References
Allevato, D.M., Kiyota, E., Mazzafera, P. & Nixon, K.C. (2019). Ecometabolomic analysis of wild populations of Pilocarpus pennatifolius (Rutaceae) using unimodal analyses. Frontiers in Plant Science, 10, 258. https://doi-org/10.3389/fpls.2019.00258.
Alverson, W.S., Waller, D.M. & Solheim, S.L. (1988). Forests too deer: Edge effects in northern Wisconsin. Conservation Biology, 2(4), 348-358. https://doi.org/10.1111/j.1523-1739.1988.tb00199.x.
Anderson, R.C. & Katz, A.J. (1993). Recovery of browse-sensitive tree species following release from white-tailed deer Odocoileus virginianus Zimmerman browsing pressure. Biological Conservation, 63(3), 203-208. https://doi.org/10.1016/0006-3207(93)90713-B.
Aronson, M.F., Handel, S.N., La Puma, I.P. & Clemants, S.E. (2015). Urbanization promotes non-native woody species and diverse plant assemblages in the New York metropolitan region. Urban Ecosystems, 18(1), 31-45. https://doi.org/10.1007/s11252-014-0382-z.
Averill, K.M., Mortensen, D.A., Smithwick, E.A. & Post, E. (2016). Deer feeding selectivity for invasive plants. Biological Invasions, 18(5), 1247-1263. https://doi.org/10.1007/s10530-016-1063-z.
Baldwin, I.T. & Schultz, J.C. (2015). Rapid changes in tree leaf chemistry induced by damage: Evidence for communication between plants. Science, 221(4607), 277-279. https://doi.org/10.1126/science.221.4607.277.
Ballaré, C.L. (2014). Light regulation of plant defense. Annual Review of Plant Biology, 65(1), 335-363. https://doi.org/10.1146/annurev-arplant-050213-040145.
Batzli, G.O. & Dejaco, C.E. (2013). White-tailed deer (Odocoileus virginianus ) facilitate the development of nonnative grasslands in central Illinois. American Midland Naturalist, 170(2), 323-334. https://doi.org/10.1674/0003-0031-170.2.323.
Berini, J.L., Brockman, S.A., Hegeman, A.D., Reich, P.B., Muthukrishnan, R., Montgomery, R.A. & Forester, J.D. (2018). Combinations of abiotic factors differentially alter production of plant secondary metabolites in five woody plant species in the boreal-temperate transition zone. Frontiers in Plant Science, 9, 1257. https://doi.org/10.3389/fpls.2018.01257.
Blossey, B., Curtis, P., Boulanger, J. & Dávalos, A. (2019). Red oak seedlings as indicators of deer browse pressure: Gauging the outcome of different white‐tailed deer management approaches. Ecology and Evolution, 9(23), 13085-13103. https://doi.org/10.1002/ece3.5729.
Bressette, J.W., Beck, H. & Beauchamp, V.B. (2012). Beyond the browse line: Complex cascade effects mediated by white-tailed deer. Oikos, 121(11), 1749-1760. https://doi.org/10.1111/j.1600-0706.2011.20305.x.
Brown, M.J. & Parker, G.G. (1994). Canopy light transmittance in a chronosequence of mixed-species deciduous forests. Canadian Journal of Forest Research, 24(8), 1694-1703. https://doi.org/10.1139/x94-219.
Bruce, T.J.A. (2014). Variation in plant responsiveness to defence elicitors caused by genotype and environment. Frontiers in Plant Science, 5, 349. https://doi.org/10.3389/fpls.2014.00349.
Cash, V.W. & Fulbright, T.E. (2005). Nutrient enrichment, tannins, and thorns: Effects on browsing of shrub seedlings. The Journal of Wildlife Management, 69(2), 782-793. https://doi.org/10.2193/0022-541X(2005)069[0782:NETATE]2.0.CO;2.
Cipollini, D., Walters, D. & Voelckel, C. (2014). Costs of resistance in plants: From theory to evidence. Annual Plant Reviews (eds C. Voelckel & G. Jander), pp. 263-307. John Wiley & Sons, Ltd, Chichester, UK.
