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Abstract. This paper deals with a class of fractional Schrödinger-Poisson system{
(−∆)su + V (x)u−K(x)φ|u|2∗s−3u = a(x)f(u), x ∈ R3

(−∆)sφ = K(x)|u|2∗s−1, x ∈ R3

with a critical nonlocal term and multiple competing potentials, which may decay and vanish at infinity,
where s ∈ ( 3

4
, 1), 2∗s = 6

3−2s
is the fractional critical exponent. The problem is set on the whole space

and compactness issues have to be tackled. By employing the mountain pass theorem, concentration-
compactness principle and approximation method, the existence of a positive ground state solution is
obtained under appropriate assumptions imposed on V, K, a and f .

1. Introduction and main results

In recent years, the following nonlinear Schrödinger-Poisson systems{
−∆u + V (x)u + K(x)φu = f(x, u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3.
(1.1)

have been the object of interest for many authors. Such a system, also called Schrödinger-Maxwell
equations, can be used to describe the interaction of a charged particle with the electrostatic field
in quantum mechanics, where the unknowns u and φ represent the wave functions associated with
the particle and the electric potentials, respectively, and V is an exterior potential and K denotes a
nonnegative density charge, and the nonlinearity f simulates the interaction effect among many particles.
See [3, 5] for more details on the physical background.

It is easily seen that system (1.1) can be transformed into a nonlinear Schrödinger equation with
a non-local term, for example, see [5, 10]. Briefly, the Poisson equation can be solved by using the
Lax-Milgram theorem. For all u ∈ H1(R3), the unique φK,u ∈ D1,2(R3) is given by

φK,u(x) =
1
4π

ˆ

R3

K(y)|u(y)|2
|x− y| dy,

which solves equation −∆φK,u = K(x)u2, and that, it can be substituted into the first equation of
system (1.1) to obtain that

−∆u + V (x)u + K(x)φK,uu = f(x, u), x ∈ R3.

Such equation is variational, and its solutions are critical points of the corresponding energy functional
I defined in H1(R3).

In view of this, there has been much attention to (1.1), and many interesting works have been denoted
to investigating the existence and nonexistence of positive solutions, sign-changing solutions, positive
ground states solutions, multiple solutions, and semiclassical states under variant assumptions on V, K
and f , via variational methods in recent years. We refer to [2, 3, 9, 25, 29, 33, 36] and references therein.
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We note that, Azzollini and d’Avenia1 [4] firstly studied the Schrödinger-Poisson system with critical
nonlocal term as follows: 




−∆u = λu + qφ|u|3u, in BR,

−∆φ = |u|5, in BR,

u = φ = 0, on ∂BR,

(1.2)

They proved existence and nonexistence results of positive and sign changing solutions for (1.2), distin-
guishing the more delicate three-dimensional case from the others. Since then, some researchers began
to investigate the Schrödinger-Poisson system with critical nonlocal term, but there are fewer papers
devoting to these kinds of nonlocal problems in the literature. In [19, 20], Li, Li and Shi considered
positive solutions to the another Schrödinger-Poisson-type system with critical growing nonlocal term

{
−∆u + bu + qφ|u|3u = f(u), x ∈ R3,

−∆φ = |u|5, x ∈ R3,
(1.3)

and the existence of positive solutions to (1.3) was proved by using variational method which does not
require usual compactness conditions. In [22], Liu studied the following generalized Schrödinger-Poisson
system with critical nonlocal term

{
−∆u + V (x)u−K(x)φ|u|3u = f(x, u), x ∈ R3,

−∆φ = K(x)|u|5, x ∈ R3.
(1.4)

By using the mountain pass theorem and the concentration-compactness principle, Liu obtained the
existence of a positive solution for (1.4). Feng [13] studied the existence of positive solutions to (1.4) with
the critical nonlinearity f(x, u) = |u|4u+g(u), by the modified concentration-compactness principle and
Nehari manifold method. Li and He [21] studied the existence and multiplicity of positive solutions for
(1.4) by using the Ljusternik-Schnirelmann theory. Yin, Zhang and Shang [33] considered the existence
of positive ground state solution to equation (1.4) by using the variational approach.

In the setting of the fractional Laplacian, system (1.1) becomes the fractional Schrödinger-Poisson
type systems. It is a fundamental equation in fractional quantum mechanics in the study of particles on
stochastic fields modeled by Lévy processes [8,17,18]. In the fractional scenario, there are some results for
fractional Schrödinger-Poisson systems available in literature. In [35], by using a perturbation approach,
Zhang, do Ó and Squassina considered the existence and the asymptotical behaviors of positive solutions
to the fractional Schrödinger-Poisson system

{
(−∆)su + V (x)u + K(x)φu = f(x, u), x ∈ R3,

(−∆)tφ = K(x)u2, x ∈ R3.
(1.5)

with V (x) = 0 and K(x) = λ > 0, a parameter, and a general subcritical or critical nonlinearity
f . Teng [32] analyzed the existence of ground state solutions of (1.4) with K(x) = 1 and f(x, u) =
µ|u|q−1u+ |u|2∗s−2u, q ∈ (2, 2∗s), by combining Pohozaev-Nehari manifold, arguments of Brezis-Nirenberg
type, the monotonicity trick and global compactness Lemma. Murcia and Siciliano [26] studied the
semiclassical state of the following system

{
ε2s(−∆)su + V (x)u + K(x)φu = f(u), x ∈ RN ,

εθ(−∆)α/2φ = γαu2, x ∈ RN .
(1.6)

and established the multiplicity of positive solutions that concentrate on the minima of V (x) as ε → 0
by the Ljusternik-Schnirelmann category theory. For more results on multiplicity and concentration of
positive solutions of (1.6), we refer to [23,34,37] and references therein.

We note that in the above mentioned works for the fractional Schrodinger-Poisson systems, the second
Poisson equation is subcritical growth. After a bibliography review we find that there are only two papers
that deals with fractional Schrödinger-Poisson system with critical nonlocal term. In [16], the second
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author of this paper studied the existence of ground state solution of the following fractional Schödinger-
Possion equations {

(−∆)su + V (x)u−K(x)φ|u|2∗s−3u = f(x, u), x ∈ R3,

(−∆)sφ = K(x)|u|2∗s−1, x ∈ R3.
(1.7)

with the nonlinearity u2∗s−1 + h(u), where h is subcritical growth, in this case, system (1.7) is called
double critical exponents case. In [14], Feng studied the existence of nonnegative solutions of (1.7), by
employing the mountain pass theorem, concentration-compactness principle and approximation method,
and extended the main results of [22] to the fractional Laplacian case.

When K(x) ≡ 0, (1.7) simplifies to the following fractional Schrödinger equation

(−∆)su + V (x)u = f(x, u), x ∈ R3, (1.8)

In [30], Secchi constructed solutions to (1.8) by variational approach in nature, and based on minimization
on the Nehari manifold. do Ó, Miyagaki and Squassina [24] investigated (1.8) with critical power
nonlinearity and a subcritical term K(x)f(u) + λ|u|2∗s−2u, and the involved potentials are allowed for
vanishing behavior at infinity.

Motivated by the works mentioned above, the purpose of this paper is concerned with the following
fractional Schödinger-Poisson system{

(−∆)su + V (x)u−K(x)φ|u|2∗s−3u = a(x)f(u), x ∈ R3

(−∆)sφ = K(x)|u|2∗s−1, x ∈ R3.
(1.9)

The continuous functions V (x) and a(x) satisfy the following conditions:
(D1) V (x) > 0, a(x) > 0, ∀x ∈ R3, and a(x) ∈ L∞(R3);
(D2) If An ⊂ R3 is a sequence of Borel sets such that |An| ≤ C, for all n any some C > 0, then

limx→+∞
´
An∩Bc

r(0) a(x)dx = 0, uniformly in n ∈ N;
(D3) One of the following situations occurs:

a(x)
V (x)

∈ L∞(R3), (D3)1

or there is p ∈ (2, 2∗s) such that

a(x)

[V (x)]
2∗s−p

2∗s−2

→ 0, as |x| → +∞. (D3)2

With respect to functions f ∈ C(R,R), we formulate assumptions as:

(f1) limt→0+
f(t)

t = 0 if (D3)1 holds; or limt→0+
f(t)
tp−1 = A < +∞ if (D3)2 holds.

(f2) f has a quasi-critical growth, that is, limt→+∞
f(t)

t2
∗
s−1 = 0.

(f3) t → f(t)
tm is non-decreasing in (0,+∞), for some m ∈ (3− 2s, 2∗s − 1).

