests of a northeastern landscape, 1938-1999. Journal of the
Torrey Botanical Society, 129(3), 220-227.
https://doi.org/10.2307/3088772.
Ingersoll, C.M., Niesenbaum, R.A., Weigle, C.E. & Lehman, J.H. (2010).
Total phenolics and individual phenolic acids vary with light
environment in Lindera benzoin . Botany, 88(11), 1007.
https://doi.org/10.1139/B10-072.
Ji, H., Du, B., Wen, J., Liu, C. & Ossipov, V. (2019). Differences in
the relationship between metabolomic and ionomic traits of Quercus
variabilis growing at contrasting geologic-phosphorus sites in
subtropics. Plant and Soil, 439(1-2), 339-355.
https://doi.org/10.1007/s11104-019-04020-1.
Jones, O.A.H., Maguire, M.L., Griffin, J.L., Dias, D.A., Spurgeon, D.J.
& Svendsen, C. (2013). Metabolomics and its use in ecology. Austral
Ecology, 38(6), 713-720. https://doi.org/10.1111/aec.12019.
Kain, M., Battaglia, L., Royo, A. & Carson, W.P. (2011). Over-browsing
in Pennsylvania creates a depauperate forest dominated by an understory
tree: Results from a 60-year-old deer exclosure. The Journal of the
Torrey Botanical Society, 138(3), 322-326.
https://doi.org/10.3159/TORREY-D-11-00018.1.
Kant, M.R. & Baldwin, I.T. (2007). The ecogenetics and ecogenomics of
plant–herbivore interactions: Rapid progress on a slippery road.
Current Opinion in Genetics & Development, 17(6), 519-524.
https://doi.org/10.1016/j.gde.2007.09.002.
Karban, R. (2011). The ecology and evolution of induced resistance
against herbivores. Functional Ecology, 25(2), 339-347.
https://doi.org/10.1111/j.1365-2435.2010.01789.x.
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T.R. & Neumann, S.
(2012). CAMERA: An integrated strategy for compound spectra extraction
and annotation of liquid chromatography/mass spectrometry data sets.
Analytical Chemistry, 84(1), 283-289.
https://doi.org/10.1021/ac202450g.
Leimu, R. & Koricheva, J. (2006). A meta-analysis of tradeoffs between
plant tolerance and resistance to herbivores: Combining the evidence
from ecological and agricultural studies. Oikos, 112(1), 1-9.
https://doi.org/10.1111/j.0030-1299.2006.41023.x.
Lind, E.M., Myron, E.P., Giaccai, J. & Parker, J.D. (2012).
White-tailed deer alter specialist and generalist insect herbivory
through plant traits. Environmental Entomology, 41(6), 1409-1416.
https://doi.org/10.1603/EN12094.
Lindroth, R.L., Donaldson, J.R., Stevens, M.T. & Gusse, A.C. (2007).
Browse quality in quaking aspen (Populus tremuloides ): Effects of
genotype, nutrients, defoliation, and coppicing. Journal of Chemical
Ecology, 33(5), 1049-1064.
https://doi.org/10.1007/s10886-007-9281-6.
Maag, D., Erb, M. & Glauser, G. (2015). Metabolomics in
plant–herbivore interactions: Challenges and applications. Entomologia
Experimentalis Et Applicata, 157(1), 18-29.
https://doi.org/10.1111/eea.12336.
Machingura, M., Salomon, E., Jez, J.M. & Ebbs, S.D. (2016).
Theβ-cyanoalanine synthase pathway: Beyond cyanide detoxification.
Plant, Cell and Environment, 39(10), 2329-2341.
https://doi.org/10.1111/pce.12755.
Masse, A. & Côté, S.D. (2012). Linking habitat heterogeneity to space
use by large herbivores at multiple scales: From habitat mosaics to
forest canopy openings. Forest Ecology and Management, 285, 67-76.
https://doi.org/10.1016/j.foreco.2012.07.039.
Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. (2017). Defense
priming: An adaptive part of induced resistance. Annual Review of Plant
Biology, 68(1), 485-512.
https://doi.org/10.1146/annurev-arplant-042916-041132.
Meijden, E.v.d., Wijn, M. & Verkaar, H.J. (1988). Defence and regrowth,
alternative plant strategies in the struggle against herbivores. Oikos,
51(3), 355-363. https://doi.org/10.2307/3565318.