Côté, S.D., Rooney, T.P., Tremblay, J.P., Dussault, C. & Waller, D.M. (2004). Ecological impacts of deer overabundance. Annual Review of Ecology and Systematics, 35, 113-147. https://doi.org/10.1146/annurev.ecolsys.35.021103.105725.
Crandall, S.G., Gold, K.M., Jimenez-Gasco, M.d.M., Filgueiras, C.C. & Willett, D.S. (2020). A multi-omics approach to solving problems in plant disease ecology. PloS One, 15(9), e0237975. https://doi.org/10.1371/journal.pone.0237975.
Crawley, M.J. (1985). Reduction of oak fecundity by low-density herbivore populations. Nature, 314(6007), 163-164. https://doi.org/10.1038/314163a0.
Culbert, P.D., Radeloff, V.C., Flather, C.H., Kellndorfer, J.M., Rittenhouse, C.D. & Pidgeon, A.M. (2013). The influence of vertical and horizontal habitat structure on nationwide patterns of avian biodiversity. The Auk, 130(4), 656-665. https://doi.org/10.1525/auk.2013.13007.
Dodd, L.E., Lacki, M.J., Britzke, E.R., Buehler, D.A., Keyser, P.D., Larkin, J.L., Rodewald, A.D., Wigley, T.B., Wood, P.B. & Rieske, L.K. (2012). Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey. Forest Ecology and Management, 267, 262-270. https://doi.org/10.1016/j.foreco.2011.12.016.
Dorion, S., Ouellet, J.C. & Rivoal, J. (2021). Glutathione metabolism in plants under stress: Beyond reactive oxygen species detoxification. Metabolites, 11(9), 641. https://doi.org/10.3390/metabo11090641.
Dubreuil-Maurizi, C. & Poinssot, B. (2012). Role of glutathione in plant signaling under biotic stress. Plant Signaling & Behavior, 7(2), 210-212. https://doi.org/10.4161/psb.18831.
Duncan, A.J., Hartley, S.E., Thurlow, M., Young, S. & Staines, B.W. (2001). Clonal variation in monoterpene concentrations in Sitka spruce (Picea sitchensis ) saplings and its effect on their susceptibility to browsing damage by red deer (Cervus elaphus ). Forest Ecology and Management, 148(1), 259-269. https://doi.org/10.1016/S0378-1127(00)00540-5.
Endara, M. & Coley, P.D. (2011). The resource availability hypothesis revisited: A meta‐analysis. Functional Ecology, 25(2), 389-398. https://doi.org/10.1111/j.1365-435.2010.01803.x.
Endara, M., Weinhold, A., Cox, J.E., Wiggins, N.L., Coley, P.D. & Kursar, T.A. (2015). Divergent evolution in antiherbivore defences within species complexes at a single Amazonian site. Journal of Ecology, 103(5), 1107-1118. http://dx.doi.org/10.1111/1365-2745.12431.
Feeney, P. (1976). Plant apparency and chemical defense. Recent Advances in Phytochemistry, 10, 1-40. https://doi.org/10.1007/978-1-4684-2646-5_1.
Fineblum, W.L. & Rausher, M.D. (1995). Tradeoff between resistance and tolerance to herbivore damage in a morning glory. Nature, 377(6549), 517-520. https://doi.org/10.1038/377517a0.
Gargallo-Garriga, A., Sardans, J., Granda, V., Llusià, J., Peguero, G., Asensio, D., Ogaya, R., Urbina, I., Van Langenhove, L., Verryckt, L.T., Chave, J., Courtois, E.A., Stahl, C., Grau, O., Klem, K., Urban, O., Janssens, I.A. & Peñuelas, J. (2020). Different ”metabolomic niches” of the highly diverse tree species of the French Guiana rainforests. Scientific Reports, 10(1), 6937. https://doi.org/10.1038/s41598-020-63891-y.