(f4) limt→+∞
F (t)
tm+1 = +∞, where F (τ) =

´ τ
0 f(t)dt, and m ∈ (3 − 2s, 2∗s − 1) if (D3)1 holds or

m ∈ (p− 1, 2∗s − 1) if (D3)2 holds.
For the function K(x), we assume that

(K) K(x) > 0, ∀x ∈ R3, K(x) ∈ L∞(R3), and there exist some constants C, δ > 0, and β ∈
[3 − 2s, 3), such that |K(x) − K(x0)| ≤ C|x − x0|β if |x − x0| < δ, where x0 ∈ R3 satisfies
K(x0) = maxx∈R3 K(x) = ‖K‖∞ < +∞.

In order to consider the existence of positive solutions to system (1.9), in the following article, we may
assume f(u) = 0 for u ≤ 0.

Our main result can be formulated as:

Theorem 1.1. Suppose the conditions V (x), K(x), a(x) :R3 → R+ and f : R→ R satisfy the conditions
(D1)− (D3), (K) and (f1)− (f4), then the system (1.9) has a positive ground state solution.
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Remark 1.2. The hypotheses (D1)-(D3) was introduced in [24] to study the existence of ground state
solution of (1.8) with decaying potentials, which is original from [1], where Alves and Souto used it to
treat the Schrödinger equation with vanishing potentials.

The proof of Theorem 1.1 is variational. From the technical point of view, compared with equation
(1.8), the presence of critical nonlocal term in system (1.9) makes the problem more difficulty and
complicated. Firstly, we establish the geometry of mountain pass, from which we can obtain the existence
of the Cerami sequence. Secondly, we check that the Cerami condition at the level c is true, where c
is the mountain pass level associated with the energy functional of system (1.9). To this aim, through
energy estimation, we shall determine the minimum threshold value below which the Cerami compactness
condition is satisfied in view of the appearance of critical nonlocal term.

The structure of this paper is as follows. In Section 2, we give some variational settings and introduce
some useful lemmas, which are crucial in proving Theorem 1.1; and the proof of Theorem 1.1 is completed
in Section 3.

Notation. Throughout this paper, the Lebesgue space Lp(R3) for p > 1 is equipped with the norm
‖u‖p = (

´
R3 |u|pdx)

1
p . The norm for the weighted Lebesgue space Lq

a(R3) (q > 1) is given by ‖u‖a,q =

(
´
R3 a(x)|u|qdx)

1
q . Br(x) denotes the ball in RN centered at x with radius r. The letters C, Ci, i =

1, 2, · · · , denote various positive constants whose exact values are irrelevant, and u± = max{±u, 0}.

2. Preliminary results

In this Section, we will give some notations and Lemmas that will be used throughout this paper.
For any s ∈ (0, 1), the homogeneous Sobolev space Ds,2(R3) is defined by Ds,2(R3) = {u ∈ L2∗s (R3) :
‖u‖Ds,2 < ∞}, where

‖u‖2
Ds,2 =

ˆ

R3

|(−∆)
s
2 u|2dx =

¨

R6

|u(x)− u(y)|2
|x− y|3+2s

dxdy.

The fractional space Hs(R3) is defined by

Hs(R3) =
{
u ∈ L2(R3) : ‖u‖Ds,2 < ∞}

,

endowed with the norm
‖u‖ := ‖u‖Hs =

√
|u|22 + ‖u‖2

Ds,2 .

See [27]. We define the Sobolev space

E =
{

u ∈ Ds,2(R3) :
ˆ

R3

V (x)u2dx ≤ +∞
}

equipped with the norms

‖u‖E :=
(ˆ

R3

(
|(−∆)

s
2 u(x)|2 + V (x)|u(x)|2

)
dx

) 1
2

.

As is well-known, the Lax-Milgram theorem implies that Poisson equation (−∆)sφ = K(x)|u|2∗s−1 has
a unique weak solution φu ∈ Ds,2(R3) for u ∈ E, and φu can be expressed as (e.g. [16])

φu(x) = Cs

ˆ

R3

K(y)|u(y)|2∗s−1

|x− y|3−2s
dy, (2.1)

where Cs = Γ( 3−2s
2

)

22sπ
3
2 Γ(s)

.

Substituting (2.1) into the first equation of (1.9), then (1.9) can be transformed into a single Schrödinger
equation as follows:

(−∆)su + V (x)u−K(x)φu|u|2∗s−3u = a(x)f(u), ∀u ∈ E.
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The energy functional associated with the system (1.9) is given by

J(u) =
1
2

ˆ

R3

(
|(−∆)

s
2 u(x)|2 + V (x)|u(x)|2

)
dx

− 1
2(2∗s − 1)

ˆ

R3

K(x)φu(x)|u|2∗s−1dx−
ˆ

R3

a(x)f(u)dx,

(2.2)

where F (x, t) =
´ t
0 f(x, s)ds.

Under the assumption of f , it is easy to see that J is well-defined and of class C1(E,R). Moreover,
the Gateaux derivative of J is defined as

J ′(u)v =
ˆ

R3

(|(−∆)
s
2 u(x)|2+V (x)|u(x)|2)dx−

ˆ

R3

K(x)φu(x)|u|2∗s−3uvdx−
ˆ

R3

a(x)f(u)vdx, ∀u, v,∈ E.

It is easy to check that the critical point u of the function J corresponds to the weak solution of (1.9).
Next, we recall the following embedding results.

Lemma 2.1. ( [30]) Let 0 < s < 1 such that 2s < N . Then there exists a sharp constant S > 0 such
that for any u ∈ Ds,2(RN )

‖u‖2
2∗s ≤ S−1‖u‖2

Ds,2 .

Moreover, the embedding Hs(R3) ↪→ Lp(R3) is continuous for any p ∈ [2, 2∗s], and is locally compact
whenever p ∈ [1, 2∗s).

Lemma 2.2. ( [24]) Assume that conditions (D1)− (D3) are satisfied. Then E is compactly embedded
in Lq

a(R3) for q ∈ (2, 2∗s), if (D3)1 is true; E is compactly embedded in Lp
a(R3), if (D3)2 is true.

Lemma 2.3. ( [24]) Suppose that assumptions (D1) − (D3) and (f1) − (f4) are satisfied, and vn is a
sequence such that vn ⇀ v in E. Then

ˆ

R3

a(x)F (vn)dx →
ˆ

R3

a(x)F (v)dx and
ˆ

R3

a(x)f(vn)vndx →
ˆ

R3

a(x)f(v)vdx. (2.3)

Lemma 2.4. ( [14]) The function φu has the following qualities:
(1) If un ⇀ u in Hs(R3), then φun ⇀ φu in Ds,2(R3);
(2) φtu = |t|2∗s−1φu, ∀t > 0, u ∈ Hs(R3);
(3) For each u ∈ Hs(R3), one has ‖φu‖Ds,2 ≤ ‖K‖∞S−

1
2 ‖u‖2∗s−1

2∗s
and

ˆ

R3

K(x)φu|u|2∗s−1dx ≤ ‖K‖2
∞S−1‖u‖2(2∗s−1)

2∗s
;

(4) If un → u in Hs(R3), then, up to a subsequence, φun → φu in Ds,2(R3).

Lemma 2.5. If un ⇀ u weakly in L2∗s (R3), and un → u a.e. in R3, then as n → ∞, we have the
following conclusions:

(i) |un|2
∗
s−1 − |un − u|2∗s−1 − |u|2∗s−1 → 0 in L

6
3+2s (R3);

(ii) |un|2
∗
s−2 un − |un − u|2∗s−2(un − u)− |u|2∗s−2u → 0 in L

6
3+2s (R3);

(iii)
´
R3 K(x)φun |un|2∗s−1dx− ´

R3 K(x)φun−u|un − u|2∗s−1dx− ´
R3 K(x)φu|u|2∗s−1dx → 0;

(iv)
´
R3 K(x)φun |un|2∗s−3unϕdx− ´

R3 K(x)φu|u|2∗s−3uϕdx → 0 ∀ϕ ∈ C∞
0 (R3).

Proof. Let υn = un − u, then υn ⇀ 0 in L2∗s (R3). According to the intermediate value theorem, there
exists θ ∈ L∞(R3) and 0 ≤ θ ≤ 1 such that

∣∣∣|υn + u|2∗s−1 − |υn|2
∗
s−1

∣∣∣ = (2∗s − 1) |υn + θu|2∗s−2 |u|

≤ (2∗s − 1)22∗s−2
[
|υn|2

∗
s−2 |u|+ |u|2∗s−1

]
.
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For any ε > 0, by the Young’s inequality, there exists Cε > 0 such that
∣∣∣|υn + u|2∗s−1 − |υn|2∗s−1 − |u|2∗s−1

∣∣∣ ≤ (2∗s − 1)22∗s−2
[
|υn|2

∗
s−2 |u|+ |u|2∗s−1

]
+ |u|2∗s−1

≤ ε|υn|2∗s−1 + Cε|u|2∗s−1.