Morrison, J.A. & Brown, L. (2004). Effect of herbivore exclosure caging
on the invasive plant Alliaria petiolata in three southeastern
New York forests. Bartonia, 62, 25-43.
Nephali, L., Piater, L.A., Dubery, I.A., Patterson, V., Huyser, J.,
Burgess, K. & Tugizimana, F. (2020). Biostimulants for plant growth and
mitigation of abiotic stresses: A metabolomics perspective. Metabolites,
10(12), 505. https://doi.org/10.3390/metabo10120505.
New Jersey Farm Bureau (2019). New Jersey white-tailed deer
(Odocoileus virginiana ) population density survey using sUAS
infrared: New Jersey Farm Bureau - 2019 study,
https://njfb.org/wp-content/uploads/2019/10/NJFB-SG-State-Report_10.2019.pdf.
Nosko, P. & Embury, K. (2018). Induction and persistence of
allelochemicals in the foliage of balsam fir seedlings following
simulated browsing. Plant Ecology, 219(6), 611-619.
https://doi.org/10.1007/s11258-018-0821-7.
Ohse, B., Hammerbacher, A., Seele, C., Meldau, S., Reichelt, M.,
Ortmann, S., Wirth, C. & Koricheva, J. (2017). Salivary cues: Simulated
roe deer browsing induces systemic changes in phytohormones and defence
chemistry in wild‐grown maple and beech saplings. Functional Ecology,
31(2), 340-349. https://doi.org/10.1111/1365-2435.12717.
Pais, A.L., Li, X. & (Jenny) Xiang, Q. (2018). Discovering variation of
secondary metabolite diversity and its relationship with disease
resistance in Cornus florida L. Ecology and Evolution, 8(11),
5619-5636. https://doi.org/10.1002/ece3.4090.
Peebles-Spencer, J.R., Haffey, C.M. & Gorchov, D.L. (2018). Browse by
white-tailed deer decreases cover and growth of the invasive shrub,Lonicera maackii . The American Midland Naturalist, 179(1), 68-77.
https://doi.org/10.1674/0003-0031-179.1.68.
Peters, K., Worrich, A., Weinhold, A., Alka, O., Balcke, G., Birkemeyer,
C., Bruelheide, H., Calf, O.W., Dietz, S., Dührkop, K., Gaquerel, E.,
Heinig, U., Kücklich, M., Macel, M., Müller, C., Poeschl, Y., Pohnert,
G., Ristok, C., Rodríguez, V.M., Ruttkies, C. et al. (2018). Current
challenges in plant eco-metabolomics. International Journal of Molecular
Sciences, 19(5), 1385. https://doi.org/10.3390/ijms19051385.
Pierson, T.G. & deCalesta, D.S. (2015). Methodology for estimating deer
browsing impact. Human-Wildlife Interactions, 9(1), 67.
https://doi.org/10.26077/rbw0-bn49.
Quinn, A.C., Williams, D.M. & Porter, W.F. (2013). Landscape structure
influences space use by white-tailed deer. Journal of Mammalogy, 94(2),
398-407. https://doi.org/10.1644/11-MAMM-A-221.1.
R Core Team (2021). R: A language and environment for statistical
computing, https://www.R-project.org/.
Relva, M.A., Nuñez, M.A. & Simberloff, D. (2010). Introduced deer
reduce native plant cover and facilitate invasion of non-native tree
species: Evidence for invasional meltdown. Biological Invasions, 12(2),
303-311. https://doi.org/10.1007/s10530-009-9623-0.
Rivas-Ubach, A., Sardans, J., Hódar, J.A., Garcia-Porta, J., Guenther,
A., Paša-Tolić, L., Oravec, M., Urban, O. & Peñuelas, J. (2017). Close
and distant: Contrasting the metabolism of two closely related
subspecies of Scots pine under the effects of folivory and summer
drought. Ecology and Evolution, 7(21), 8976-8988.
https://doi.org/10.1002/ece3.3343.
Rooney, T.P. (2009). High white-tailed deer densities benefit graminoids
and contribute to biotic homogenization of forest ground-layer
vegetation. Plant Ecology, 202(1), 103-111.
https://doi.org/10.1007/s11258-008-9489-8.
Rooney, T.P. & Waller, D.M. (2003). Direct and indirect effects of
white-tailed deer in forest ecosystems. Forest Ecology and Management,
181(1–2), 165-176. https://doi.org/10.1016/S0378-1127(03)00130-0.