Gómez, J.M. & Zamora, R. (2002). Thorns as induced mechanical defense in a long-lived shrub (Hormathophylla spinosa , Cruciferae). Ecology, 83(4), 885-890. https://doi-org.ezproxy.tcnj.edu/10.1890/0012-9658(2002)083[0885:TAIMDI]2.0.CO;2.
Habeck, C.W. & Schultz, A.K. (2015). Community-level impacts of white-tailed deer on understorey plants in North American forests: A meta-analysis. AoB PLANTS, 7, 10.1093/aobpla/plv119. https://doi.org/10.1093/aobpla/plv119.
Hansen, A.J., Knight, R.L., Marzluff, J.M., Powell, S., Brown, K., Gude, P. & Jones, K. (2005). Effects of exurban development on biodiversity: Patterns, mechanisms, and research needs. Ecological Applications, 15(6), 1893-1905. https://doi.org/10.1890/05-5221.
Haukioja, E. & Koricheva, J. (2000). Tolerance to herbivory in woody vs. herbaceous plants. Evolutionary Ecology, 14(4), 551-562. https://doi.org/10.1023/A:1011091606022.
Herms, D.A. & Mattson, W.J. (1992). The dilemma of plants: To grow or defend. Quarterly Review of Biology, 67(3), 283-335. https://doi.org/10.1086/417659.
Herron, P.M., Martine, C.T., Latimer, A.M. & Leicht-Young, S.A. (2007). Invasive plants and their ecological strategies: Prediction and explanation of woody plant invasion in New England. Diversity & Distributions, 13(5), 633-644. https://doi.org/10.1111/j.1472-4642.2007.00381.x.
Hilker, M., Schwachtje, J., Baier, M., Balazadeh, S., Bäurle, I., Geiselhardt, S., Hincha, D.K., Kunze, R., Mueller-Roeber, B., Rillig, M.C., Rolff, J., Romeis, T., Schmülling, T., Steppuhn, A., van Dongen, J., Whitcomb, S.J., Wurst, S., Zuther, E. & Kopka, J. (2016). Priming and memory of stress responses in organisms lacking a nervous system. Biological Review, 91(4), 1118-1133. https://doi.org/10.1111/brv.12215.
Hill, E.M., Robinson, L.A., Abdul-Sada, A., Vanbergen, A.J., Hodge, A. & Hartley, S.E. (2018). Arbuscular mycorrhizal fungi and plant chemical defence: Effects of colonisation on aboveground and belowground metabolomes. Journal of Chemical Ecology, 44(2), 198-208. https://doi.org/10.1007/s10886-017-0921-1.
Horsley, S.B., Stout, S.L. & deCalesta, D.S. (2003). White-tailed deer impact on the vegetation dynamics of a northern hardwood forest. Ecological Applications, 13(1), 98-118. https://doi.org/10.1890/1051-0761(2003)013[0098:WTDIOT]2.0.CO;2.
Huberty, M., Choi, Y.H., Heinen, R., Bezemer, T.M. & Chapman, S. (2020). Above‐ground plant metabolomic responses to plant–soil feedbacks and herbivory. The Journal of Ecology, 108(4), 1703-1712. https://doi.org/10.1111/1365-2745.13394.
Hunter, J.C. & Mattice, J.A. (2002). The spread of woody exotics into the forests of a northeastern landscape, 1938-1999. Journal of the Torrey Botanical Society, 129(3), 220-227. https://doi.org/10.2307/3088772.
Ingersoll, C.M., Niesenbaum, R.A., Weigle, C.E. & Lehman, J.H. (2010). Total phenolics and individual phenolic acids vary with light environment in Lindera benzoin . Botany, 88(11), 1007. https://doi.org/10.1139/B10-072.
Ji, H., Du, B., Wen, J., Liu, C. & Ossipov, V. (2019). Differences in the relationship between metabolomic and ionomic traits of Quercus variabilis growing at contrasting geologic-phosphorus sites in subtropics. Plant and Soil, 439(1-2), 339-355. https://doi.org/10.1007/s11104-019-04020-1.
