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Summary

In this paper, we establish a new phytoplankton-zooplankton model by considering
the effects of plankton body size and stochastic environmental fluctuations. Mathe-
matical theory work mainly gives the existence of boundary and positive equilibria,
and shows their local as well as global stability in the deterministic model. Addi-
tionally, we explore the dynamics of V-geometric ergodicity, stochastic ultimate
boundedness, stochastic permanence, persistence in the mean, stochastic extinction
and the existence of a unique ergodic stationary distribution in the corresponding
stochastic version. Numerical simulationworkmainly reveals that plankton body size
can generate great influences on the interactions between phytoplankton and zoo-
plankton, which in turn proves the effectiveness of mathematical theory analysis. It
is worth emphasizing that for the small value of phytoplankton cell size, the increase
of zooplankton body size can not change the phytoplankton density or zooplankton
density; for the middle value of phytoplankton cell size, the increase of zooplankton
body size can decrease zooplankton density or phytoplankton density; for the large
value of phytoplankton body size, the increase of zooplankton body size can increase
zooplankton density but decrease phytoplankton density. Besides, it should be noted
that the increase of zooplankton body size can not affect the effect of random envi-
ronmental disturbance, while the increase of phytoplankton cell size can weaken its
effect. There results may enrich the dynamics of phytoplankton-zooplankton models.
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1 INTRODUCTION

Cyanobacterial blooms caused by eutrophication of water bodies have always been a key problem in water environment con-
trol1,2.These phenomena not only restrict the economic value of lakes, rivers, reservoirs and other water bodies, but also seriously
threaten the safety of drinking water and human health3. In the past decades, many physical and biological processes related
to the interplay of plankton in the aquatic environments have been made by different approaches. However, a clear mechanism
of algal blooms is still ongoing. Hence, seeking for such a mechanism in relation to some important factors that may induce or
terminate the obnoxious phenomena is of great significance.
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In recent years, a large number of scholars have used mathematical models to study the interaction of plankton in the aquatic
ecosystems, and have obtained a lot of dynamic mechanisms of phytoplankton growth4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22. For
example, Jia et al.18 indicated that the toxicity of phytoplankton and the death rate of zooplankton play a vital role in the
spatial distribution of population density. Li et al.12 suggested that refuge and toxin have a significant impact on the occurring
and terminating of algal blooms in the freshwater lakes. Dai et al.8 demonstrated that time delay has a great influence on the
nutrient-phytoplankton dynamics. Chen et al.4 signified that temperature and light play a key role in the dynamic mechanisms of
phytoplankton growth. Zhao et al.6 showed that allelopathic effects can decrease the peaks of the cyclic outbreak of the harmful
algal blooms. These remarkable research works strongly indicate that mathematical models can be a powerful tool to determine
some key factors affecting the dynamic mechanisms of phytoplankton growth in the aquatic environments.
However, most of the mathematical model studies related to the dynamics of plankton growth4,5,6,14,15,16,17,13,12,18, which work

in a deterministic environment. These works have been ignored the impacts of random environmental fluctuation factors23, such
as unpredictable radiation, water temperature variations, humidity variability, infectious diseases, etc., which objectively exist
in the real aquatic environments and have the potential to generate far-reaching influences on the dynamics of plankton growth
or interaction. Actually, the environment in which plankton lives is always random and uncertain because the fact that most
natural phenomena do not follow strictly deterministic laws, but rather oscillate randomly about some average behaviour. Hence,
environmental randomness has been viewed as one of the inherent properties in population ecosystems and the population is
subject to a continuous spectrum of disturbances24.
In view of above viewpoints, the effects of stochastic environmental fluctuations, which can be described by the form of Guas-

sian white noise25, have great impacts on the parameters involved in the model such as the growth rate, death rate, carrying
capacity, intraspecific competition rate and so on23. As a result, some scholars take into account the influences of stochastic envi-
ronmental perturbations when studying phytoplankton-zooplankton dynamics26,27,28,29,30. For example, Yu et al.26 displayed that
environmental fluctuations play a key role in the termination of algal blooms. Camara et al.28 demonstrated that environmental
stochastic noise can destroy the limit cycle attractor existing in the deterministic model. Yu et al.31 suggested that environmental
fluctuations have a great influence on the survival of plankton. Hence, in the studies of phytoplankton-zooplankton dynamics,
it is essential to consider the effects of stochastic environmental perturbations.
On the other hand, most of phytoplankton-zooplankton models or nutrient-phytoplankton mod-

els4,6,7,8,9,11,12,13,14,15,16,17,26,27,28,29,30,31, it is usually assumed that the sinking rate of phytoplankton, growth rate of phytoplankton
and the grazing rate of zooplankton, etc., are independent of phytoplankton cell size or zooplankton body size. In fact, the
body size of aquatic organisms, especially the cell size of phytoplankton, has an important impact on ecosystem processes32.
Physiologically, smaller cell size of phytoplankton is excellent competitor for scarce nutrient, while some larger cell size of phy-
toplankton benefit from higher maximal uptake rates and an increased ability to store excess nutrients33,34. Ecologically, body
size regulates zooplankton-phytoplankton trophic interactions, with biomass-specific rates of ingestion by zooplankton gener-
ally decrease as the phytoplankton cell size or zooplankton body size decreases35. In particular, the cell size of phytoplankton
not only defines their metabolic activity and growth rates, but also strongly influences their contributions to biogeochemical
cycles via size-dependent sinking, and affects community structure and dynamics via size-dependent species interactions36.
Actually, many remarkable experimental researches have shown that the effects of smaller cell size on the phytoplankton

growth rate is similar to that of larger cell size on the growth rate of phytoplankton, and the peak growth rate of phytoplankton
appears at the intermediate cell size33,37,38,39. For example, by performing an in situ test of Raven’s prediction that there is a
reversal of the relationship between cell size and maximum achievable growth rate in unicellular algae at the low end of size
classes,38 found that a maximum in growth rate (4.8 and 3.3 divisions d−1, respectively) in the 2-3 �m size class represented
by coccoid Chlorella-like cells, with lower growth rates in both higher and lower size classes. Inspired by these facts, in this
research direction, some theoretical works related to how cell size affects the phytoplankton-zooplankton dynamics have been
reported recently40,41,42,43. In the work of Pu et al.41, they indicated that the phytoplankton-zooplankton evolutionary dynamics
are closely related to body size-dependent phytoplankton and zooplankton. Zhao et al.40 found that the cell size of phytoplankton
has a great influence on the growth and reproduction of phytoplankton. Consequently, the effects of cell size play a vital role in
the phytoplankton-zooplankton dynamics.
In spite of the importance of the stochastic environmental fluctuations and the cell size of phytoplankton, there is still a

lack of studies on how plankton body size affects the phytoplankton-zooplankton dynamics under the fluctuating environments.
In other words, a complete understanding of the mechanisms underlying the phytoplankton growth driven by plankton body
size is still largely unknown, especially in a randomly disturbed environment. Therefore, in this paper, we propose and study
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a phytoplankton-zooplankton model incorporating the impacts of plankton body size and stochastic fluctuation environment,
where the environmental variation is characterized by the form of white noise28.
The main purpose of this paper is to study how plankton body size affects the phytoplankton-zooplankton dynamics in the

deterministic and stochastic fluctuation environments. The rest of this article is organized as follows: In Section 2, we present
the mathematical model and preliminaries. Section 3 is devoted to studying the dynamics of deterministic model (4). In Section
4, we are committed to investigating the dynamics of stochastic model (6). Section 5, numerical simulations are carried out to
verify our analytical results. In Section 6, we give a brief discussion and the summary of the main results.

2 MATHEMATICAL MODEL AND PRELIMINARIES

In this section, we give the mathematical model and present some preliminaries which will be used in the later paper.

2.1 The deterministic model
Motivated by the previous works40,44,45, in this subsection, we firstly present the following assumptions to our model:
(H1) Assume that P (t) is the density of phytoplankton at time t and x is its cell size and Z(t) is the density of zooplankton at

time t and y is its body size.
(H2) Suppose that the phytoplankton grows exponentially in the absence of zooplankton, but is limited by its intraspecific

competition40,41. Hence, the term �P 2 indicates that the density dependent death of phytoplankton, which eventually leads to
the reduction of phytoplankton density, where � means the intraspecific competition rate.
(H3) Suppose that the maximum growth rate of phytoplankton depends on the cell size of phytoplankton41, namely

r(x) = x
a1x2 + a2x + a3

, (1)

where ai is positive constant, i = 1, 2, 3. There are empirical observations33,37,38 indicate that the phytplankton growth rate
should be cell size dependent.
(H4) Assume that the sinking rate of phytoplankton is proportional to the square of phytoplankton cell size x due to the cell

size of phytoplankton not only defines their growth rates, but also strongly influences their contributions to bio-geochemical
cycles via size-dependent sinking41, i.e.,

s(x) = ax2, (2)

where a is a positive constant which denotes the sinking rate and its value is affected by the density of the water as well as the
viscosity of the water41.
(H5) Suppose that zooplankton feeds on the phytoplankton according to Holling type I functional response and zooplankton

consumption rate depends on the cell size of phytoplankton x and the body size of zooplankton y41, which translates into energy
for offspring and therefore increases the number of zooplankton populations. Namely, the term C(x, y)PZ, where