Russell, F.L., Zippin, D.B. & Fowler, N.L. (2001). Effects of
white-tailed deer (Odocoileus virginianus ) on plants, plant
populations and communities: A review. American Midland Naturalist,
146(1), 1-26.
https://doi.org/10.1674/0003-0031(2001)146[0001:EOWTDO]2.0.CO;2.
Scholes, D.R. & Paige, K.N. (2015). Transcriptomics of plant responses
to apical damage reveals no negative correlation between tolerance and
defense. Plant Ecology, 216(8), 1177-1190.
https://doi.org/10.1007/s11258-015-0500-x.
Schuman, M.C. & Baldwin, I.T. (2016). The layers of plant responses to
insect herbivores. Annual Review of Entomology, 61(1), 373-394.
https://doi.org/10.1146/annurev-ento-010715-023851.
Schwachtje, J., Fischer, A., Erban, A. & Kopka, J. (2018). Primed
primary metabolism in systemic leaves: A functional systems analysis.
Scientific Reports, 8(1), 216.
https://doi.org/10.1038/s41598-017-18397-5.
Sedio, B.E. (2017). Recent breakthroughs in metabolomics promise to
reveal the cryptic chemical traits that mediate plant community
composition, character evolution and lineage diversification. The New
Phytologist, 214(3), 952-958. https://doi.org/10.1111/nph.14438.
Sedio, B.E., Parker, J.D., McMahon, S.M. & Wright, S.J. (2018).
Comparative foliar metabolomics of a tropical and a temperate forest
community. Ecology, 99(12), 2647-2653.
https://doi.org/10.1002/ecy.2533.
Sedio, B.E., Rojas Echeverri, J.C., Boya P, C.A. & Wright, S.J. (2017).
Sources of variation in foliar secondary chemistry in a tropical forest
tree community. Ecology, 98(3), 616-623.
https://doi.org/10.1111/nph.1443810.1002/ecy.1689.
Sedio, B.E., Devaney, J.L., Pullen, J., Parker, G.G., Wright, S.J. &
Parker, J.D. (2020). Chemical novelty facilitates herbivore resistance
and biological invasions in some introduced plant species. Ecology and
Evolution, 10(16), 8770-8792.
https://doi.org/10.1111/nph.1443810.1002/ece3.6575.
Sedio, B.E., Durant Archibold, A., Rojas Echeverri, J.C., Debyser, C.,
Boya P, C.A. & Wright, S.J. (2019). A comparison of inducible,
ontogenetic, and interspecific sources of variation in the foliar
metabolome in tropical trees. PeerJ, 7, e7536.
https://doi.org/10.7717/peerj.7536.
Shimazaki, A. & Miyashita, T. (2002). Deer browsing reduces leaf damage
by herbivorous insects through an induced response of the host plant.
Ecological Research, 17(5), 527-533.
https://doi.org/10.1046/j.1440-1703.2002.00510.x.
Singh, B. & Sharma, R.A. (2014). Plant terpenes: Defense responses,
phylogenetic analysis, regulation and clinical applications. 3 Biotech,
5(2), 129-151. https://doi.org/10.1007/s13205-014-0220-2.
Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R. & Siuzdak, G.
(2006). XCMS: Processing mass spectrometry data for metabolite
profiling using nonlinear peak alignment, matching, and identification.
Analytical Chemistry, 78(3), 779-787.
https://doi.org/10.1021/ac051437y.
Snoeren, T.A.L., Kappers, I.F., Broekgaarden, C., Mumm, R., Dicke, M. &
Bouwmeester, H.J. (2010). Natural variation in herbivore-induced
volatiles in Arabidopsis thaliana . Journal of Experimental
Botany, 61(11), 3041-3056. https://doi.org/10.1093/jxb/erq127.
Stephan, J.G., Pourazari, F., Tattersdill, K., Kobayashi, T., Nishizawa,
K. & De Long, J.R. (2017). Long-term deer exclosure alters soil
properties, plant traits, understory plant community and insect
herbivory, but not the functional relationships among them. Oecologia,
184(3), 685-699. https://doi.org/10.1007/s00442-017-3895-3.
Stork, W., Diezel, C., Halitschke, R., Gális, I. & Baldwin, I.T.
(2009). An ecological analysis of the herbivory-elicited JA burst and
its metabolism: Plant memory processes and predictions of the moving
target model. PloS One, 4(3), e4697.
https://doi.org/10.1371/journal.pone.0004697.