Jones, O.A.H., Maguire, M.L., Griffin, J.L., Dias, D.A., Spurgeon, D.J. & Svendsen, C. (2013). Metabolomics and its use in ecology. Austral Ecology, 38(6), 713-720. https://doi.org/10.1111/aec.12019.
Kain, M., Battaglia, L., Royo, A. & Carson, W.P. (2011). Over-browsing in Pennsylvania creates a depauperate forest dominated by an understory tree: Results from a 60-year-old deer exclosure. The Journal of the Torrey Botanical Society, 138(3), 322-326. https://doi.org/10.3159/TORREY-D-11-00018.1.
Kant, M.R. & Baldwin, I.T. (2007). The ecogenetics and ecogenomics of plant–herbivore interactions: Rapid progress on a slippery road. Current Opinion in Genetics & Development, 17(6), 519-524. https://doi.org/10.1016/j.gde.2007.09.002.
Karban, R. (2011). The ecology and evolution of induced resistance against herbivores. Functional Ecology, 25(2), 339-347. https://doi.org/10.1111/j.1365-2435.2010.01789.x.
Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T.R. & Neumann, S. (2012). CAMERA: An integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84(1), 283-289. https://doi.org/10.1021/ac202450g.
Leimu, R. & Koricheva, J. (2006). A meta-analysis of tradeoffs between plant tolerance and resistance to herbivores: Combining the evidence from ecological and agricultural studies. Oikos, 112(1), 1-9. https://doi.org/10.1111/j.0030-1299.2006.41023.x.
Lind, E.M., Myron, E.P., Giaccai, J. & Parker, J.D. (2012). White-tailed deer alter specialist and generalist insect herbivory through plant traits. Environmental Entomology, 41(6), 1409-1416. https://doi.org/10.1603/EN12094.
Lindroth, R.L., Donaldson, J.R., Stevens, M.T. & Gusse, A.C. (2007). Browse quality in quaking aspen (Populus tremuloides ): Effects of genotype, nutrients, defoliation, and coppicing. Journal of Chemical Ecology, 33(5), 1049-1064. https://doi.org/10.1007/s10886-007-9281-6.
Maag, D., Erb, M. & Glauser, G. (2015). Metabolomics in plant–herbivore interactions: Challenges and applications. Entomologia Experimentalis Et Applicata, 157(1), 18-29. https://doi.org/10.1111/eea.12336.
Machingura, M., Salomon, E., Jez, J.M. & Ebbs, S.D. (2016). Theβ-cyanoalanine synthase pathway: Beyond cyanide detoxification. Plant, Cell and Environment, 39(10), 2329-2341. https://doi.org/10.1111/pce.12755.
Masse, A. & Côté, S.D. (2012). Linking habitat heterogeneity to space use by large herbivores at multiple scales: From habitat mosaics to forest canopy openings. Forest Ecology and Management, 285, 67-76. https://doi.org/10.1016/j.foreco.2012.07.039.
Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. (2017). Defense priming: An adaptive part of induced resistance. Annual Review of Plant Biology, 68(1), 485-512. https://doi.org/10.1146/annurev-arplant-042916-041132.
Meijden, E.v.d., Wijn, M. & Verkaar, H.J. (1988). Defence and regrowth, alternative plant strategies in the struggle against herbivores. Oikos, 51(3), 355-363. https://doi.org/10.2307/3565318.
Morrison, J.A. & Brown, L. (2004). Effect of herbivore exclosure caging on the invasive plant Alliaria petiolata in three southeastern New York forests. Bartonia, 62, 25-43.
Nephali, L., Piater, L.A., Dubery, I.A., Patterson, V., Huyser, J., Burgess, K. & Tugizimana, F. (2020). Biostimulants for plant growth and mitigation of abiotic stresses: A metabolomics perspective. Metabolites, 10(12), 505. https://doi.org/10.3390/metabo10120505.
New Jersey Farm Bureau (2019). New Jersey white-tailed deer (Odocoileus virginiana ) population density survey using sUAS infrared: New Jersey Farm Bureau - 2019 study, https://njfb.org/wp-content/uploads/2019/10/NJFB-SG-State-Report_10.2019.pdf.