Define the functions

hn = max
{∣∣∣|υn + u|2∗s−1 − |υn|2∗s−1 − |u|2∗s−1

∣∣∣− ε|υn|2∗s−1, 0
}

,

which satisfies

hn → 0 a.e. in R3, 0 ≤ hn ≤ Cε|u|2∗s−1 ∈ L
6

3+2s (R3).

Hence, using Lebesgue’s dominant convergence theorem, we derive that
ˆ

R3

h
6

3+2s
n dx → 0.

From the definition of hn, it follows that
∣∣∣|υn + u|2∗s−1 − |υn|2∗s−1 − |u|2∗s−1

∣∣∣ ≤ hn + ε|υn|2∗s−1.

Thus, we obtain

lim sup
n→∞

ˆ

R3

∣∣∣|υn + u|2∗s−1 − |υn|2∗s−1 − |u|2∗s−1
∣∣∣

6
3+2s

dx ≤ C1

ˆ

R3

|hn|
6

3+2s dx + C2ε

ˆ

R3

|υn|2∗sdx ≤ C3ε.

This implies that ∣∣∣|υn + u|2∗s−1 − |υn|2∗s−1 − |u|2∗s−1
∣∣∣ → 0 in L

6
3+2s (R3),

and item (i) follows. The proof of item (ii) is similar to that of (i), we omit it.
Now, we show item (iii). Note that for every w ∈ Ds,2(R3),

|〈φun − φvn − φu, w〉| =
∣∣∣∣
ˆ

R3

K(x)w(|un|2∗s−1 − |vn|2∗s−1 − |u|2∗s−1)
∣∣∣∣

≤ ‖K‖∞‖w‖2∗s‖|un|2∗s−1 − |vn|2∗s−1 − |u|2∗s−1‖2∗s/(2∗s−1)

,

then we get
φun − φun−u − φu → 0 in Ds,2(R3).

Using un − u ⇀ 0 in L2∗s (R3) and un − u → 0 a.e. x ∈ R3, and Lemma 2.4, we have φun−u ⇀ 0 in
Ds,2(R3). Therefore, as n →∞,

ˆ

R3

K(x)φun |un|2∗s−1dx−
ˆ

R3

K(x)φvn |vn|2∗s−1dx−
ˆ

R3

K(x)φu|u|2∗s−1dx

=
ˆ

R3

K(x)[φun − φvn − φu]|un|2∗s−1dx +
ˆ

R3

K(x)φvn [|un|2∗s−1 − |un − u|2∗s−1 − |u|2∗s−1]dx

+
ˆ

R3

K(x)φvn |u|2
∗
s−1dx +

ˆ

R3

K(x)φu[|un|2∗s−1 − |u|2∗s−1]dx

→ 0.

un ⇀ u in Ds,2(R3), implies un ⇀ u in L2∗s (R3). Then, as K ∈ L∞(R3), we see that
ˆ

R3

K(x)(φun − φu)|u|2∗s−3uϕdx → 0 as n →∞. (2.4)
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Since un → u a.e. in R3 and K ∈ L∞(R3)
ˆ

R3

|K(x)φun [|un|2∗s−3un − |u|2∗s−3u]|
2∗s

2∗s−1 dx

≤ C

(
‖φun‖

2∗s
2∗s−1

2∗s
‖un‖

2∗s(2∗s−2)

2∗s−1

2∗s
+ ‖φun‖

2∗s
2∗s−1

2∗s
‖u‖

2∗s(2∗s−2)

2∗s−1

2∗s

)
≤ C,

we have K(x)φun [|un|2∗s−3un − |u|2∗s−3u] ⇀ 0 in L
2∗s

2∗s−1 (R3) as n →∞. Thus, we haveˆ

R3

K(x)φun [|un|2∗s−3un − |u|2∗s−3u]ϕdx → 0 as n →∞ (2.5)

which together with (2.4)-(2.5) ensuresˆ

R3

K(x)φun |un|2∗s−3unϕdx →
ˆ

R3

K(x)φu|u|2∗s−3uϕdx as n →∞.

This proves item (iv). ¤
Lemma 2.6. Under conditions (D1)− (D3) and (f1)− (f4), the functional J(u) satisfies the mountain
pass geometry.

Proof. By (2.2), we directly get that J(0) = 0. Fixed u0 ∈ E, for any t > 0,

J(tu0) =
t2

2

ˆ

R3

(|(−∆)
s
2 u0|2 + V (x)u2

0)dx− t2(2
∗
s−1)

2(2∗s − 1)

ˆ

R3

K(x)φu(x)|u|2∗s−1dx

−
ˆ

R3

a(x)F (x, tu0)dx.

Using (f2), we see that limt→∞ J(tu0) = −∞. Hence, there exists t0 > 0 large enough such that
J(t0u0) < 0. Set e = t0u0 ∈ E, then J(e) < 0.

Multiplying φu on the both sides of equation (−∆)sφu = K(x)|u|2∗s−1 and integrating on R3, we
get ‖φu‖2

Ds,2 =
´
R3 K(x)φu(x)|u|2∗s−1dx. By the continuous embedding E ↪→ Ds,2(R3) ↪→ L2∗s (R3) and

Lemma 2.1, one has

‖u‖2
2∗s
≤ S−1 ‖u‖2

Ds,2 ≤ S−1 ‖u‖2
E . (2.6)

Therefore, ˆ

R3

K(x)φu|u|2∗s−1dx ≤ ‖K‖∞ ‖φu‖2∗s
‖u‖2∗s−1

2∗s
≤ ‖K‖∞ S−

1
2 ‖φu‖Ds,2 ‖u‖2∗s−1

2∗s
.

Thus,
‖φu‖Ds,2 ≤ ‖K‖∞ S−

1
2 ‖u‖2∗s−1

2∗s
,

and so, ˆ

R3

K(x)φu|u|2∗s−1dx ≤ ‖K‖2
∞ S−1 ‖u‖2(2∗s−1)

2∗s
≤ ‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E . (2.7)

Case 1: (D3)1 holds. In this case, by (f1) and (f2), for any ε > 0 small enough, there is Cε > 0 such
that

|f(t)| ≤ ε |t|+ Cε |t|2
∗
s−1 and |F (t)| ≤ ε |t|2 + Cε|t|2∗s , ∀t ∈ R. (2.8)

Combining (2.6), (2.7), (2.8) and (2.2), we infer that

J(u) ≥ 1
2
‖u‖2

E −
1

2(2∗s − 1)
‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E −

ˆ

R3

a(x)[ε |u|2 + Cε|u|2∗s ]dx.

By virtue of ˆ

R3

a(x)|u|2dx ≤
∥∥∥ a

V

∥∥∥
∞

ˆ

R3

V (x)|u|2dx ≤
∥∥∥ a

V

∥∥∥
∞
‖u‖2

E , (2.9)
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and ˆ

R3

a(x)|u|2∗sdx ≤ ‖a‖∞
ˆ

R3

|u|2∗sdx ≤ ‖a‖∞ S−
2∗s
2 ‖u‖2∗s

E , (2.10)

we can obtain that

J(u) ≥ 1
2
‖u‖2

E −
1

2(2∗s − 1)
‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E − ε

∥∥∥ a

V

∥∥∥
∞
‖u‖2

E − Cε ‖a‖∞ S−
2∗s
2 ‖u‖2∗s

E .

Take ε small enough such that ε
∥∥ a

V

∥∥
∞ ≤ 1

4 , then

J(u) ≥ 1
4
‖u‖2

E

(
1− C1 ‖u‖2(2∗s−2)

E − C2 ‖u‖2∗s−2
E

)
.

Thus, there exists a small enough ρ > 0 such that if ‖u‖E = ρ, there holds J(u) ≥ a > 0.
Case 2: (D3)2 holds. It follows from (f1) and (f2) that for any sufficiently small ε > 0 there are

L1ε > 0 and L2ε > 0 such that, for all t ∈ R
|f(t)| ≤ L1ε |t|p−1 + L2ε |t|2

∗
s−1 and |F (t)| ≤ L1ε |t|p + L2ε|t|2∗s . (2.11)

Combining (2.6), (2.7), and (2.11) and (2.2), we get

J(u) ≥ 1
2
‖u‖2

E −
1

2(2∗s − 1)
‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E −

ˆ

R3

a(x)
[
L1ε|u|p + L2ε|u|2∗s

]
dx. (2.12)

Now, it is sufficient to estimate the value of this integral
´
R3 a(x)|u|pdx. To this aim, we use the

method due to Alves and Souto in [1] to show the desired estimation.
Let h(t) = V (x)t2−p + t2

∗
s−p for t > 0 and p ∈ (2, 2∗s). Then solving h′(t) = 0, we get the root

t0 =
[

p− 2
2∗s − p

V (x)
] 3−2s

4s

> 0.