C(x, y) = C̄ exp[−1
�
(x − �y)2] (3)

represents the consumption rate of zooplankton on phytoplankton, � is consumption rate coefficient and C̄ is the maximum
consumption rate when zooplankton encounter phytoplankton at the optimal predator-prey ratio � 39. Previous excellent work41,42

indicated that body size of plankton play an important role in affecting the dynamics of the interactions between phytoplankton
and zooplankton species.
(H6) Assume that the contribution of phytoplankton to zooplankton growth is proportional to the contribution of toxic sub-

stances to zooplankton death. Hence, we use the term �PZ, in proportion to C(x, y)PZ, to describe the distribution of toxic
substances released by phytoplankton which ultimately contribute to reduce the grazing pressure of zooplankton by increasing
its mortality, where � indicates the toxin liberation rate.
(H7) Assume that the crowing effect caused by intraspecific competition with peers of zooplankton species �Z2 and natural

death dZ result in a decrease in zooplankton species, where � represents the intraspecific competition rate and d denotes the
death rate for zooplankton.
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In the light of the above assumptions, a deterministic toxin producing phytoplankton-zooplanktonmodel described by a system
of ordinary differential equations can be written as follows:

{

dP (t)
dt

= r(x)P − Ps(x) − �P 2 − C(x, y)PZ,
dZ(t)
dt

= C(x, y)PZ − dZ − �Z2 − �PZ,
(4)

subject to the initial condition (P (0), Z(0)) ∈ ℝ2
+. All parameters in model (4) is assumed to be positive. Furthermore, for the

sake of convenience, in this study, we use Cm to denote C(x, y). In addition, in order to guarantee that the phytoplankton and
zooplankton equations in model (4) are greater than zero and biologically reasonable, we assume that r(x) > s(x)41 and Cm > �
are established by default in the whole of this paper.

2.2 The stochastic model
Now, we introduce environmental noise fluctuations into the deterministic model (4). As we know, the phytoplankton growth
rate r(x) in the phytoplankton equation and the zooplankton death rate d in the zooplankton equation are the two key parameters
in affecting the phytoplankton-zooplan-kton dynamics. In the real situation, the growth rate r(x) and the death rate d always
fluctuate around an average value due to the continuous fluctuations in the environment23. Hence, we assume that the stochastic
environmental perturbation is a type of Guassian white noise that mainly affects the growth rate of phytoplankton and the death
rate of zooplankton. Actually, in the existing literature, there are many different methods to incorporate the effects of noise
perturbations into ecological population systems46,47,48,49,50. In this paper, by following the method introduced in49,50, we model
the effects of randomly varying environment in r(x) and d by adopting

r(x)→ r(x) + �1Ḃ1(t), −d → −d + �2Ḃ2(t), (5)

where Bi(t) are independent Brownian motions with Bi(0) = 0, Ḃi(t) denotes the white noise and �2i denote the intensity of the
white noise, i = 1, 2, then model (4) can be expressed as follow:

{

dP (t) = (r(x)P − Ps(x) − �P 2 − C(x, y)PZ)dt + �1PdB1(t),
dZ(t) = (C(x, y)PZ − dZ − �Z2 − �PZ)dt + �2ZdB2(t).

(6)

Throughout this paper, unless otherwise specified, let (Ω, ,ℙ) be a complete probability space with a filtration {t}t≥0
satisfying the usual condition (i.e., it is increasing and right continuous while 0 contains allℙ-null sets). Moreover, letBi(t)(i =
1, 2) be standard Brownian motions defined on this probability space and

ℝn
+ =

{

(w1, ⋅ ⋅ ⋅, wn) ∈ ℝn ∶ wi > 0, i = 1, ⋅ ⋅ ⋅, n
}

.

2.3 Preliminaries
In general, consider the d-dimensional stochastic differential equation

dw(t) = f (w(t), t)dt + g(w(t), t)dB(t), ∀t ≥ t0, (7)

where initial value w(t0) = w0 ∈ ℝd . Denoted by C2,1(ℝd × [t0,+∞);ℝ+) the family of nonnegative function V (w, t) defined
on ℝd × [t0,+∞) such that they are continuously twice differentiable in w and once in t. The differential operator L of (7) is
defined by51

L = )
)t
+

d
∑

i=1
fi(w, t)

)
)wi

+ 1
2

d
∑

i,j=1
[g(w, t)T g(w, t)]i,j

)2

)wi)wj
. (8)

If L acts on a function V ∈ C2,1(ℝd × [t0,+∞);ℝ+), then

LV (w, t) = Vt(w, t) + Vw(w, t)f (w, t) +
1
2
trace[g(w, t)TVww(w, t)g(w, t)], (9)

where Vw =
)V
)t
, Vw = (

)V
)w1
, ⋅ ⋅ ⋅, )V

)wd
), Vww = (

)2V
)wi)wj

)d×d . Based on the Itô’s formula, if w(t) ∈ ℝd , then

dV (w(t), t) = LV (w(t), t)dt + Vw(w(t), t)g(w(t), t)dB(t).
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To further our study, we need the following definitions and lemmas.

Definition 2.1.52 (1) The population w(t) is said to go to extinction if limt→∞w(t) = 0.
(2) The population w(t) is said to be weakly persistent in mean if limt→∞ sup ∫

t
0 w(s)ds > 0.

(3) The population w(t) is said to be strongly persistent in mean if limt→∞ inf ∫
t
0 w(s)ds > 0.

Definition 2.2.53 If for any 0 < " < 1, there is a constant % such that the solution w(t) = (P (t), Z(t)) of model (6) satisfies
limt→∞ supℙ{|w(t)| > %} < ", for any initial value P (0) > 0 and Z(0) > 0, then the solution w(t) is said to be stochastically
ultimately bounded.

Definition 2.3.53 If for any " ∈ (0, 1), there exists a pair of positive constants % = %(") and � = �(") such that for any initial
value w(0) = (P (0), Z(0)), the solution w(t) of model (6) is said to be stochastically permanent and satisfies the following
properties

limt→∞ inf ℙ{|w(t)| ≤ %} ≥ 1 − ",
limt→∞ inf ℙ{|w(t)| ≥ �} ≥ 1 − ".

Lemma 2.1.52 Let w(t) ∈ C[Ω × [0,∞), (0,∞)].
(1) If exists positive constant �, � such that

logw(t) ≤ �t − �

t

∫
0

w(s)ds + F (t), a.s.

for all t ≥ 0, where F ∈ C[Ω × [0,∞),ℝ] and limt→∞
F (t)
t
= 0, then

lim
t→∞

sup

t

∫
0

w(s)ds ≤ �
�
, a.s.

(2)If there exists positive constant �, � such that

logw(t) ≥ �t − �

t

∫
0

w(s)ds + F (t), a.s.

for all t ≥ 0, where F ∈ C[Ω × [0,∞),ℝ] and limt→∞
F (t)
t
= 0, then

lim
t→∞

inf

t

∫
0

w(s)ds ≥ �
�
, a.s.

We now turn our attention to the results of geometric ergodic.

Lemma 2.2.54,55 Letw(t) = (P (t), Z(t)) be the solution of model (2.6) with initial valuew0 = (P (0), Z(0)) > 0, and assume
that the following Assumptions hold:
(S1) (Minorization condition) For a compact set U1 ⊂ ℝ2

+, there exists T , � > 0 and a probability measure v on ℝ2
+ with

v(U1) > 0 such that

PT (w0, A) ≥ �v(A),∀w0 ∈ U1,∀A ∈ B(ℝ2
+).

(S2)(Lyapounov condition) There is a function V ∶ ℝ2
+ → [1,∞) with lim

|w(t)|→∞ V (w) = ∞ and real numbers �1, �2 ∈ (0,∞)
such that

LV (w) ≤ �1 − �2V (w).

Then the Markov process X̄(t) is V −geometrically ergodic: there exists a unique stationary distribution � such that for some
constants C , � > 0,

|Eg(w(t) − �(g))| ≤ CV (w0)e�t,∀w(0) = w0 ∈ ℝ2
+,
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for all measurable function g ∈  ∶= {measurable g ∶ ℝ2
+ → ℝ2 with |g(w)| ≤ V (w)}.

About the details of the proof of Lemma 2.2, one can see Theorem 16.0.1 in54 or Theorem 2.5 in55. In what follows, we
present a lemma related to the existence of an ergodic stationary distribution to model (6).
Let w(t) be a homogeneous Markov process in Ed (Ed denotes the d-dimensional Euclidean space) and be described by the

following stochastic differential equation:

dw(t) = b(w)dt +
k
∑

r=1
gr(w)dBr(t).

The diffusion matrix is defined as follows

A(w) = (aij(w)), aij(w) =
k
∑

r=1
gir(w)g

j
r (w).

Lemma 2.3.56 TheMarkov process has a unique ergodic stationary distribution �(⋅) if there exists a bounded domainD ⊂ Ed
with regular boundary Γ and
(i) there is a positive numberM such that

d
∑

i,j=1
ai,j(w)�i�j ≥M|�|2, w ∈ D, � ∈ ℝd .