Nosko, P. & Embury, K. (2018). Induction and persistence of allelochemicals in the foliage of balsam fir seedlings following simulated browsing. Plant Ecology, 219(6), 611-619. https://doi.org/10.1007/s11258-018-0821-7.
Ohse, B., Hammerbacher, A., Seele, C., Meldau, S., Reichelt, M., Ortmann, S., Wirth, C. & Koricheva, J. (2017). Salivary cues: Simulated roe deer browsing induces systemic changes in phytohormones and defence chemistry in wild‐grown maple and beech saplings. Functional Ecology, 31(2), 340-349. https://doi.org/10.1111/1365-2435.12717.
Pais, A.L., Li, X. & (Jenny) Xiang, Q. (2018). Discovering variation of secondary metabolite diversity and its relationship with disease resistance in Cornus florida L. Ecology and Evolution, 8(11), 5619-5636. https://doi.org/10.1002/ece3.4090.
Peebles-Spencer, J.R., Haffey, C.M. & Gorchov, D.L. (2018). Browse by white-tailed deer decreases cover and growth of the invasive shrub,Lonicera maackii . The American Midland Naturalist, 179(1), 68-77. https://doi.org/10.1674/0003-0031-179.1.68.
Peters, K., Worrich, A., Weinhold, A., Alka, O., Balcke, G., Birkemeyer, C., Bruelheide, H., Calf, O.W., Dietz, S., Dührkop, K., Gaquerel, E., Heinig, U., Kücklich, M., Macel, M., Müller, C., Poeschl, Y., Pohnert, G., Ristok, C., Rodríguez, V.M., Ruttkies, C. et al. (2018). Current challenges in plant eco-metabolomics. International Journal of Molecular Sciences, 19(5), 1385. https://doi.org/10.3390/ijms19051385.
Pierson, T.G. & deCalesta, D.S. (2015). Methodology for estimating deer browsing impact. Human-Wildlife Interactions, 9(1), 67. https://doi.org/10.26077/rbw0-bn49.
Quinn, A.C., Williams, D.M. & Porter, W.F. (2013). Landscape structure influences space use by white-tailed deer. Journal of Mammalogy, 94(2), 398-407. https://doi.org/10.1644/11-MAMM-A-221.1.
R Core Team (2021). R: A language and environment for statistical computing, https://www.R-project.org/.
Relva, M.A., Nuñez, M.A. & Simberloff, D. (2010). Introduced deer reduce native plant cover and facilitate invasion of non-native tree species: Evidence for invasional meltdown. Biological Invasions, 12(2), 303-311. https://doi.org/10.1007/s10530-009-9623-0.
Rivas-Ubach, A., Sardans, J., Hódar, J.A., Garcia-Porta, J., Guenther, A., Paša-Tolić, L., Oravec, M., Urban, O. & Peñuelas, J. (2017). Close and distant: Contrasting the metabolism of two closely related subspecies of Scots pine under the effects of folivory and summer drought. Ecology and Evolution, 7(21), 8976-8988. https://doi.org/10.1002/ece3.3343.
Rooney, T.P. (2009). High white-tailed deer densities benefit graminoids and contribute to biotic homogenization of forest ground-layer vegetation. Plant Ecology, 202(1), 103-111. https://doi.org/10.1007/s11258-008-9489-8.
Rooney, T.P. & Waller, D.M. (2003). Direct and indirect effects of white-tailed deer in forest ecosystems. Forest Ecology and Management, 181(1–2), 165-176. https://doi.org/10.1016/S0378-1127(03)00130-0.
Russell, F.L., Zippin, D.B. & Fowler, N.L. (2001). Effects of white-tailed deer (Odocoileus virginianus ) on plants, plant populations and communities: A review. American Midland Naturalist, 146(1), 1-26. https://doi.org/10.1674/0003-0031(2001)146[0001:EOWTDO]2.0.CO;2.
Scholes, D.R. & Paige, K.N. (2015). Transcriptomics of plant responses to apical damage reveals no negative correlation between tolerance and defense. Plant Ecology, 216(8), 1177-1190. https://doi.org/10.1007/s11258-015-0500-x.