Using it together with g′′(t0) = t−p
0 (p− 2)V (x)(2∗s − 2) > 0, We know that g(t) reaches the minimum at

t0. Hence,

h(t) ≥ h(t0) =
(2∗s − 2)(p− 2)

2−p
2∗s−2

(2∗s − p)
2∗s−p

2∗s−2

[V (x)]
2∗s−p

2∗s−2 .

Condition (D3)2 implies that for each ε > 0 small enough, there exists R > 0 large enough such that

a(x) ≤ ε
(2∗s − 2)(p− 2)

2−p
2∗s−2

(2∗s − p)
2∗s−p

2∗s−2

[V (x)]
2∗s−p

2∗s−2 ≤ ε[V (x)|u|2−p + |u|2∗s−p], |x| > R. (2.13)

Consequently,
ˆ

R3

a(x)|u|pdx =
ˆ

|x|≤R
a(x)|u|pdx +

ˆ

|x|>R
a(x)|u|pdx

≤ ‖a‖∞
ˆ

|x|≤R
|u|pdx +

ˆ

|x|>R
ε[V (x)|u|2−p + |u|2∗s−p]|u|pdx

≤ ‖a‖∞
(ˆ

|x|≤R
|u|2∗sdx

) p
2∗s

(ˆ

|x|≤R
1dx

) 2∗s−p

2∗s
+ ε

[
‖u‖2

E + ‖u‖2∗s
2∗s

]

≤ ‖a‖∞ |BR(0)|
2∗s−p

2∗s ‖u‖p
2∗s

+ ε ‖u‖2
E + ε ‖u‖2∗s

2∗s
.

(2.14)
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Combining (2.6), (2.10), (2.14) with (2.12), we infer that

J(u) ≥ 1
2
‖u‖2

E −
1

2(2∗s − 1)
‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E

− L1ε

ˆ

R3

a(x)|u|pdx− L2ε

ˆ

R3

a(x)|u|2∗sdx

≥ 1
2
‖u‖2

E −
1

2(2∗s − 1)
‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E

− L1ε

[
‖a‖∞ |BR(0)|

2∗s−p

2∗s ‖u‖p
2∗s

+ ε ‖u‖2
E + ε ‖u‖2∗s

2∗s

]
− L2ε ‖a‖∞ S−2∗s ‖u‖2∗s

E

≥ 1
2
‖u‖2

E −
1

2(2∗s − 1)
‖K‖2

∞ S−2∗s ‖u‖2(2∗s−1)
E − L1ε ‖a‖∞ |BR(0)|

2∗s−p

2∗s S−
p
2 ‖u‖p

E

− εL1ε ‖u‖2
E − εL1εS

− 2∗s
2 ‖u‖2∗s

E − L2ε ‖a‖∞ S−
2∗s
2 ‖u‖2∗s

E .

Since ε can be small enough, we may choose εL1ε ≤ 1
4 , to get

J(u) =
1
4
‖u‖2

E − C1 ‖u‖2(2∗s−1)
E − C2 ‖u‖p

E − C3 ‖u‖2∗s
E , p ∈ (2, 2∗s).

Consequently, there exists ρ > 0 small enough such that J(u) ≥ α > 0 when ‖u‖E = ρ. The proof is
completed. ¤

Remark 2.7. By Lemma 2.6, we can obtain a sequence {un} ⊂ E such that

J(un) → c and (1 + ‖un‖E)
∥∥J ′(un)

∥∥ → 0,

where c = infγ∈Γ maxt∈[0,1] J(γ(t)) > 0 with

γ = {γ ∈ C ([0, 1] , E) |γ(0) = 0 and J(γ(1)) < 0} .

{un} is called the Cerami sequence for J at the level c.

Lemma 2.8. Under conditions (D1)− (D3) and (f1)− (f4), then un, the Cerami sequence for J at the
level c is bounded in E.

Proof. From (f3) and (D1), we can derive that a(x)f(un)un ≥ (m + 1)a(x)F (un), m ∈ (3− 2s, 2∗s − 1).
Since {un} is a Cerami sequence for J at the level c, we have for m ∈ (3− 2s, 2∗s − 1),

c + 1 ≥ J(un)− 1
m + 1

〈
J ′(un), un

〉

=
m− 1

2(m + 1)
‖un‖2

E +
2(2∗s − 1)− 1−m

2(2∗s − 1)(m + 1)

ˆ

R3

K(x)φun(x)|un|2∗sdx

+
1

m + 1

ˆ

R3

a(x) [f(un)un − (m + 1)F (un)] dx

≥ m− 1
2(m + 1)

‖un‖2
E ,

which completes the proof. ¤

Lemma 2.9. Under conditions (D1)− (D3) and (f1)− (f4), and let un ⊂ E be a Cerami sequence for

J at the level c, and un ⇀ u in E, where c ∈
(

0, 2s
3+2s ‖K‖

− 3−2s
2s∞ S

3
2s

)
. Then u 6≡ 0.

Proof. Suppose by contradiction that, u ≡ 0. From (2.3) we get

c + on(1) = J(un) =
1
2
‖un‖2

E −
1

2(2∗s − 1)

ˆ

R3

K(x)φun |un|2∗s−1dx + on(1).
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and

o(1) = J ′(un)un = ‖un‖2
E −

ˆ

R3

K(x)φun |un|2∗s−1dx + on(1).

Then

c =
1
2

lim
n→∞ ‖un‖2

E − lim
n→∞

1
2(2∗s − 1)

ˆ

R3

K(x)φun |un|2∗s−1dx. (2.15)

and

0 = lim
n→∞ ‖un‖2

E − lim
n→∞

ˆ

R3

K(x)φun |un|2∗s−1dx.

Let

lim
n→∞ ‖un‖2

E = lim
n→∞

ˆ

R3

K(x)φun |un|2∗s−1dx = l. (2.16)

By (2.16) and (2.15), we have c = 2s
3+2s l. Moreover, from (2.7) and (2.16) we deduce that

l ≤ ‖K‖2
∞ S−2∗s l2

∗
s−1.

Therefore, either l = 0 or l ≥ ‖K‖−
3−2s
2s∞ S

3
2s . If l ≥ ‖K‖−

3−2s
2s∞ S

3
2s , then c ≥ 2s

3+2s ‖K‖
− 3−2s

2s∞ S
3
2s , which

is a contradiction. If l = 0, then we have c = 0, which contradicts to the assumption c > 0. The proof
is completed. ¤

In the next part, we estimate the interval value of c. To this purpose, we let η ∈ C∞
0 (R3) be a cut-off

function with support in B1(0) such that η ∈ [0, 1] on B1(0). We define

uε = η(x)Uε(x), u∗ =
uε

‖uε‖L2∗s (R3)

,

where

Uε(x) =
κε

3−2s
2

(ε2 + |x− x0|2)
3−2s

2

, (2.17)

solves the equation (−∆)su = u2∗s−1, x ∈ R3, κ is a normalization constant, see [31]. The following
estimates can be deduced from the standard arguments [32],

‖(−∆)
s
2 uε‖2

2 = S
3
2s
s + O(ε3−2s), (2.18)

‖uε‖2∗s
2∗s

= S
3
2s
s + O(ε3), (2.19)

‖V uε‖2
2 = O(ε3−2s), (2.20)

and

ˆ

R3

|uε|pdx =





O(ε
3(2−p)+2sp

2 ) if p > 3
3−2s ,

O(ε
3(2−p)+2sp

2 | log ε|) if p = 3
3−2s ,

O(ε
(3−2s)p

2 ) if p < 3
3−2s .

(2.21)

Lemma 2.10. Assume V (x), a(x) and K(x) satisfy the assumptions (D1)−(D3) and (K), respectively.
Let

h(t) =
t2

2

(ˆ

R3

∣∣∣(−∆)
s
2 uε

∣∣∣
2
dx +

ˆ

R3

V (x)|uε|2dx

)
− t2(2

∗
s−1)

2(2∗s − 1)

ˆ

R3

K(x)φuε |uε|(2∗s−1)dx,

Then for any t ≥ 0,

h(t) ≤ 2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s + O(ε3−2s).
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Proof. Set h(t) = t2

2 a− t2(2
∗
s−1)

2(2∗s−1)b, where

a =
ˆ

R3

|(−∆)
s
2 uε|2dx +

ˆ

R3

V (x)|uε|2dx and b =
ˆ

R3

K(x)φuε |uε|(2∗s−1)dx.