(ii) there exists a nonnegative function C2-function V such that LV is negative for any Ed∖D. Then

ℙw{ limT→+∞

1
T

T

∫
0

f (w(t))dt = ∫
Ed

f (w)�(dw) = 1}

for all w ∈ Ed , where f (⋅) is a function integrable with respect to measure �.
In order to facilitate the calculations below, we define

X(x) = r(x) − s(x) =
x − aa1x4 − aa2x3 − aa3x2

a1x2 + a2x + a3
> 0,

and we write X(x) as X for simplicity and convenience.

3 MATHEMATICAL RESULTS

In this section, we mainly study the phytoplankton-zooplankton dynamics in the deterministic and stochastic environments.

3.1 Mathematical analsis of the deterministic model (4)
Firstly, we present the results related to the deterministic model (4).

3.1.1 Boundedness of positive solutions
A direct computation shows that the model (4) is continuous and Lipschizian in ℝ2

+. Based on the existence and uniqueness of
the solution for ordinary differential equations, there exists a unique solution of the model (4) for any positive initial condition.
Further, it is easy to know that the solutions of the model (4) always exist and remain positive. In fact, using the positiveness of
the solution and based on the phytoplankton equation in the model (4), we can get

dP (t)
dt

≤ XP − �P 2.

A standard comparison argument shows that

lim
t→∞

supP (t) ≤ X
�
∶= m1 > 0.
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As a result, for any " > 0, there exists a T > 0, such that P (t) ≤ m1 + " for t > T . Then from the zooplankton equation in the
model (4), we have

dZ(t)
dt

≤ Cm(m1 + ")Z − �Z2.

Since " is arbitrary, we get
lim
t→∞

supZ(t) ≤
Cmm1
�

∶= m2 > 0.

Thus, we can derive the following conclusion.
Theorem 3.1. All the solutions of the model (4) that start in ℝ2

+ are uniformly bounded.

Proof. Define the function
%(t) = P (t) +Z(t). (10)

Taking the time derivative of (10) along the solution of the model (4) yields
d%(t)
dt

=
dP (t)
dt

+
dZ(t)
dt

= (r(x) − s(x))P − dZ − (�P 2 + �Z2) − �PZ.

For any � > 0, the following inequality holds
d%(t)
dt

+ �%(t) ≤ ((� + r(x) − s(x))P − �P 2) + ((� − d)Z − �Z2).

Let � = s(x) > 0, then
d%(t)
dt

+ s(x)%(t) ≤ (r(x)P − �P 2) + ((s(x) − d)Z − �Z2)

≤ x2

4�(a1x2 + a2x + a3)2
+
(ax2 − d)2

4�
∶= m3.

By using the theorem differential inequality57, for all t ≥ T ≥ 0, we have

0 ≤ %(t) ≤
m3
ax2

− (
m3
ax2

− %(T ))e−(t−T ).

Hence,

lim
t→+∞

sup(P (t) +Z(t)) ≤
m3
ax2

.

This completes the proof.
Let Δ be the set defined by

Δ =
{

(P ,Z) ∈ ℝ2
+ ∶ 0 ≤ P ≤ m1, 0 ≤ Z ≤ m2, 0 ≤ P +Z ≤

m3
ax2

}

.

Then Δ is a positive invariant.

Remark 3.1. It is worth noting that for any initial value (P (0), Z(0)) ∈ ℝ2
+, the solution (P (t), Z(t)) ∈ ℝ2

+ eventually enters
a bounded set Δ.

3.1.2 Stability of the equilibria
In this subsection, we focus on the stability of the possible equilibria for the model (4). It is easy to know that the equilibria of
the model (4) satisfies the following phytoplankton-zooplankton equations

r(x)P − Ps(x) − �P 2 − CmPZ = 0,
CmPZ − dZ − �Z2 − �PZ = 0.

By direct calculations, we can obtain the following non-negative equilibria:
(1)E0 = (0, 0) (total extinct);
(2)E1 =

(X
�
, 0
)

(extinct of zooplankton);

(3)E∗ = (P ∗, Z∗) =
(

dCm+�X
C2m+��−�Cm

, (Cm−�)X−�d
C2m+��−�Cm

)

(coexistence of phytoplankton and zooplankton), provided X > �d
Cm−�

.



8

Now, we are in the position to investigate the stability of the two boundary equilibria E0 and E1, and the unique positive
equilibrium E∗. Through direct calculations, the Jacobian matrix of the model (4) at equilibrium E(P ,Z) is

JE =
[

X − 2�P − CmZ −PCm
CmZ − �Z PCm − d − 2�Z − P�

]

.

Obviously, the Jacobian matrix of the model (4) at equilibrium E0 is

JE0 =
[

X 0
0 −d

]

,

and the two eigenvalues of JE0 are �1 = X > 0 and �2 = −d < 0. Therefore, E0 is a saddle point.
The Jacobian matrix of the model (4) at E1 is

JE1 =
[

−X −Cm
�
X

0 X(Cm−�)
�

− d

]

,

and we can get that the two eigenvalues of JE1 are �1 = −X < 0 and �2 =
1
�
(X(Cm − �) − d�). Hence, the stability of E1

depends on the sign of �2. In other words, if X > �d
Cm−�

, E1 is saddle and is a stable node point if X < �d
Cm−�

.
The Jacobian matrix of the model (4) at E∗ is

JE∗ =
[

−�P ∗ −CmP ∗

(Cm − �)Z∗ −�Z∗

]

and the characteristic equation of E∗ is

�2 − tr(JE∗)� + det(JE∗) = 0,

where tr(JE∗) = −�P
∗ − �Z∗ < 0 and det(JE∗) = ��P

∗Z∗ + CmP ∗Z∗(Cm − �) > 0. Based on the Routh-Hurwitz criterion, it
can be known that theE∗ of the model (4) is locally asymptotically stable if it exists, that is, only the conditionX > �d

Cm−�
is need.

In view of the analysis above, we have the following results.

Theorem 3.2. For the model (4), there have the following results.
(a) E0 is a unstable saddle.
(b) If X > �d

Cm−�
, E1 is a saddle point and is a stable node if X < �d

Cm−�
.

(c) If X > �d
Cm−�

, E∗ is locally asymptotically stable.

Furthermore, we consider the global stability of the zoo-plankton-free equilibrium E1 in the model (4).

Theorem 3.3. If X < d�
Cm−�

, the boundary equilibrium point E1 of the model (4) is globally asymptotically stable.

Proof. Consider such a function: ℝ2
+ → ℝ,

V1(P ,Z) = (P −
(Cm − �)X
Cm�

−
(Cm − �)X
Cm�

ln
Cm�P

(Cm − �)X
) +Z.

The time derivative of V1 along positive solution is
dV1
dt

=
(

P −
(Cm − �)X
Cm�

)(

X −
Cm�
Cm − �

P − CmZ
)

+ Cm − dZ − �Z2 − �PZ

≤ −
Cm�
Cm − �

(

P −
(Cm − �)X
Cm�

)2 − �Z2 −
(

d −
(Cm − �)X

�
)

Z.

Clearly, dV1
dt

≤ 0 if d�
Cm−�

> X, and dV1
dt

= 0 if and only if (P ,Z) = (X
�
, 0). Hence Lyapunov-Lasalle’s invariance principle

implies the global asymptotic stability of E1. This completes the proof.

Remark 3.2. From Theorems 3.2 and 3.3, one can find that if the positive equilibrium E∗ does not exist, the boundary equi-
librium E1 is also globally asymptotically stable. Unfortunately, model (4)) has no Hopf bifurcation at the positive equilibrium
point, because tr(JE∗) < 0 and det(JE∗) > 0 are always hold.
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In addition, we obtain the result regarding the global stability of the model (4) at the positive equilibrium E∗.

Theorem 3.4. If d�
Cm−�

< X < �, the unique positive equilibrium E∗ of the model (4) is globally asymptotically stable.

Proof.We present the non-existence of the limit cycles (periodic solutions) of the model (4) to examine the global stability of
the positive equilibrium E∗ by applying the Dulac-Bendixon criterion58. For this purpose, consider

G∗(P ,Z) = 1 + P
PZ

,

and

F (P ,Z) = (F1, F2)
=

(

r(x)P − Ps(x) − �P 2 − C(x, y)PZ, C(x, y)PZ − dZ − �Z2 − �PZ
)

.

Clearly, G∗ ∈ C1(ℝ20
+ ), where ℝ

20
+ is the interior of ℝ2

+. Hence, G
∗(P ,Z) > 0 in ℝ20

+ and we have

∇⃗⋅(G∗F ) =
)
)P
(G∗F1) +

)
)Z

(G∗F2)

= 1
Z

)
)P
[(1 + P )(X − �P − Cm)] +

1
P

)
)Z

[(1 + P )(Cm − d − �Z − �)]

= 1
Z
(X − �) − 2�P

Z
−
Cm
Z
−
�
P
− � < 0,

provided X < �. It is obvious that ∇⃗⋅(G∗F ) is neither equal to zero nor does it change its symbol in the interior of ℝ2
+. So, by

Dulac-Bendixon criterion, it can be known that the model (4) has no limit cycle lying entirely in the interior of ℝ2
+. Because

there is the only positive equilibrium E∗ in the interior of ℝ2
+, and each of the positive solution tends to E∗. Additionally,

considering the local asymptotical stability of E∗ again, we can conclude that the unique positive equilibrium E∗ is globally
asymptotically stable if �d

Cm−�
< X < � holds. This competes the proof.