Schuman, M.C. & Baldwin, I.T. (2016). The layers of plant responses to insect herbivores. Annual Review of Entomology, 61(1), 373-394. https://doi.org/10.1146/annurev-ento-010715-023851.
Schwachtje, J., Fischer, A., Erban, A. & Kopka, J. (2018). Primed primary metabolism in systemic leaves: A functional systems analysis. Scientific Reports, 8(1), 216. https://doi.org/10.1038/s41598-017-18397-5.
Sedio, B.E. (2017). Recent breakthroughs in metabolomics promise to reveal the cryptic chemical traits that mediate plant community composition, character evolution and lineage diversification. The New Phytologist, 214(3), 952-958. https://doi.org/10.1111/nph.14438.
Sedio, B.E., Parker, J.D., McMahon, S.M. & Wright, S.J. (2018). Comparative foliar metabolomics of a tropical and a temperate forest community. Ecology, 99(12), 2647-2653. https://doi.org/10.1002/ecy.2533.
Sedio, B.E., Rojas Echeverri, J.C., Boya P, C.A. & Wright, S.J. (2017). Sources of variation in foliar secondary chemistry in a tropical forest tree community. Ecology, 98(3), 616-623. https://doi.org/10.1111/nph.1443810.1002/ecy.1689.
Sedio, B.E., Devaney, J.L., Pullen, J., Parker, G.G., Wright, S.J. & Parker, J.D. (2020). Chemical novelty facilitates herbivore resistance and biological invasions in some introduced plant species. Ecology and Evolution, 10(16), 8770-8792. https://doi.org/10.1111/nph.1443810.1002/ece3.6575.
Sedio, B.E., Durant Archibold, A., Rojas Echeverri, J.C., Debyser, C., Boya P, C.A. & Wright, S.J. (2019). A comparison of inducible, ontogenetic, and interspecific sources of variation in the foliar metabolome in tropical trees. PeerJ, 7, e7536. https://doi.org/10.7717/peerj.7536.
Shimazaki, A. & Miyashita, T. (2002). Deer browsing reduces leaf damage by herbivorous insects through an induced response of the host plant. Ecological Research, 17(5), 527-533. https://doi.org/10.1046/j.1440-1703.2002.00510.x.
Singh, B. & Sharma, R.A. (2014). Plant terpenes: Defense responses, phylogenetic analysis, regulation and clinical applications. 3 Biotech, 5(2), 129-151. https://doi.org/10.1007/s13205-014-0220-2.
Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R. & Siuzdak, G. (2006). XCMS:  Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78(3), 779-787. https://doi.org/10.1021/ac051437y.
Snoeren, T.A.L., Kappers, I.F., Broekgaarden, C., Mumm, R., Dicke, M. & Bouwmeester, H.J. (2010). Natural variation in herbivore-induced volatiles in Arabidopsis thaliana . Journal of Experimental Botany, 61(11), 3041-3056. https://doi.org/10.1093/jxb/erq127.
Stephan, J.G., Pourazari, F., Tattersdill, K., Kobayashi, T., Nishizawa, K. & De Long, J.R. (2017). Long-term deer exclosure alters soil properties, plant traits, understory plant community and insect herbivory, but not the functional relationships among them. Oecologia, 184(3), 685-699. https://doi.org/10.1007/s00442-017-3895-3.
Stork, W., Diezel, C., Halitschke, R., Gális, I. & Baldwin, I.T. (2009). An ecological analysis of the herbivory-elicited JA burst and its metabolism: Plant memory processes and predictions of the moving target model. PloS One, 4(3), e4697. https://doi.org/10.1371/journal.pone.0004697.
Stowe, K.A., Marquis, R.J., Hochwender, C.G. & Simms, E.L. (2000). The evolutionary ecology of tolerance to consumer damage. Annual Review of Ecology and Systematics, 31(1), 565-595. https://doi.org/10.1146/annurev.ecolsys.31.1.565.