Solving h′(t) = 0, the root of the equation is t0 = (a
b )

1
2(2∗s−2) . Combining h′(t0) = 0 with h′′(t0) =

(4− 22∗s)a < 0, we have that h(t) reaches the maximum at t0. Then,

max
t≥0

h(t) = h(t0) =
(2∗s − 2)a

3+2s
4s

2(2∗s − 1)b
3−2s
4s

=
(2∗s − 2)

(´
R3 |(−∆)

s
2 uε|2dx

) 3+2s
4s

2(2∗s − 1)
(´
R3 K(x)φuε |uε|2∗s−1dx

) 3−2s
4s

.

On the other hand,

ˆ

R3

K(x)|uε|2∗sdx = K(x0)
ˆ

R3

|uε|2∗sdx−
(ˆ

R3

[K(x0)−K(x)]|uε|2∗sdx

) 3−2s
4s

. (2.22)

Once that (K) is true, we have
ˆ

R3

[K(x0)−K(x)]|uε|2∗sdx ≤ C

ˆ

|x−x0|<δ
|x− x0|β|uε|2∗sdx + 2 ‖K‖∞

ˆ

|x−x0|≥δ
|uε|2∗sdx = I1 + I2.

Substituting (2.19) into I1 and I2, respectively, we deduce that

I1 ≤ C

ˆ

|x−x0|<δ
|x− x0|β|Uε|2∗sdx = C

ˆ

|x−x0|<δ

κ2∗s |x− x0|βε3

(ε2 + |x− x0|2)3
dx

= Cκ
6

3−2s

ˆ δ

0

r2+βε3

(ε2 + r2)3
dr ≤ Cεβ

ˆ +∞

0
(1 + r2)

β
2
− 5

2 d(1 + r2) = Cεβ,

and

I2 = 2 ‖K‖∞
ˆ

|x−x0|≥δ
|uε|2∗sdx ≤ C

ˆ

|x−x0|≥δ

κ2∗sε3

(ε2 + |x− x0|2)3 dx

≤ Cε3

ˆ +∞

δ

r2

(ε2 + r2)3
dr ≤ Cε3

ˆ +∞

δ
r−4dr = Cε3.

From β ∈ [3− 2s, 3), we have that
ˆ

R3

[K(x0)−K(x)]|uε|2∗sdx ≤ Cεβ. (2.23)

Hence, by (2.22) and (2.23) we get
ˆ

R3

K(x)|uε|2∗sdx ≥ ‖K‖∞ ‖uε‖2∗s
2∗s
− Cεβ = ‖K‖∞ S

3
2s + O(εβ). (2.24)

From (2.18), (2.24) and β ∈ [3− 2s, 3), one has
ˆ

R3

K(x)|uε|2∗s =
ˆ

R3

(−∆)
s
2 φuε(−∆)

s
2 |uε|dx

≤ 1
2 ‖K‖∞

ˆ

R3

|(−∆)
s
2 φuε |2 +

‖K‖∞
2

ˆ

R3

|(−∆)
s
2 |uε||2dx

≤ 1
2 ‖K‖∞

ˆ

R3

K(x)φuε |uε|2∗s−1dx +
‖K‖∞

2

ˆ

R3

|(−∆)
s
2 uε|2dx,
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which shows that
ˆ

R3

K(x)φuε |uε|2∗s−1dx ≥ 2 ‖K‖∞
ˆ

R3

K(x)|uε|2∗sdx− ‖K‖2
∞

ˆ

R3

|(−∆)
s
2 uε|2dx

≥ 2 ‖K‖2
∞ S

3
2s + O(εβ)− ‖K‖2

∞ S
3
2s −O(ε3−2s)

= ‖K‖2
∞ S

3
2s
s −O(ε3−2s).

Therefore, we obtain

max
t≥0

h(t) ≤ 2s

3 + 2s

(
S

3
2s + O(ε3−2s)

) 3+2s
4s

(
‖K‖2

∞ S
3
2s
s −O(ε3−2s)

) 3−2s
4s

≤ 2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s
s + O(ε3−2s),

which implies the assertion. ¤

Lemma 2.11. Assume V (x), a(x), K(x) and f(u) satisfy the assumptions (D1)− (D3) and (f1)− (f4),
respectively. Then,

c ∈
(

0,
2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s

)
.

Proof. According to the mountain pass geometry, there is ρ > 0 small enough such that J(u) ≥ a > 0
when ‖u‖E = ρ. Thus, c ≥ a > 0. Since uε ≥ 0 and uε 6≡ 0, from (f2), it follows that limt→+∞ J(tuε) =
−∞. Combining this with J(0) = 0 and J(u) > 0 when ‖u‖E = ρ for some ρ > 0, there is tε > 0 such
that J(tεuε) = maxt≥0 J(tuε).

Claim 1: c ≤ maxt≥0 J(tuε) = J(tεuε). Indeed, it follows from Lemma 2.6 that there is t0 > 0 large
enough such that J(t0uε) < 0. Define γ0(t) = tt0uε. Obviously, γ0(t) ∈ Γ. Hence,

c = inf
γ∈Γ

max
t∈[0,1]

J(γ(t)) ≤ max
t∈[0,1]

J(tt0uε) = max
t∈[0,t0]

J(tuε) ≤ max
t≥o

J(tuε) = J(tεuε).

Claim 1 implies that

J(tεuε) > 0 and
d

dt
J(tuε)|t=tε = 0,

that is,

t2ε
2

ˆ

R3

(|(−∆)
s
2 uε|2 + V (x)u2

ε)dx− t
2(2∗s−1)
ε

2(2∗s − 1)

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx

−
ˆ

R3

a(x)F (x, tεuε)dx > 0.

(2.25)

and

tε

ˆ

R3

(|(−∆)
s
2 uε|2 + V (x)u2

ε)dx− t22
∗
s−3

ε

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx

−
ˆ

R3

a(x)f(x, tεuε)uεdx = 0.

(2.26)
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Claim 2: There exist some ε2 > 0 and t2 > 0 such that tε ≤ t2 for each ε ∈ (0, ε2). We first consider
(D3)1 holds. Inserting (2.8) and (2.9) into (2.25), we obtain

t
2(2∗s−1)
ε

2(2∗s − 1)

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx

≤ t2ε
2
‖u‖2

E +
ˆ

R3

a(x)F (x, tεuε)dx

≤ t2ε
2
‖u‖2

E + εt2ε

ˆ

R3

a(x)|uε|2dx + Cεt
2∗s
ε

ˆ

R3

a(x)|uε|2∗sdx

≤ t2ε
2
‖u‖2

E + εt2ε

∥∥∥ a

V

∥∥∥
∞
‖uε‖2

E + Cεt
2∗s
ε ‖a‖∞ ‖uε‖2∗s

2∗s
.

Because ε is small enough, we can choose ε
∥∥ a

V

∥∥
∞ ≤ 1

2 , verifying

t
2(2∗s−2)
ε

2(2∗s − 1)

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx ≤ ‖uε‖2
E + Cεt

2∗s−2
ε ‖a‖∞ ‖uε‖2∗s

2∗s
.

Therefore, there exist ε21 > 0 and t21 > 0 such that tε ≤ t21 for ε ∈ (0, ε21).
Now we suppose that (D3)2 holds. Combining (2.11), (2.14) and (2.25), we have

t
2(2∗s−1)
ε

2(2∗s − 1)

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx

≤ t2ε
2
‖u‖2

E + L1εt
p
ε

ˆ

R3

a(x)|uε|pdx + L2εt
2∗s
ε

ˆ

R3

a(x)|uε|2∗sdx

≤ t2ε
2
‖u‖2

E + L1εt
p
ε

[
‖a‖∞ |BR(0)|

2∗s−p

2∗s ‖uε‖p
2∗s

+ ε ‖uε‖2
E + ε ‖uε‖2∗s

2∗s

]

+ L2εt
2∗s
ε ‖a‖∞ S−

2∗s
2 ‖u‖2∗s

E

=
t2ε
2
‖u‖2

E + L1εt
p
ε ‖a‖∞ |BR(0)|

2∗s−p

2∗s ‖uε‖p
2∗s

+ L1εt
p
εε ‖uε‖2

E + L1εt
p
εε ‖uε‖2∗s

2∗s

+ L2εt
2∗s
ε ‖a‖∞ S−

2∗s
2 ‖u‖2∗s

E .