Remark 3.3. It can be seen from Theorems 3.3 and 3.4 that the existence and stability of the equilibria in the model (4)
depends strongly on the parameter X.

3.2 Mathematical analysis of the stochastic model (6)
In this section, we investigate the stochastic dynamics of model (6) including the existence and uniqueness, geometric ergodicity,
boundedness and permanence, stochastic extinction, persistence in the mean and the existence of ergodic stationary distribution.

3.2.1 Some properties of the solutions for the model (6)
We first focus on the existence and uniqueness of the positive solutions in the model (6).

Theorem 4.1. For any given initial value (P0, Z0) ∈ ℝ2
+, there is a unique solution (P (t), Z(t)) in the model (6) on t ≥ 0 and

will reman in ℝ2
+ with probability one.

Proof. Let u = lnP and v = lnZ, then the model (6) becomes the following forms:
{

du = (r(x) − s(x) − 0.5�21 − �e
u − Cmev)dt + �1dB1(t),

dv = (Cmeu − d − 0.5�22 − �e
v − �eu)dt + �2dB2(t),

(11)

with initial value (u0, v0) = (lnP0, lnZ0). Since the coefficients of model (11) are locally Lipschitz continuous, then there is a
unique local solution (u(t), v(t)) of model (11) on the interval [0, �e), where �e denotes the explosion time. Hen-ce, it can be got
that (P (t), Z(t)) = (eu(t), ev(t)) is a unique local positive solution for model (11) with any positive initial value (P0, Z0) on the
interval [0, �e). To show the positive solution is global, we only need to verify that �e = ∞ a.s.
On the one hand, in the light of the positivity of the solution (P (t), Z(t)) and based on the phytoplankton equation in the model

(6), it is easy to get dP (t) ≤ [(r(x) − s(x))P (t) − �P 2(t)]dt + �1P (t)dB1(t). Therefore, we introduce the following auxiliary
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equation:
{

dΦ1(t) = [(r(x) − s(x))Φ1(t) − �Φ21(t)]dt + �1Φ1(t)dB1(t),
Φ1(0) = P0,

(12)

and derive that

Φ1(t) =
e(r(x)−s(x)−

1
2
�21 )t + �1B1(t)

1
P0
+ � ∫ t

0 e
(r(x)−s(x)− 1

2
�21 )s+�1B1(s)ds

,

which is the unique solution of (12). Based on the comparison theorem for stochastic differential equation59, we can get

P (t) ≤ Φ1(t), t ∈ [0, �e) a.s. (13)

Making use of (13) to the zooplankton equation in the model (6), one can get that dZ(t) ≤ [(CmΦ1 − d)Z(t) − �Z2(t)]dt +
�2Z(t)B2(t). Considering the following auxiliary equation:

{

dΦ2(t) = [(CmΦ1(t) − d)Φ2(t) − �Φ22(t)]dt + �2Φ2(t)dB2(t),
Φ2(0) = Z0,

(14)

then

Φ2(t) =
e(CmΦ1−d−

1
2
�22 )t+�2B2(t)

1
Z0
+ � ∫ t

0 e
(CmΦ1−d−

1
2
�22 )s+�2B2(s)ds

is the unique solution of (14). According to comparison theorem for stochastic differential equation59, we can obtain

Z(t) ≤ Φ2(t), t ∈ [0, �e) a.s. (15)

On the other hand, from the phytoplankton equation in the model (6) and by means of (15), we have dP (t) ≥ [(r(x) − s(x) −
CmΦ2)P (t) − �P 2(t)]dt + �1P (t)dB1(t). Taking into account the auxiliary equation:

{

dΦ3(t) = [(r(x) − s(x) − CmΦ2(t))Φ3(t) − �Φ23(t)]dt + �1Φ3(t)dB1(t),
Φ3(0) = P0,

(16)

then

Φ3(t) =
e(r(x)−s(x)−CmΦ2−

1
2
�21 )t+�1B1(t)

1
P0
+ � ∫ t

0 e
(r(x)−s(x)−CmΦ2−

1
2
�21 )s+�1B1(s)ds

is the unique solution of (16). From the comparison theorem for stochastic differential equation59, we can get

P (t) ≥ Φ3(t), t ∈ [0, �e) a.s. (17)

Making use of (13) and (17) into the zooplankton equation in themodel (6), one can derive that dZ(t) ≥ [(CmΦ3−d−�Φ1)Z(t)−
�Z2(t)]dt + �Z(t)dB4(t). Similarly, we have that

Φ4(t) =
e(CmΦ3−�Φ1−d−

1
2
�22 )t+�2B2(t)

1
Z0
+ � ∫ t

0 e
(CmΦ3−�Φ1−d−

1
2
�22 )s+�2B2(s)ds

is the unique solution of the following equation:
{

dΦ4(t) = [(CmΦ3(t) − d − �Φ1(t))Φ4(t) − �Φ24(t)]dt + �2Φ4(t)B2(t),
Φ4(0) = Z0,

and

Z(t) ≥ Φ4(t), t ∈ [0, �e) a.s. (18)

From (13), (15), (17) and (18), we can get that
{

Φ3(t) ≤ P (t) ≤ Φ1(t), t ≥ 0 a.s.
Φ4(t) ≤ Z(t) ≤ Φ2(t), t ≥ 0 a.s.

(19)
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Based on the previous work in the study60, it can be known that Φi(t)(i = 1, 2, 3, 4) will not explored at any finite time, and by
virtue of comparison theorems for stochastic differential equations59, we can derive that (P (t), Z(t)) will globally exist. This
competes the proof.

Remark 4.1. Theorem 4.1 indicates that all the solutions of the model (6) will remain in ℝ2
+, which is more different from

that in the deterministic model (4). From Remark 3.1, one can know that every trajectory is eventually staying in a compact set
Δ ⊂ ℝ2

+.

Next, we present the result regarding the V − geometric ergodictiy of the Markov process w(t) = (P (t), Z(t)) for the model
(6).

Theorem 4.2. Markov process of w(t) = (P (t), Z(t)) of the model (6) with initial value w0 = (P (0), Z(0)) ∈ ℝ2
+ is

V −geometrically ergodic.

Proof. Let Q = P +Z, and define

V (w(t)) = Q + 1
Q

for w(t) = (P (t), Z(t)) ∈ ℝ2
+. It follows that V (w(t)) → ∞ as |w(t)| → ∞. Making use of Itô’s formula and adopting

ℎ = min{s(x), d}, we have

LV = r(x)P − Ps(x) − �P 2 − dZ − �Z2 − �PZ

+
Ps(x) + �P 2 + dZ + �Z2 + �PZ − r(x)P

Q2
+
�1P 2 + �2Z2

Q3

≤ −ℎQ −
r(x) − (d + s(x) + �21 + �

2
2)

Q
− �Z2 − �PZ + � + � + 0.5� + r(x)

≤ −ℎQ −
r(x) − (d + s(x) + �21 + �

2
2)

Q
+ � + � + 0.5� + r(x)

≤ −ℎ̄(Q + 1
Q
) + l = l − ℎ̄V , (20)

where l = �+�+0.5�+ r(x) and ℎ̄ = min{ℎ, r(x)− (d+ s(x)+�1+�2)}. Thus (S2) (Lyapunov condition) in Lemma 2.2 holds.
Since the model (6) is uniformly elliptic, Proposition 11.1 in61 guarantees the existence of a function P ∶ ℝ+ ×ℝ2

+ → (0,∞)
such that P is jointly continuous, Pt(w0, Y ) is strictly positive for all (t, w0, Y ), and such that for all measure sets A

Pt(w0, A) = ∫
A

Pt(w0, Y )dY .

It follows that for any � > 0, there exists a positive constant a = a(�, t) > 0 so that inf{(w0, Y ) ∶ w0, Y ∈ ℝ2
+, |w0|, |Y | ≤ �} ≥

a. Assumption (S2)(Minorization condition) follows immediately this, since for any measurable set A

Pt(w,A) = ∫
A

Pt(w0, Y )dY ≥ aLeb(A ∩ !(0))

= aLeb(!(0))v(A),

where Leb is Lebesgue measure and

v(A) = Leb(A ∩ !(0))∕Leb(!(0)).

Thus (S1) in Lemma 2.2 holds. This competes the proof.

Theorem 4.3. The solutions of the model (6) are stochastically ultimately bounded and permanent for any initial value
w0 = (P0, Z0) ∈ ℝ2

+.
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Proof. Define
V (t) = Q(t) + 1

Q(t)
,

where Q(t) = P (t) +Z(t). Applying Itô’s formula and using (20), we have

E(eℎtV (t)) = E[V (0)] + E
[

t

∫
0

eℎ̄s(ℎ̄V (s) + LV (s))ds
]

≤ E[V (0)] + lE
[

t

∫
0

eℎ̄sds
]

= E[V (0)] + l
ℎ̄
(eℎ̄t − 1).