Stowe, K.A., Marquis, R.J., Hochwender, C.G. & Simms, E.L. (2000). The
evolutionary ecology of tolerance to consumer damage. Annual Review of
Ecology and Systematics, 31(1), 565-595.
https://doi.org/10.1146/annurev.ecolsys.31.1.565.
Strauss, S.Y. & Agrawal, A.A. (1999). The ecology and evolution of
plant tolerance to herbivory. Elsevier Ltd, Oxford.
Takada, M., Asada, M. & Miyashita, T. (2001). Regional differences in
the morphology of a shrub Damnacanthus indicus : An induced
resistance to deer herbivory? Ecological Research, 16(4), 809-813.
https://doi.org/10.1046/j.1440-1703.2001.00436.x.
Takada, M., Asada, M. & Miyashita, T. (2003). Can spines deter deer
browsing?: A field experiment using a shrub Damnacanthus indicus .
Journal of Forest Research, 8(4), 321-323.
https://doi.org/10.1007/s10310-003-0043-1.
Tugizimana, F., Piater, L. & Dubery, I. (2013). Plant metabolomics: A
new frontier in phytochemical analysis. South African Journal of
Science, 109(5-6), 1-11.
https://doi.org/10.1590/sajs.2013/20120005.
Umair, M., Sun, N., Du, H., Yuan, J., Arshad Mehmood Abbasi, Wen, J.,
Yu, W., Zhou, J. & Liu, C. (2019). Differential metabolic responses of
shrubs and grasses to water additions in arid karst region, southwestern
China. Scientific Reports, 9, 1-21.
https://doi.org/10.1038/s41598-019-46083-1.
Urbanek, R.E. & Nielsen, C.K. (2013). Influence of landscape factors on
density of suburban white-tailed deer. Landscape and Urban Planning,
114(0), 28-36. https://doi.org/10.1016/j.landurbplan.2013.02.006.
Vourc’h, G., Martin, J., Duncan, P., Escarré, J. & Clausen, T.P.
(2001). Defensive adaptations of Thuja plicata to ungulate
browsing: A comparative study between mainland and island populations.
Oecologia, 126(1), 84-93. https://doi.org/10.1007/s004420000491.
Vourc’h, G., Vila, B., Gillon, D., Escarré, J., Guibal, F., Fritz, H.,
Clausen, T.P. & Martin, J. (2002). Disentangling the causes of damage
variation by deer browsing on young Thuja plicata . Oikos, 98,
271-283. https://doi.org/10.1034/j.1600-0706.2002.980209.x.
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B.,
Ignacimuthu, S. & Sharma, H.C. (2012). Mechanisms of plant defense
against insect herbivores. Plant Signaling & Behavior, 7(10),
1306-1320. https://doi.org/10.4161/psb.21663.
Ward, J.S., Williams, S.C. & Linske, M.A. (2018). Influence of invasive
shrubs and deer browsing on regeneration in temperate deciduous forests.
Canadian Journal of Forest Research, 48(1), 58-67.
https://doi.org/10.1139/cjfr-2017-0208.
Wiggins, N.L., Forrister, D.L., Endara, M., Coley, P.D. & Kursar, T.A.
(2016). Quantitative and qualitative shifts in defensive metabolites
define chemical defense investment during leaf development inInga , a genus of tropical trees. Ecology and Evolution, 6(2),
478-492. https://doi.org/10.1002/ece3.1896.
Xiong, Y., DeFraia, C., Williams, D., Zhang, X. & Mou, Z. (2009).
Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA
insertion mutants reveals an essential role for the oxidative section of
the plastidic pentose phosphate pathway in plant growth and development.
Plant and Cell Physiology, 50(7), 1277-1291.
https://doi.org/10.1093/pcp/pcp070.
Yates, E.D., Levia, D.F.J. & Williams, C.L. (2004). Recruitment of
three non-native invasive plants into a fragmented forest in southern
Illinois. Forest Ecology and Management, 190, 119-130.
https://doi.org/10.1016/j.foreco.2003.11.008.
Zeier, J. (2013). New insights into the regulation of plant immunity by
amino acid metabolic pathways. Plant, Cell and Environment, 36(12),
2085-2103. https://doi.org/10.1111/pce.12122.
Appendix Table 1. Metabolite features that are shared by two or
more species.