Therefore, there are ε22 > 0 and t22 > 0 such that tε < t22 for ε ∈ (0, ε22). Let ε2 = min {ε21, ε22} and
t2 = min {t21, t22}. Then tε ≤ t2 for ε ∈ (0, ε2).

Claim 3: There exist some ε1 > 0 and t1 > 0 such that tε ≥ t1 for every ε ∈ (0, ε1).
We first consider (D3)1 holds. From (2.8), (2.9), and (2.26), we have

‖uε‖2
E ≤ t2(2

∗
s−2)

ε

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx + ε

ˆ

R3

a(x)|uε|2dx + Cεt
2∗s−2
ε

ˆ

R3

a(x)|uε|2∗sdx

≤ t2(2
∗
s−2)

ε

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx + ε
∥∥∥ a

V

∥∥∥
∞
‖u‖2

E + Cεt
2∗s−2
ε ‖a‖∞ ‖uε‖2∗s

2∗s
.

Take ε sufficiently small, such that ε
∥∥ a

V

∥∥
∞ ≤ 1

2 . So,

‖uε‖2
E ≤ t2(2∗s−2)

ε

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx + ε

ˆ

R3

a(x)|uε|2dx + Cεt
2∗s−2
ε ‖a‖∞ ‖uε‖2∗s

2∗s
,

which implies that there exist ε11 > 0 and t11 > 0 such that tε ≥ t11 for ε ∈ (0, ε11).
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Now, suppose that (D3)2 is true. From (2.11), (2.14) and (2.26), we see that

tε ‖uε‖2
E = t22∗s−3

ε

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx +
ˆ

R3

a(x)f(x, tεuε)uεdx

≤ t22∗s−3
ε

ˆ

R3

K(x)φuε(x)|uε|2∗s−1dx + L1εt
p−1
ε

ˆ

R3

a(x)|uε|pdx + L2εt
2∗s−1
ε

ˆ

R3

a(x)|uε|2∗sdx

≤ t22∗s−3
ε

ˆ

R3

K(x)φuε |uε|2∗sdx + L1εt
p−1
ε ‖a‖∞ |BR(0)|

2∗s−p

2∗s ‖uε‖p
2∗s

+ L1εt
p−1
ε ε ‖uε‖2

E

+ L1εt
p−1
ε ε ‖uε‖2∗s

2∗s
+ L2εt

2∗s−1
ε ‖a‖∞

ˆ

R3

|uε|2∗sdx,

combining with Claim 2, we infer that

‖uε‖2
E ≤ t2(2∗s−2)

ε

ˆ

R3

K(x)φuε |uε|2∗sdx + L1εt
p−2
ε ‖a‖∞ |BR(0)|

2∗s−p

2∗s ‖uε‖p
2∗s

+ L1εt
p−2
2 ε ‖uε‖2

E

+ L1εt
p−2
ε ε ‖uε‖2∗s

2∗s
+ L2εt

2∗s−2
ε ‖a‖∞

ˆ

R3

|uε|2∗sdx.

Similarly, choosing εL1εt
p−2
2 ≤ 1

2 , one has

1
2
‖uε‖2

E ≤ t2(2∗s−2)
ε

ˆ

R3

K(x)φuε |uε|2∗sdx + L1εt
p−2
ε ‖a‖∞ |BR(0)|

2∗s−p

2∗s ‖uε‖p
2∗s

+ L1εt
p−2
ε ε ‖uε‖2∗s

2∗s
+ L2εt

2∗s−2
ε ‖a‖∞

ˆ

R3

|uε|2∗sdx.

showing that there are ε12 > 0 and t12 > 0 such that tε ≥ t12 for ε ∈ (0, ε12).
Let ε1 = min {ε11, ε12} and t1 = max {t11, t12}.Then tε ≥ t1 for ε ∈ (0, ε1). Denote by ε0 =

min {ε1, ε2}, then for each ε ∈ (0, ε0), we have 0 < t1 < tε ≤ t2.
The rest of the proof is to estimate the upper bound of J(tεuε). By Lemma 2.9 we get

J(tεuε) = h(tε)−
ˆ

R3

a(x)F (x, tεuε)dx

≤ 2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s
s + O(ε3−2s)−

ˆ

R3

a(x)F (x, tεuε)dx.

(2.27)

When case (D3)1 occurs, we have from (f1) that, for given ε1 > 0 small enough, there is δ1 > 0 small
enough such that |f(t)| ≤ ε1t, 0 < t < δ1; and by (f2), given ε2 > 0 small enough, there is M2 > 0 large
enough such that |f(t)| ≤ ε2t

2∗s−1, t > M2. Since f(t) ∈ C[δ1,M2], we see that |f(t)| ≤ Ā

δ
2∗s−1
1

t2
∗
s−1 for

some Ā > 0. Consequently, for every t > 0, we have

|f(t)| ≤ ε1t +
(

ε2 +
Ā

δ2∗s−1

)
t2
∗
s−1 and |F (t)| ≤ ε1t

2 +

(
ε2 +

Ā

δ
2∗s−1
1

)
t2
∗
s .

On the other hand, from (f4), it follows that given X > 0 large enough, there exists M3 > 0 large enough
such that |F (t)| ≥ Xtm+1 with m ∈ (3− 2s, 2∗s − 1), t > M3. So,

F (t) ≥ −ε1t
2, if 0 < t < δ1; F (t) ≥ Xt2, if t > M3,

and

F (t) ≥ −ε1t
2 +

(
ε2 +

Ā

δ2∗s−1

)
M

2∗s−2
3 t2, if δ1 ≤ t ≤ M3.

Therefore, the exists M > 0 such that for t > 0,

F (t) ≥ −Mt2. (2.28)

Again, by (f4), we have that for t > M3,
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F (t) ≥ 3X2
(3−2s)(m+1)−2

2

a0κm+1tm+1
1 π

tm+1, (2.29)

where a0 = minx∈B1(x0) a(x). Set ε3 = min

{
ε0,

(κt1)
2

3−2s

2M
2

3−2s
3

, 1

}
, then Bε(x0) ⊂ B1(x0) for each ε ∈ (0, ε3).

For x ∈ Bε(x0),

tεuε = tεη(x)Uε(x) = tε
κε

3−2s
2

(ε2 + |x− x0|2)
3−2s

2

> t1
κε

3−2s
2

(2ε2)
3−2s

2

> M3.

Then, from (2.28) and (2.29), it follows that
ˆ

R3

a(x)F (tεuε)dx =
ˆ

Bε(x0)
a(x)F (tεuε)dx +

ˆ

R3\Bε(x0)
a(x)F (tεuε)dx

≥
ˆ

Bε(x0)
a(x)

3X2
(3−2s)(m+1)−2

2

a0κm+1tm+1
1 π

(tεuε)m+1dx +
ˆ

R3\Bε(x0)
a(x)

[−M(tεuε)2
]
dx

≥ 3X2
(3−2s)(m+1)−2

2

κm+1π

ˆ

Bε(x0)
(uε)

m+1 dx−Mt22

∥∥∥ a

V

∥∥∥
∞
‖V uε‖2

2

≥ 3X2
(3−2s)(m+1)−2

2

κm+1π

ˆ

Bε(x0)

κm+1ε
(3−2s)(m+1)

2

(ε2 + |x− x0|2)
(3−2s)(m+1)

2

−Mt22

∥∥∥ a

V

∥∥∥
∞
‖V uε‖2

2

≥ Xε3− (3−2s)(m+1)
2 −Mt22

∥∥∥ a

V

∥∥∥
∞
‖V uε‖2

2 .

(2.30)

Therefore, by (2.27), (2.30) and (2.20), we have

J(tεuε) ≤ 2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s + O(ε3−2s)−

(
Xε3− (3−2s)(m+1)

2 −Mt22

∥∥∥ a

V

∥∥∥
∞
‖V uε‖2

2

)

≤ 2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s + O(ε3−2s)−Xε3− (3−2s)(m+1)

2 .

Since m ∈ (3− 2s, 2∗s − 1), then

0 < 3− (3− 2s)(m + 1)
2

< −2s2 + 7s− 3. (2.31)

Simple calculation shows that, for s ∈ (0, 1),

3− 2s > −2s2 + 7s− 3, (2.32)

then for ε small enough, we derive that

J(tεuε) <
2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s .

When case (D3)2 occurs, by a similar argument as that of (2.27), there is M > 0 such that for t > 0,

F (t) ≥ −Mtp.