It follows that

E[V (t)] ≤ e−ℎ̄tE[V (0)] + l
ℎ̄
(1 − eℎ̄t) ≤ E[V (0)] + l

ℎ̄
∶= G.

We chose constant # sufficiently large such that G
#
< 1. By Chebyshev’s inequality,

ℙ{Q + 1
Q
> #} ≤ 1

#
E[Q + 1

Q
] ≤ G

Q
∶= ",

which implies

1 − " ≤ ℙ{Q + 1
Q

≤ #} ≤ ℙ{1
#
≤ Q ≤ #}.

Noting that Q2 ≤ 2|w|2 ≤ 2Q2, we get

ℙ{ 1
√

2#
≤ Q

√

2
≤ |w| ≤ Q ≤ #} ≥ 1 − ".

According to Definition 2.2 and Definition 2.3, the model (6) is stochastically ultimately bounded and permanent. This ends the
proof.

3.2.2 Stochastic extinction and persistence in the mean of the model (6)
In this subsection, we mainly study the stochastic extinction and persistence in the mean of each population, which respectively
determine that the plankton will die out or survive in the future. First of all, we show the result related to the stochastic extinc-
tion for phytoplankton and zooplankton in the model (6).

Theorem 4.4. If X < 1
2
�21 , then for any given initial value (P0, Z0) ∈ ℝ2

+, the solutions of the model (6) obey

lim
t→∞

sup
lnP (t)
t

≤ X − 1
2
�21 < 0 a.s.,

lim
t→∞

sup
lnZ(t)
t

≤ −(d + 1
2
�22) < 0 a.s.,

namely, both phytoplankton and zooplankton of the model (6) go to extinction with probability one.

Proof.Making use of Itô’s formula to model (6) yields

d lnP (t) =
(

X − 1
2
�21 − �P − CmZ

)

dt + �1dB1(t), (21)

d lnZ(t) =
(

(Cm − �)P − (d +
1
2
�22) − �Z

)

dt + �2dB2(t). (22)

Integrating (21) from 0 to t and dividing by t on both sides, we can derive
lnP (t)
t

≤ X − 1
2
�21 +

�1B1(t)
t

+
lnP (0)
t

. (23)
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Based on the strong law of large numbers for martingale52, we can get

lim
t→∞

(
�1B1(t)
t

+
lnP (0)
t

) = 0 a.s. (24)

Taking the limit on both sides of (23) and using (24), and if X < 1
2
�21 , we have

lim
t→∞

sup
lnP (t)
t

≤ X − 1
2
�21 < 0 a.s. (25)

Let � = X − 1
2
�21 < 0, in this case, (25) indicates that for any "1 > 0, there is a T (!1) > 0 such that lnP (t)

t
≤ � + "1 for all

t ≤ T (!1). Hence, we have

P (t) ≤ e�t+"1 . (26)

From the equation (22), we can derive

d lnZ(t) ≤ [(Cm − �)P − (d +
1
2
�22)]dt + �2dB2(t). (27)

Integrating (27) from 0 to t and dividing by t on both sides, then from (26), we have

lnZ(t)
t

≤ −(d + 1
2
�22) +

1
t

t

∫
0

(Cm − �)e�s+"1ds +
�2(t)
t

+
lnZ(0)
t

.

According to the strong law of large numbers for martingale51 and the arbitrariness of "1, we get limt→∞(
∫ t
0 e

�s+"1ds
t

+ �2B2(t)
t

+
lnZ(0)
t
) = 0 a.s., so we have

lim
t→∞

sup
lnZ(t)
t

≤ −(d + 1
2
�22) < 0 a.s.

That is to say, if phytoplankton on which zooplankton lives is extinct, the zooplankton will eventually go to extinction with
probability one. This ends the proof.

Remark 4.2.Based on Theorem 4.4, it can be known that if phytoplankton of the model (6) goes to extinction, the zooplankton
will be extinct. It is natural to have such a question: what will limit the abundance of phytoplankton if zooplankton becomes
extinct? In fact, when ℙ{limt→∞Z(t) = 0} = 1, then from phytoplankton equation in the model (6), we can get the following
limiting equation:

dP (t) = (XP − �P 2)dt + �1PdB1(t).

The distribution of P (t) converges to a stationary distribution which has a density function62

ℙ(P ) =
( 2�
�21
)
2X
�21
−1

Γ( 2X
�21
− 1)

P
2X
�21
−2
e
−2�P
�21 ,

for �21 < 2X, where Γ(�) = ∫ ∞
0 t�−1e−tdt. Hence, the mean of density ℙ(P ) is E(P ) = X

�
− �21

2�
. It is easy to verified that

lim
�1→0

E(P ) = lim
�1→0

(X
�
−
�21
2�
) = X

�
,

which implies that P (t) will tend to X
�
. Namely, the dynamics of zooplankton-free situation for the stochastic model (6) is the

same as the result provided in Theorem 3.3 for the deterministic model (4).
Next, we show the result concerning stochastic persistent in the mean of each population in the model (6).

Theorem 4.5. Let X > Ψ
Cm−�

, for any given initial value (P0, Z0) ∈ ℝ2
+, if one of the following conditions holds:

(i) �� > Cm(Cm − �) and X >
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

;
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(ii) �� < Cm(Cm − �) and X <
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

,

then the solution (P (t), Z(t)) of the model (6) obeys

limt→∞ sup
1
t
∫ t
0 P (s)ds ≤

X − 0.5�21
�

a.s.,

limt→∞ sup
1
t
∫ t
0 Z(s)ds ≤

(Cm − �)X − Ψ
��

a.s.,

limt→∞ inf
1
t
∫ t
0 P (s)ds ≥ 1

�2�
[X(�� − Cm(Cm − �)) − 0.5�21�� + CmΨ] a.s.,

limt→∞ inf
1
t
∫ t
0 Z(s)ds ≥ 1

�2�2
[(Cm − �)(X(�� − Cm(Cm − �)) − 0.5�21�� + CmΨ) − �

2�(d + 0.5�22)] a.s.,

where Ψ = 0.5�21(Cm − �) + �d + 0.5��
2
2 . That is to say, both phytoplankton and zooplankton of the model (6) are persistent in

the mean.

Proof. From (21), we have

lnP (t)
t

≤ X − 0.5�21 −
∫ t
0 �P (s)ds

t
+
�1B1(t)
t

+
lnP (0)
t

.

If X > 0.5�21 , based on (24) and by virtue of Lemma 2.1, we can derive

lim
t→∞

sup 1
t

t

∫
0

P (s)ds ≤
X − 0.5�21

�
a.s., (28)

which implies that the phytoplankton of the model (6) is persistent in the mean.
From (22) and (28), we also have

lnZ(t)
t

≤ (Cm − �) limt→∞ sup
1
t

t

∫
0

P (s)ds − (d + 0.5�22) −
� ∫ t

0 Z(s)ds
t

+
�2B2(t)
t

+
lnZ(0)
t

.

According to the strongly law of numbers for martingales51, we get

lim
t→∞

(
�2B2(t)
t

+
lnZ(0)
t

) = 0 a.s. (29)

For the sake of convenience, we define Ψ = 0.5�21(Cm − �) + �d + 0.5��
2
2 > 0. Let X > Ψ

Cm−�
, by means of (29) and Lemma

2.1, we obtain

lim
t→∞

sup 1
t

t

∫
0

Z(s)ds ≤
(Cm − �)X − Ψ

��
a.s. (30)

On the other hand, according to the equations (21) and (30), we have

lnP (t)
t

≥ X − 0.5�21 − Cm limt→∞ sup
1
t

t

∫
0

Z(s)ds −
� ∫ t

0 P (s)ds
t

+
�1B1(t)
t

+
lnP (0)
t

= X − 0.5�21 −
Cm(Cm − �)X − ΨCm

��
−
� ∫ t

0 P (s)ds
t

+
�1B1(t)
t

+
lnP (0)
t

.

Define a function f (X) = X−0.5�21−
Cm(Cm−�)X−ΨCm

��
, then if we have f (X) > 0, it is necessary to ensure (��−Cm(Cm−�))X >

0.5�21�� − CmΨ. Consequently, let �� > Cm(Cm − �), we have f (X) > 0 if X > 0.5�21��−ΨCm
��−Cm(Cm−�)

; let �� < Cm(Cm − �), we have

f (X) > 0 if X < 0.5�21��−ΨCm
��−Cm(Cm−�)

.
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Then, by using Lemma 2.1 and applying (29), we derive

lim
t→∞

inf 1
t

t

∫
0

P (s)ds ≥ 1
�2�

[X(�� − Cm(Cm − �)) − 0.5�21�� + CmΨ] a.s., (31)

provided

�� > Cm(Cm − �) and X >
0.5�21�� − ΨCm
�� − Cm(Cm − �)

or

�� < Cm(Cm − �) and X <
0.5�21�� − ΨCm
�� − Cm(Cm − �)

.