Strauss, S.Y. & Agrawal, A.A. (1999). The ecology and evolution of plant tolerance to herbivory. Elsevier Ltd, Oxford.
Takada, M., Asada, M. & Miyashita, T. (2001). Regional differences in the morphology of a shrub Damnacanthus indicus : An induced resistance to deer herbivory? Ecological Research, 16(4), 809-813. https://doi.org/10.1046/j.1440-1703.2001.00436.x.
Takada, M., Asada, M. & Miyashita, T. (2003). Can spines deter deer browsing?: A field experiment using a shrub Damnacanthus indicus . Journal of Forest Research, 8(4), 321-323. https://doi.org/10.1007/s10310-003-0043-1.
Tugizimana, F., Piater, L. & Dubery, I. (2013). Plant metabolomics: A new frontier in phytochemical analysis. South African Journal of Science, 109(5-6), 1-11. https://doi.org/10.1590/sajs.2013/20120005.
Umair, M., Sun, N., Du, H., Yuan, J., Arshad Mehmood Abbasi, Wen, J., Yu, W., Zhou, J. & Liu, C. (2019). Differential metabolic responses of shrubs and grasses to water additions in arid karst region, southwestern China. Scientific Reports, 9, 1-21. https://doi.org/10.1038/s41598-019-46083-1.
Urbanek, R.E. & Nielsen, C.K. (2013). Influence of landscape factors on density of suburban white-tailed deer. Landscape and Urban Planning, 114(0), 28-36. https://doi.org/10.1016/j.landurbplan.2013.02.006.
Vourc’h, G., Martin, J., Duncan, P., Escarré, J. & Clausen, T.P. (2001). Defensive adaptations of Thuja plicata to ungulate browsing: A comparative study between mainland and island populations. Oecologia, 126(1), 84-93. https://doi.org/10.1007/s004420000491.
Vourc’h, G., Vila, B., Gillon, D., Escarré, J., Guibal, F., Fritz, H., Clausen, T.P. & Martin, J. (2002). Disentangling the causes of damage variation by deer browsing on young Thuja plicata . Oikos, 98, 271-283. https://doi.org/10.1034/j.1600-0706.2002.980209.x.
War, A.R., Paulraj, M.G., Ahmad, T., Buhroo, A.A., Hussain, B., Ignacimuthu, S. & Sharma, H.C. (2012). Mechanisms of plant defense against insect herbivores. Plant Signaling & Behavior, 7(10), 1306-1320. https://doi.org/10.4161/psb.21663.
Ward, J.S., Williams, S.C. & Linske, M.A. (2018). Influence of invasive shrubs and deer browsing on regeneration in temperate deciduous forests. Canadian Journal of Forest Research, 48(1), 58-67. https://doi.org/10.1139/cjfr-2017-0208.
Wiggins, N.L., Forrister, D.L., Endara, M., Coley, P.D. & Kursar, T.A. (2016). Quantitative and qualitative shifts in defensive metabolites define chemical defense investment during leaf development inInga , a genus of tropical trees. Ecology and Evolution, 6(2), 478-492. https://doi.org/10.1002/ece3.1896.
Xiong, Y., DeFraia, C., Williams, D., Zhang, X. & Mou, Z. (2009). Characterization of Arabidopsis 6-phosphogluconolactonase T-DNA insertion mutants reveals an essential role for the oxidative section of the plastidic pentose phosphate pathway in plant growth and development. Plant and Cell Physiology, 50(7), 1277-1291. https://doi.org/10.1093/pcp/pcp070.
Yates, E.D., Levia, D.F.J. & Williams, C.L. (2004). Recruitment of three non-native invasive plants into a fragmented forest in southern Illinois. Forest Ecology and Management, 190, 119-130. https://doi.org/10.1016/j.foreco.2003.11.008.
Zeier, J. (2013). New insights into the regulation of plant immunity by amino acid metabolic pathways. Plant, Cell and Environment, 36(12), 2085-2103. https://doi.org/10.1111/pce.12122.
Appendix Table 1. Metabolite features that are shared by two or more species.