Then for ε ∈ (0, ε3), we have
ˆ

R3

a(x)F (tεuε)dx ≥ Xε3− (3−2s)(m+1)
2 −Mtp2

∥∥∥ a

V

∥∥∥
∞
‖V uε‖p

p .
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Hence, by (2.21), we get

J(tεuε) ≤ 2s

3 + 2s
‖K‖−

4s
3−2s∞ S

3
2s + O(ε3−2s)−

(
Xε3− (3−2s)(m+1)

2 −Mtp2

∥∥∥ a

V

∥∥∥
∞
‖V uε‖p

p

)

=
2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s + O(ε3−2s)−Xε3− (3−2s)(m+1)

2 +





O(ε3(2−p)+2sp
2 ), p > 3

3−2s ,

O(ε
3(2−p)+2sp

2 | log ε|), p = 3
3−2s ,

O(ε
3−2s

2
p), p < 3

3−2s .

When 2 < p < 3
3−2s , O(ε3−2s) + O(ε

3−2s
2

p) = O(ε3−2s). Since X > 0 can be large enough, let

X = ε−
4s−(3−2s)p

2 , combining with 3− (3−2s)(m+1)
2 − 4s−(3−2s)p

2 < 3−2s for m+1 > p, we have O(ε3−2s)−
Xε3− (3−2s)(m+1)

2 < 0 for ε sufficiently small.
When p = 3

3−2s , O(ε3−2s) + O(ε
2(2−p)+2sp

2 | log ε|) = O(ε3−2s). Because X > 0 can be large enough,

choose X = ε−(2s−3/2), using 3 − (3−2s)(m+1)
2 − (

2s− 3
2

)
< 3 − 2s for m + 1 > 3

3−2s , we get O(ε3−2s) −
Xε3− (3−2s)(m+1)

2 < 0 for ε sufficiently small.
When 3

3−2s < p < 4s
3−2s , O(ε3−2s + O(ε

3(2−p)+2sp
2 ) = O(ε3−2s). Because X > 0 is large enough, let

X = ε−(2s−3/2), combining with 3 − (3−2s)(m+1)
2 − (

2s− 3
2

)
< 3 − 2s for m + 1 > p > 3

3−2s , we infer

O(ε3−2s)−Xε3− (3−2s)(m+1)
2 < 0 for ε sufficiently small.

when 4s
3−2s ≤ p < 2∗s, O(ε3−2s + O(ε

3(2−p)+2sp
2 ) = O(ε

3(2−p)+2sp
2 ). Since 3− (3−2s)(m+1)

2 − 3(2−p)+2sp
2 < 0

for m + 1 > p, we derive O(ε
3(2−p)+2sp

2 )−Xε3− (3−2s)(m+1)
2 < 0 for ε sufficiently small.

From the four cases above, we have,

J(tεuε) <
2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s .

Combining J(tεuε) < 2s
3+2s ‖K‖

− 4s
3−2s∞ S

3
2s with Claim 1, we have that

c < J(tεuε) <
2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s .

As a result, Claim 1, we derive that

0 < c ≤ J(tεuε) <
2s

3 + 2s
‖K‖−

3−2s
2s∞ S

3
2s ,

which completes the proof. ¤

3. Proof of Theorem 1.1

In this section, we will prove that system (1.9) has a positive ground state solution. In order to obtain
the desired result, we need to apply the following theorem A.I due to Berestycki and Loins [7], which is
crucial in the prof of the main result.

Lemma 3.1. ( [7]) Let P and Q be two continuous functions from R→ R and satisfy the following:

(I1)
P (t)
Q(t) → 0 as |t| → +∞.

Suppose un is a sequence of measurable functions from RN → R such that
(I2) supn

´
RN |Q(un(x))|dx < +∞;

and
(I3) P (un(x)) → v(x) a.e. in Rn as n →∞.

Then for any bounded Borel set B, one hasˆ

B
|P (un(x)− v(x)|dx → 0 as n →∞.

If one further assumes that



GROUND STATES FOR CRITICAL FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS 17

(I4)
P (t)
Q(t) → 0 as |t| → +∞;

and
(I5) un(x) → 0 as |x| → +∞, uniform consideration of n,

then P (un) converges to v in L1(Rn) as n →∞.

Lemma 3.2. Under conditions (D1)− (D3) and (f1)− (f4), then, there is u ∈ E such that J ′(u) = 0.

Proof. Lemma 2.6 implies that there is a sequence un ⊂ E such that J(un) → c and (1+‖un‖E) ‖J ′(un)‖ →
0 as n →∞.

From Lemma 2.8, we see that un is bound in E. Then, up to a subsequence, exist a u ∈ E such that
un ⇀ u in E. Because un ⇀ u, for each w ∈ C∞

0 (R3), that
ˆ

R3

(−∆)
s
2 un(−∆)

s
2 w + V (x)unwdx →

ˆ

R3

(−∆)
s
2 u(−∆)

s
2 w + V (x)uwdx.

From Lemma 2.6, we see thatˆ

R3

K(x)φun |un|2∗s−3unwdx →
ˆ

R3

K(x)φu|u|2∗s−3uwdx.

Now, we prove that ˆ

R3

a(x)f(un)wdx →
ˆ

R3

a(x)f(u)wdx. (3.1)

For this aim, we use some ideas from Alves and Souto [1]. When (D3)1 holds, repeating the similar
arguments used in Lemma 2.11, we have for any t > 0 and q ∈ (2, 2∗s),

|f(t)| ≤ ε |t|+ ε |t|2∗s−1 + Cε |t|q−1 .

Consequently,ˆ

R3

a(x)f(un)wdx ≤
ˆ

R3

a(x)
[
ε|un|+ ε|un|2∗s−1 + Cε|un|q−1

]
|w|dx

≤ ε
∥∥∥ a

V

∥∥∥
∞

ˆ

R3

V (x)|un||w|dx + ε ‖a‖∞
ˆ

R3

|un|2∗s−1|w|dx + Cε

ˆ

R3

a(x)|un|q−1|w|dx

≤ εC

(ˆ

R3

V (x)|un||w|dx +
ˆ

R3

|un|2∗s−1|w|dx

)
+ Cε

ˆ

R3

a(x)|un|q−1|w|dx.

By Hölder inequality, we get
ˆ

R3

V (x)|un||w|dx ≤
[ˆ

R3

V (x)|un|2dx

] 1
2
[ˆ

R3

V (x)|w|2dx

] 1
2

,

ˆ

R3

|un|2∗s−1|w|dx ≤
(ˆ

R3

|un|2∗sdx

) 2∗s−1

2∗s
(ˆ

R3

|w|2∗sdx

) 1
2∗s

,

ˆ

R3

a(x)|un|q−1|w|dx ≤
[ˆ

R3

a(x)|un|qdx

] q−1
q

[ˆ

R3

a(x)|w|qdx

] 1
q

≤
[ˆ

R3

a(x)|un|qdx

] q−1
q

‖a‖
1
q∞

[ˆ

suppw
|w|qdx

] 1
q

≤ C

[ˆ

R3

a(x)|un|qdx

] q−1
q

.

In view of un ⇀ u in E ↪→ L2∗s (R3) and w ∈ C∞
0 (R3), we see that

´
R3 V (x)|un||w|dx and

´
R3 |un|2∗s−1|w|dx

are both bounded. By Lemma 2.2 and un ⇀ u in E, we know that
´
R3 a(x)|un|qdx → ´

R3 a(x)|u|qdx,
and there exists r > 0 large enough such that

´
Bc

r(0) a(x)|un|qdx ≤ ε. Thus, we have
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∣∣∣∣∣
ˆ

Bc
r(0)

a(x)f(un)ωdx

∣∣∣∣∣ ≤ εC · 2C1 + Cεε ≤ (2C1 + 1)Cε. (3.2)

When (D3)2 holds, by (f1), we have that for given ε > 0 small, there exists t1 > 0 small enough such
that |f(t)| ≤ Cε|t|p−1, 0 < t < t1. Hence, from (2.13), it follows that 0 < |un| < t1, and so

|a(x)f(un)w| ≤ εCε

[
V (x)|un|+ |un|2∗s−1

]
|w|, |x| > r. (3.3)

On the other hand, by (f2), for given ε > 0 small, there exists t2 > 0 large enough such that
|f(t)| ≤ ε|t|2∗s−1, t > s2. Thus, if |un| > t2 holds, we get

|a(x)f(un)w| ≤ ‖a‖∞ ε|un|2∗s−1|w|. (3.4)

From equations (3.3) and (3.4), we assume 0 < |un| < t1 or |un| > t2,

|a(x)f(un)w| ≤ εC
[
V (x)|un|+ |un|2∗s−1

]
|w|, |x| > r.