On the basis of (22) and by means of (31), we have

lnZ(t)
t

≥ (Cm − �) limt→∞ inf
1
t

t

∫
0

P (s)ds − (d + 1
2
�22) −

� ∫ t
0 Z(s)ds
t

+
�2B2(t)
t

+
lnZ(0)
t

.

For the above inequality, similarly, if �� > Cm(Cm − �) and

X >
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

,

or if �� < Cm(Cm − �) and

X <
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

,

we have

lim
t→∞

inf 1
t

t

∫
0

Z(s)ds ≥ 1
�2�2

[

(Cm − �)(X(�� − Cm(Cm − �)) − 0.5�21�� + CmΨ) − �
2�(d + 0.5�22)

]

a.s. (32)

Because Ψ
Cm−�

> 0.5�21 > 0, so it is easy to find that ifX > Ψ
Cm−�

, then (28) and (30) hold. Furthermore, when �� > Cm(Cm− �),
we have

�2�(d + 0.5�22)
(Cm − �)(�� − Cm(Cm − �))

+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

>
0.5�21�� − CmΨ
�� − Cm(Cm − �)

;

when �� < Cm(Cm − �), we have
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

<
0.5�21�� − CmΨ
�� − Cm(Cm − �)

.

Therefore, if �� > Cm(Cm − �) and

X >
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

,

or if �� < Cm(Cm − �) and

X <
�2�(d + 0.5�22)

(Cm − �)(�� − Cm(Cm − �))
+
0.5�21�� − CmΨ
�� − Cm(Cm − �)

,

we can get that (31) and (32) hold simultaneously. So, the above Theorem 4.5 comes true. This competes the proofs.

3.2.3 Stationary distribution and ergodicity
In this subsection, we show that there exists a uniqueness and ergodicity of stationary distribution for the model (6), which pro-
vides a better description of permanence for the plankton. For the sake of simplicity, set �̄ = 0.5�21+�

2
2+2(d+�+�)+�+Cm−X.
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Theorem 4.6. If X < 0.5�21 + �
2
2 + 2(d + � + �) + � + Cm, for any initial value (P0, Z0) ∈ ℝ2

+, the model (6) has a unique
stationary distribution and it has ergodic property.

Proof. Let � (t) = lnP (t) and �(t) = lnZ(t) for t ≥ 0, we have
{

d� (t) = (X − 0.5�21 − �e
� − Cme�)dt + �1dB1(t),

d�(t) = (Cme� − d − 0.5�22 − �e
� − �e� )dt + �2dB2(t).

(33)

Based on the excellent work in63, the ergodic property of the model (6) is equivalent to that of system (33). Define a C2-
function V ∶ ℝ2

+ → ℝ by

V (�, �) =M[� + � + e�] +
(e� + e�)#+1

# + 1
− V (�0, �0) =MV1(�, �) + V2(�, �),

where V1(�, �) = � + � + e� , V2(�, �) =
(e�+e�)#+1

#+1
− V (�0, �0),M = 2

�̄
max{2, sup(�,�)∈ℝ2

+
[−0.25�e(#+2)� − 0.25�e(#+2)� +H]},

H = sup(�,�)∈ℝ2
+
{−0.5�e(#+2)� −0.5�e(#+2)�−de(#+1)�+X(e� +e�)#e� +0.5#�21e

(#+1)� +0.5#�22e
(#+1)�}, # is a constant satisfying

0 < # < 1 and V (�0, �0) is the minimum value of V (�, �) at point (�0, �0), and �̄ > 0 which is equivalent to X < 0.5�21 + �
2
2 +

2(d + � + �) + � + Cm. An application of Itô’s formula to V1(�, �), yields

V1(�, �) = X − 0.5�21 − �e
� − Cme� + Cme� − d − 0.5�22 − �e

�

− �e� + Cme�+� − de� − 0.5�22e
� − �e2� − �e�+�

≤ X − 0.5�21 − d − 0.5�
2
2 − �(1 + � ) − Cm(1 + �) − �(1 + �) − �(1 + � )

− d(1 + �) − 0.5�22(1 + �) − �(1 + 2�) − �(1 + � + �) + Cme
� + Cme�+�

≤ X − 0.5�21 − �
2
2 − 2d − 2� − 2� − � − Cm + 2Cme

�+� = −�̄ + 2Cme�+� . (34)

Similarly, we have

V2(�, �) = (e� + e�)#Xe� − �e2� − de� − �e2� − �e�+�) + 0.5#(e� + e�)#−1(e2��21 + e
2��22)

≤ X(e� + e�)#e� − �e#+2� − de(#+1)� − �e(#+2)� + 0.5#�21e
(#+1)� + 0.5#�22e

(#+1)�

= −0.5�e(#+2)� − 0.5�e(#+2)� +H. (35)

It follows from (34) and (35) that

V (�, �) ≤ −M�̄ + 2MCme
�+� − 0.5�e(#+2)� − 0.5�e(#+2)� +H.

Define a bounded closed set

 = {(�, �) ∶ |� | ≤ ln �−1, |�| ≤ ln �−1, (�, �) ∈ ℝ2
+},

where 0 < � < 1 is a sufficiently small number. In the set C = ℝ2
+ ⧵ , we choose the sufficiently small � to satisfy the

following conditions

0 < � < 0.125�̄
Cm

, (36)

0 < � <
0.125�
MCm

, (37)

0 < � < 0.125�
MCm

, (38)

−M�̄ − 0.25� 1
�#+2

+H1 ≤ −1, (39)

−M�̄ − 0.25� 1
�#+2

+H2 ≤ −1, (40)

where

H1 = sup
(�,�)∈ℝ2

+

{2MCme
�+� − 0.25�e(#+2)� − 0.5�e(#+2)� +H},
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and

H2 = sup
(�,�)∈ℝ2

+

{2MCme
�+� − 0.25�e(#+2)� − 0.5�e(#+2)� +H}.

For convenience, we divide C into four domains,

1
� = {(�, �) ∈ ℝ2

+ ∶ −∞ < � ≤ ln �},

2
� = {(�, �) ∈ ℝ2

+ ∶ −∞ < � ≤ ln �},

3
� = {(�, �) ∈ ℝ2

+ ∶ � ≥ ln �−1},

4
� = {(�, �) ∈ ℝ2

+ ∶ � ≥ ln �
−1}.

Clearly,c = 1
� ∪

2
� ∪

3
� ∪

4
� . Next, we will verify V (�, �) ≤ −1 on

C , which is equivalent to demonstrating it on the
four cases above.
Case 1. On domain 1

� , owing to −∞ < � ≤ ln � and then e�+� ≤ �e� ≤ �(1 + e(#+2)�), we have

V (�, �) ≤ −0.25M�̄ + (2MCm� − 0.25M�̄) + (2MCm� − 0.25�)e(#+2)� − 0.25�e(#+2)�

+ {−0.5M�̄ − 0.25�e(#+2)� − 0.25�e(#+2)� +H}
≤ −0.25M�̄ + (2MCm� − 0.25M�̄) + (2MCm� − 0.25�)e(#+2)� − 0.25�e(#+2)�

+ {−0.5M�̄ + sup
(�,�)∈ℝ2

+

[−0.25�e(#+2)� − 0.25�e(#+2)� +H]}.

Combined with the definition ofM , (36) and (37), we get

V (�, �) ≤ −0.25M�̄ − 0.25�e(#+2)� ≤ −0.25M�̄ ≤ −1.

Case 2. For any (�, �) ∈ 2
� , similarly, owing to e�+� ≤ �e� ≤ �(1 + e(#+2)� ), we get

V (�, �) ≤ −0.25M� + (2MCm� − 0.25M�) + (2MCm� − 0.25�)e(#+2)� − 0.25�e(#+2)�

+ {−0.5M�̄ − 0.25�e(#+2)� − 0.25�e(#+2)� +H}
≤ −0.25M�̄ + (2MCm� − 0.25M�̄) + (2MCm� − 0.25�)e(#+2)�

− 0.25�e(#+2)� + {−0.5M�̄ + sup
(�,�)∈ℝ2

+

[−0.25�e(#+2)� − 0.25�e(#+2)� +H]}.

Combined with the definition ofM , (36) and (38), we get

V (�, �) ≤ −0.25M�̄ − 0.25�e(#+2)� ≤ −0.25M�̄ ≤ −1.

Case 3. On 3
� , we have

V (�, �) ≤ −M�̄ + 2MCme
�+� − 0.5�e(#+2)� − 0.5�e(#+2)� +H

≤ −M�̄ − 0.25� 1
�#+2

+H1,

which implies V (�, �) ≤ −1 in view of (39).
Case 4. When (�, �) ∈ 4

� ,

V (�, �) ≤ −M�̄ + 2MCme
�+� − 0.5�e(#+2)� − 0.5�e(#+2)� +H

≤ −M�̄ − 0.25� 1
�#+2

+H2.

By virtue of (40), we have V (�, �) ≤ −1 on 4
� . Consequently, we can conclude that

V (�, �) ≤ −1 forall (�, �) ∈ C .

Therefore, the condition of (ii) in Lemma 2.3 is satisfied.
On the other hand, one can see that there is

M0 = min
(P ,Z)∈Q�

{

�21P
2, �2Z

2},
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such that
2
∑

i,j=1
aij(P ,Z)�i�j =

(

�1P�1 �2Z�2

)(

�1P�1
�2Z�2

)

= �21P
2�21 + �

2
2Z

2�22 ≥M0 ∥ � ∥2,

for any (P ,Z) ∈  ⊂ ℝ2
+, � = (�1, �2) ∈ ℝ2

+. Namely, the condition (i) in Lemma 2.3 is also satisfied, indicating that model
(6) is ergodic and has a unique stationary distribution. This competes the proof.

4 NUMERICAL SIMULATIONS

In this section, based on the previous theoretical works, we further explore the impacts of plankton body size on the resulting
dynamics of the deterministic model (4) as well as its corresponding stochastic model (6). As an example, we choose such a set
of parameters: a1 = 0.02, a2 = 0.03, a3 = 0.04, a = 0.1, C̄ = 0.6, � = 2, � = 0.5, � = 0.1, � = 0.2, � = 0.1 and d = 0.4,
where some of them are taken from41. In the following examples, we use the above parameters by default and only change the
corresponding key parameters declared in the following simulations.

4.1 Effects of plankton body size on the dynamics of the deterministic model (4)
To first see the effects of plankton body size on the plankton density in model (4), we only vary phytoplankton cell size x
and zooplankton body size y, the results are shown in Fig.1 . From Fig.1 (a), it can be found that the equilibrium level of
phytoplankton density increases as the phytoplankton cell size increases. However, for the small value of phytoplankton cell size,
the increase of zooplankton body size can not change the equilibrium level of phytoplankton density; for the middle and large
values of phytoplankton cell size, the equilibrium level of phytoplankton density decreases as the zooplankton body increases.
Fig.1 (b) clearly confirms this reuslt.
Additionally, with increase of phytoplankton cell size, the equilibrium level of zooplankton density first increases and finally

decreases, as displayed in Fig.1 (c). Interestingly, for the small value of phytoplankton cell size, the increase of zooplankton
body size has no influences on the equilibrium level of zooplankton density; for the middle value of phytoplankton cell size,
the zooplankton density decreases as zooplankton body size increases; for the large value of phytoplankton body size, the
zooplankton density increases as the zooplankton body size increases, which is further demonstrated by Fig.1 (d).
Actually, by comparing Fig.1 (b) and Fig.1 (d), it can be concluded that if phytoplankton cell size is small, the increase of

zooplankton body size does not affect the density of phytoplankton and zooplankton, which furhter shown in Figs.2 (a) and
2 (b); if the phytoplankton cell size is middle level, the increase of zooplankton body size can reduce simultaneously the density
of phytoplankton and zooplankton (see Figs.2 (c) and 2 (d)); if the phytoplankton cell size is large, the increase of zooplankton
body size can increase the density of zooplankton, but decrease the density of phytoplankton (see Figs.2 (e) and 2 (f)).
Nevertheless, the analysis shows that the very small phytoplankton cell size can cause the extinction of phytoplankton and

zooplankton, as shown in Figs.3 (a) and 3 (b) (see the red line). Also, it is observed that the very large phytoplankton cell size
can result in the extinction of zooplankton, but can make phytoplankton reach a peak, as displayed in Figs.3 (a) and 3 (b) (see
the blue line). Furthermore, in spite of the very small zooplankton body size can not give rise to the extinction of phytoplankton
and zooplankton, while the very large zooplankton body size can lead zooplankton to go extinct, which are demonstrated by
Figs.3 (c) and 3 (d).

By obtaining y = 0.2, Fig.4 (a) shows that the increase of phytoplankton cell size can lead to the change of the stability of the
positive equilibrium from global asymptotic stability to local asymptotic stability, but the stability is not disturbed. However, the
increase of toxin release rate of phytoplankton can result in the dynamics of model (4) change from stable positive equilibrium
E∗ to stable boundary equilibrium E1. In other words, the increase of toxin released by phytoplankton can cause the extinction
of zooplankton. By taking x = 0.01, it is found that the increase of zooplankton body size can not change the stability of the
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FIGURE 1 (a)The relationships between phytoplankton density and phytoplankton cell size x and zooplankton body size y.
(c)The relationships between zooplankton density and phytoplankton cell size x and zooplankton body size y. (b) Contour plot
of phytoplankton density with x and y. (d) Contour plot of zooplankton density with x and y.

equilibrium E∗ or E1, which is displayed in Fig.4 (b). By comparison, it can be concluded that the increase of phytoplankton
cell size or zooplankton body size or toxin released by phytoplankton can not change the stability dynamics of model (4), but the
increase of phytoplankton toxin can make the stability transition of model (4) (i.e., the stable positive equilibrium point becomes
the stable boundary equilibrium point). Additionally, for region III (see Fig.4 ), we obtain (x, y) = (0.001, 0.02), which satisfies
the parameter condition of Theorem 3.3. By direct calculation, we get that E1 = (0.252, 0) which is globally asymptotically
stable, as shown in Fig.4 (c). In region I, we adopt (x, y) = (0.1, 0.2), based on Theorem 3.4, similarly, we get that the positive
equilibrium E∗ = (2.20, 3.50) is globally asymptotically stable, which is further demonstrated by Fig.4 (d).
By fixing y = 0.2, and varying the value of x, Table 1 shows that the level of phytoplankton and zooplankton densities

increases as the phytoplankton cell size increases. However, the plankton density is almost unchanged with the increase of
zooplankton body size, which is displayed in Table 2 (In this case, we take x = 0.1 and only vary the value of y). In other

TABLE 1 The level of plankton density in model (4) with different phytoplankton cell size.

Phytoplankton cell size Level of phytoplankton density Level of zooplankton density

x=0.05 1.50 1.76
x=0.15 2.84 5.09
x=0.20 3.45 6.57
x=0.25 4.04 7.95
x=0.30 4.61 9.24
x=0.35 5.17 10.46
x=0.40 5.74 11.60
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FIGURE 2 Effects of zooplankton body size on the plankton density in model (4). (a)-(b) for the small phytoplankton cell size
x = 0.1. (c)-(d) for the middle phytoplankton cell size x = 0.6. (e)-(f) for the large phytoplankton cell size x = 1.6.

words, the increase of phytoplankton cell size is conducive to the survival of plankton, but the increase of zooplankton body
size has almost no effect on the survival of plankton, which are demonstrated by Figs.5 (a) and 5 (b), respectively.

4.2 Effects of plankton body size on the dynamics of the stochastic model (6)
In this subsection, we investigate the impacts of plankton body size on the stochastic dynamics of the interactions between
phytoplankton and zooplankton in the model (6). By using the method mentioned in Higham64, model (6) can be rewritten as
following discretization equations:

⎧

⎪

⎨

⎪

⎩

Pj+1 = Pj +
(

r(x)Pj − s(x)Pj − �P 2j − C(x, y)PjZj
)

Δt + �1Pj�j
√

Δt +
�21
2
Pj(�2j − 1)Δt,

Zj+1 = Zj +
(

C(x, y)PjZj − dZj − �Z2
j − �PjZj

)

Δt + �2Zj�j
√

Δt +
�22
2
Zj(�2j − 1)Δt,
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FIGURE 3 Effects of plankton body size on the survival of plankton in model (4). (a)-(b) for fixing y = 0.2 and varying x.
(c)-(d) for fixing x = 0.1. and varying y

where �j and �j are two independent Gaussian random variableN(0, 1) for j = 1, 2, ⋅ ⋅ ⋅, n.
Based on Theorem 4.4 and Theorem 4.5, the analysis indicates that the plane region is divided into three regions I,II and III

by �1 −X parameters, where I indicates that both phytoplankton and zooplankton are extinct, II signifies that phytoplankton is
persistent while zooplankton is extinct, and III denotes that both phytoplankton and zooplankton are persistent, which is shown
in Fig.6 (a). By fixing (x, y) = (0.1, 0.2), and adopting (�1, �2) = (1.21, 1.22), (�1, �2) = (0.21, 1.22) and (�1, �2) = (0.21, 0.22),
the corresponding results are displayed in subgraph (i), (ii) and (iii) in Fig.6 (b), respectively. It is worth noting that the only
difference between these subgraphs in the Fig.6 (b) is that the noise intensities are different. Consequently, one can get that the
large stochastic environmental fluctuations can cause the extinction of phytoplankton and zooplankton in the model (6).
By fixing noise intensities (�1, �2) = (0.25, 0.22), on the one hand, we obtain x = 0.1 and only vary zooplankton body size

y = 0.2, 1.2, 3.5, 6.5; on the other hand, we adopt y = 0.2 and only change phytoplankton cell size x = 0.001, 0.11, 1.11, 2.11, it
is found that the results of these two cases are similar to those in Fig.3 , as shown in Fig.7 . By comparing Fig.3 and Fig.7 , it

TABLE 2 The level of plankton density in model (4) with different zooplankton body size.