Define An =
{
x ∈ R3 : t1 ≤ |un| ≤ t2

}
. Then

∣∣∣∣∣
ˆ

Bc
r(0)

a(x)f(un)wdx

∣∣∣∣∣ ≤
ˆ

Bc
r(0)∩Ac

n

|a(x)f(un)w|dx +
ˆ

Bc
r(0)∩An

|a(x)f(un)w|dx

≤ εC

ˆ

Bc
r(0)∩Ac

n

[
V (x)|un|+ |un|2∗s−1

]
|w|dx +

ˆ

Bc
r(0)∩An

|a(x)f(un)w|dx

= I3 + I4.

I3 ≤ εC

ˆ

R3

V (x)|un||w|dx + εC

ˆ

R3

|un|2∗s−1|w|dx

≤
(ˆ

R3

V (x)|un|2dx

) 1
2
(ˆ

R3

V (x)|w|2dx

) 1
2

+ εC

(ˆ

R3

|un|
6

3−2s dx

) 3+2s
6

(ˆ

R3

|w|2∗sdx

) 1
2∗s

.

From the boundedness of {un} in E ↪→ L2∗s (R3) and w ∈ C∞
0 (R3), we have I3 ≤ 2εCC1.

Similarly, by (2.11), one has

I4 ≤
ˆ

suppw∩Bc
r(0)∩An

a(x)
[
L1ε|un|p−1 + L2ε|un|2∗s−1

]
|w|dx ≤ C

ˆ

Bc
r(0)∩An

a(x)dx.

Therefore, ∣∣∣∣∣
ˆ

Bc
r(0)

a(x)f(un)wdx

∣∣∣∣∣ ≤ 2εCC1 + C

ˆ

Bc
r(0)∩An

a(x)dx.

From un ⇀ u in E ↪→ L2∗s (R3), it follows that
´
R3 |un|2∗sdx ≤ C, and so,

´
An
|un|2∗sdx ≤ C.

From An =
{
x ∈ R3 : t1 ≤ |un| ≤ t2

}
, we know t

2∗s
1 |An| ≤

´
An
|un|2∗sdx, we have |An| ≤ C

t
2∗s
1

. Thus,

condition (D2) implies that limr→+∞
´
An∩Bc

r(0) a(x)dx = 0, uniformly in n ∈ N, then
´
An∩Bc

r(0) a(x)dx ≤
ε
C for r large enough. Hence,

∣∣∣∣∣
ˆ

Bc
r(0)

a(x)f(un)wdx

∣∣∣∣∣ ≤ (2CC1 + 1) ε. (3.5)

By (3.2) and (3.5), we get ∣∣∣∣∣
ˆ

Bc
r(0)

a(x)f(un)wdx

∣∣∣∣∣ ≤ Cε. (3.6)

Next, we show that
´
Br(0) a(x)f(un)wdx → ´

Br(0) a(x)f(u)wdx as n → +∞.
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From Lemma 3.1, we can take P (t) and Q(t) by f(t)w and t2
∗
s−1w, respectively. Condition (f2) implies

that (I1) holds. Because un ⇀ u in E ↪→ L2∗s (R3) and w ∈ C∞
0 (R3), then

sup
n

ˆ

R3

|u2∗s−1
n w|dx ≤ sup

n

(ˆ

R3

|un|
6

3−2s dx

) 3+2s
6

(ˆ

suppw
|w|2∗sdx

) 1
2∗s

< +∞.

From un ⇀ u in E, f ∈ C1, we see that f(un)w → f(u)ω a.e. in R3 as n → +∞. Hence, for bounded
Borel set Br(0), one has ˆ

Br(0)
|f(un)w − f(u)ω|dx → 0, as n → +∞,

implying ∣∣∣∣∣
ˆ

Br(0)
[a(x)f(un)w − a(x)f(u)w] dx

∣∣∣∣∣ → 0,

that is, ˆ

Br(0)
a(x)f(un)w →

ˆ

Br(0)
a(x)f(u)w. (3.7)

Combining (3.6) and (3.7), we have as n → +∞,ˆ

R3

a(x)f(un)w →
ˆ

R3

a(x)f(u)w.

Thus, J ′(un)w → 〈J ′(u), w〉 for every w ∈ C∞
0 (R3), implying J ′(u) = 0, which completes the proof. ¤

Proof of Theorem 1.1. By Lemma 3.2, we see that (u, φu) is a weak solution of the system (1.9).
Next, we show that (u, φu) is a ground state solution. For this aim, we need to prove J(u) = c. Because
u 6≡ 0, f(u)u ≥ (m + 1)F (u) and m ∈ (3− 2s, 2∗s − 1), then

J(u) = J(u)− 1
m + 1

J ′(u)u

=
m− 1

2(m + 1)
‖u‖2

E +
2(2∗s − 1)− 1−m

2(2∗s − 1)(m + 1)

ˆ

R3

K(x)φu(x)|u|2∗sdx

+
1

m + 1

ˆ

R3

a(x) [f(u)u− (m + 1)F (u)] dx

≥ m− 1
2(m + 1)

‖u‖2
E

> 0.

Denote by vn = un − u. Using Brezis-Lieb lemma [7] and Lemmas 2.3, 2.5, we have

c + on(1) > J(un)− J(u) =
1
2
‖vn‖2

E −
1

2(2∗s − 1)

ˆ

R3

K(x)φvn(x)|vn|2∗s−1dx + on(1).

and
on(1) = J ′(un)un − J ′(u)u = ‖vn‖2

E −
ˆ

R3

K(x)φvn(x)|vn|2∗s−1dx + on(1).

Hence,

c ≥ 1
2

lim
n→∞ ‖vn‖2

E − lim
n→∞

1
2(2∗s − 1)

ˆ

R3

K(x)φvn(x)|vn|2∗s−1dx. (3.8)

and
0 = lim

n→∞ ‖vn‖2
E − lim

n→∞

ˆ

R3

K(x)φvn(x)|vn|2∗s−1dx.

We assume
lim

n→∞ ‖vn‖2
E = lim

n→∞

ˆ

R3

K(x)φvn(x)|vn|2∗s−1dx = l,
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By (3.8), we get c ≥ 2s
3+2s l. But from (2.7) we have

ˆ

R3

K(x)φvn |vn|2∗s−1dx ≤ ‖K‖2
∞ S−2∗s

s ‖vn‖2(2∗s−1)
E .

The results generated such that
l ≤ ‖K‖2

∞ S−2∗s l2
∗
s−1.

Therefore, either l = 0 or l ≥ ‖K‖−
3−2s
2s∞ S

3
2s . If l ≥ ‖K‖−

3−2s
2s∞ S

3
2s , then c ≥ 2s

3+2s ‖K‖
− 3−2s

2s∞ S
3
2s , which

leads to the contradiction. Thus, l = 0, and we get limn→∞ ‖vn‖2
E = 0, which implies that vn → 0 in E.

This means that un → u in E as n →∞. So we can get that J(un) → J(u).
We only need to prove that the ground state solution is positive. Put u+ = max{u, 0} the positive

part of u. We note that all the calculations above can be repeated word by word, replacing J with the
functional

J+(u) =
1
2

ˆ

R3

|(−∆)
s
2 u|2dx +

1
2

ˆ

R3

V (x)|u|2dx

− 1
2(2∗s − 1)

ˆ

<3

φu+ |u+|2∗s−1dx−
ˆ

R3

a(x)F (u)dx.

(3.9)

Using u− = min{u, 0} as a test function in (3.9), in view of (J+)′(u)u− = 0, and (a − b)(a− − b−) ≥
|a− − b−|2, we conclude that

‖u−‖2
Ds,2 ≤

¨

R6

(u(x)− u(y))((u−(x)− u−(y))
|x− y|3+2s

dxdy +
ˆ

R3

V (x)|u−|2dx

= 0.

Thus, u− = 0 and u ≥ 0 is a solution of (1.9). By Lemma 6.1 [28], and by Theorem 3.4 [12] we can
see that u ∈ L∞(R3) ∩ C0,α(R3) for some α ∈ (0, 1). Next we only need to prove that the solution u
is positive. Otherwise, if u(x0) = 0 for some x0 ∈ R3, then (−∆)su(x0) = 0 and by the definition of
(−∆)s, we have [27]:

(−∆)su(x0) = −Cs

2

ˆ

R3

u(x0 + y) + u(x0 − y)− 2u(x0)
|y|3+2s

dy.

Hence,
´
R3

u(x0+y)+u(x0−y)
|y|3+2s dy = 0, which means that u ≡ 0, a contradiction. Thus, u(x) > 0 in R3. This

completes the proof. ¤
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