Zooplankton body size Level of phytoplankton density Level of zooplankton density

y=0.05 2.207 3.498
y=0.15 2.197 3.491
y=0.20 2.196 3.490
y=0.25 2.197 3.491
y=0.30 2.200 3.494
y=0.35 2.206 3.498
y=0.40 2.215 3.505
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FIGURE 4 Effects of phytoplankton cell size on the stability of equilibria in the model (4), where I indicates thatE∗ is globally
asymptotically stable (GAS), II means that E∗ is locally asymptotically stable (LAS) and E1 is unstable, and III denotes that
E1 is globally asymptotically stable (GAS). (a) Two-parameter bifurcation diagram of model (4) with � and x. (b)Two-parameter
bifurcation diagram of model (4) with � and y. (c) Phase diagram of E1. (d) Phase diagram of E∗.
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FIGURE 5 Effects of plankton body size on the survial level of plankton in model (4). a for the effects of phytoplankton cell
size. b for the effects of zooplankton body size.

can be asserted that whether in a deterministic environment or a random disturbance environment, the very small phytoplankton
cell size can lead to the extinction of phytoplankton and zooplankton, while the very small zooplankton body size can maintain
the sustainable survival of phytoplankton and zooplankton. Additionally, the very large zooplankton body size or phytoplankton
cell size can lead to the extinction of zooplankton, but can not affect the long-term survival of phytoplankton.
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FIGURE 7 Effects of plankton body size on the survival of plankton in model (6) with (�1, �2) = (0.25, 0.22). (a)-(b) for the
effects of zooplankton body size and x = 0.1. (c)-(d) for the effects of phytoplankton cell size and y = 0.2.

By fixing (x, y) = (0.04, 0.2), we obtain (�1, �2)=(0.11,0.11), (0.15,0.15) and (0.18,0.18), which satisfy the parameter con-
dition �̄ > 0 of Theorem 4.6. Based on Theorem 4.6, we repeat the simulation 10000 times and never observe any extinction
scenario up to t = 1000, showing the stationary distribution of P (t) and Z(t) at time t = 1000 for the stochastic model (6),
which is confirmed by the histograms in Fig.8 . It can be found from Figs.8 (a),8 (b) and 8 (c) or Figs.8 (d),8 (e) and 8 (f)
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FIGURE 8 Effects of noise intensity on the stationary distribution of phytoplankton and zooplankton in model (6), where
the grey curve represents the probability density function of plankton. (a) and (d) for (�1, �2) = (0.11, 0.11). (b) and (e) for
(�1, �2) = (0.15, 0.15). (c) and (f ) for (�1, �2) = (0.18, 0.18).

that when the white noise intensity is small, the stationary distributions appear closer to normal distribution and they are posi-
tively skewed when the white noise intensity is large. Obviously, the stochastic model (6) has a unique stationary distribution.
By comparison, we find that the increase of white noise can cause a positive shift in the stationary distribution of plankton in
model (6).
By fixing zooplankton body size y = 0.2 and noise intensity (�1, �2) = (0.11, 0.12), we only vary x = 0.03, 0.13, 0.43.

The solutions of the deterministic model (4) and its corresponding stochastic model (6) are shown in Fig.9 . In Fig.9 (a), the
solutions of the stochastic model (6) are strongly perturbed around the positive equilibrium of the deterministic model (4) when
x = 0.03. In the case of x = 0.13, however, the irregularity of random variation for plankton is weakened and the amplitude
of fluctuation for plankton is decreased, and the solutions of model (6) are closer to the positive equilibrium of the model (4),
as shown in Fig.9 (c). In the case of x = 0.43, this phenomenon becomes more obvious, which is verified by Fig.9 (e). By
comparison, it can be asserted that the increase of phytoplankton cell size can weaken the effects of random environmental
disturbances. Figs.9 (b), 9 (d) and 9 (f) further clearly confirm this conclusion.
By fixing phytoplankton cell size x = 0.04 and noise intensity (�1, �2) = (0.11, 0.12), we only change y = 0.1, 0.2, 0.3.

However, results show that the increase of zooplankton body size can not cause the irregularity of random variation and the range
of stochastic fluctuation for plankton in model (6) to increase or decrease, as shown in Figs.10 (a),10 (c) and 10 (e). Therefore,
the increase of zooplankton body size can not change the effects of random environmental disturbance on the plankton in model
(6), which is further demonstrated by Figs. 10 (b), 10 (d) and 10 (f).

5 CONCLUDING REMARKS

In this paper, we investigate a new phytoplankton-zooplankton model (PZ model) in the deterministic and stochastic fluctuation
environments, where the growth rate and the sinking rate of phytoplankton are assumed to depend on phytoplankton cell size,
and the maximum consumption rate of zooplankton is assumed to depend on both phytoplankton cell size and zooplankton body
size. The stochastic environmental fluctuation is assumed to be a type of white noise that mainly influences the growth rate of
phytoplankton and the death rate of zooplankton. This is a well-established way of introducing stochastic environmental noise
into population models49. As far as we know, few people have studied phytoplankton-zooplankton dynamics, taking into account
plankton body size and random environmental disturbance. In other words, the dynamic mechanisms underlying the growth of
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FIGURE 9 Effects of phytoplankton cell size on the phytoplankton-zooplankton dynamics with y = 0.2. (a),(c) and (e) The
solutions in stochastic model (6) and its corresponding deterministic model (4) with different phytoplankton cell size. (b),(d)
and (f) The phase diagram of phytoplankton and zooplankton in stochastic model (6) and its corresponding deterministic model
(4). (a)-(b) for x = 0.03. (c)-(d) for x = 0.13. (e)-(f) for x = 0.43.

phytoplankton related to plankton body size and stochastic environmental fluctuation remain largely unknown. Consequently,
the main purpose of this paper is to investigate how plankton body size affects the phytoplankton-zooplankton dynamics in the
stochastic fluctuation environments.
Mathematically, in the case of PZ model without environmental noise, we prove the existence of boundary and positive

equilibria, and give the sufficient conditions guaranteeing the local and global stability of these equilibria. In the case of PZ
model with environmental noise, we provide the stochastic dynamics including the existence and uniqueness, V-geometric
ergodicity, stochastic ultimate boundedness and stochastic permanence, and provide the sufficient conditions for the stochastic
extinction and persistence in the mean, as well as for the existence of a unique ergodic stationary distribution of phytoplankton
and zooplankton.
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FIGURE 10 Effects of zooplankton body size on the phytoplankton-zooplankton dynamics with x = 0.04. (a),(c) and (e) The
solutions in stochastic model (6) and its corresponding deterministic model (4) with different zooplankton body size. (b),(d) and
(f) The phase diagram of phytoplankton and zooplankton in stochastic model (6) and its corresponding deterministic model (4).
(a)-(b) for y = 0.1. (c)-(d) for y = 0.2. (e)-(f) for y = 0.3.

Ecologically, via numerical simulations, we find that when phytoplankton cell size is small, the increase of zooplankton body
size has no impacts on the plankton density in the deterministic environment (see Figs.2 (a) and 2 (b)), while it can increase
the phytoplankton density and decrease zooplankton density in the stochastic environment (Figs.7 (a) and 7 (b)), which is a
new result that has not been obtained in65,66. Furthermore, it is found that when phytoplankton cell size is intermediate-level,
the increase of zooplankton body size can reduce the density of phytoplankton and zooplankton at the same time (see Figs.2 (c)
and 2 (d)). This result is consistent with one of the conclusions in66. Moreover, it is shown that when phytoplankton cell size is
large, the increase of zooplankton body size can increase the density of zooplankton, but decrease the density of phytoplankton
(see Figs.2 (e) and 2 (f)). Recently, Liao67 studied a phytoplankton-zooplankton model with plankton body size and stochastic
environmental fluctuations, and Zhao et al.40 investigated a phytoplankton-zooplankton model with plankton body size and
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time delay, however, they did not explore the effect of zooplankton body size on plankton growth under different cell size of
phytoplankton. In contrast, the result can be used as a supplement to this studies67,40.
However, whether in a deterministic environment or a random disturbance environment, the very small phytoplankton cell

size can lead to the extinction of phytoplankton and zooplankton, while the very small zooplankton body size can maintain the
sustainable survival of phytoplankton and zooplankton (see Figs.3 and 7 ). Additionally, the very large zooplankton body size
or phytoplankton cell size can lead to the extinction of zooplankton, but can not affect the long-term survival of phytoplankton
(see Figs.3 (a) and 3 (b), Figs.7 (a) and 7 (b)).
Actually, the large environmental noise is capable to cause the extinction of plankton (see Fig.6 (b)), the increase of phyto-

plankton cell size has the ability to decrease the irregularity of random variation and the amplitude of random fluctuation for
plankton, but the increase of zooplankton body size has almost no imapcts on the effects of random environmental disturbance
(see Figs. 9 and 10 ). In other words, the increase of phytoplankton cell size can weaken the effects of random environmental
disturbances, while the increase of zooplankton body size can not, which indicates that the cell size of phytoplankton is more
sensitive to the changes of external environments than the body size of zooplankton, and the phytoplankton with large cell size
may have stronger survival ability than the phytoplankton with smalle cell size in the stochastic fluctuation environments. This
result supports the conclusion obtained in Branco et al.68 that phytoplankton will evolve towards large cell size, but it is opposite
to the results obtained in Jiang et al.43 that phytoplankton cell size will evolve towards small cell size.
In spite of some interesting results have been achieved in this paper, there are some interesting topics deserve further investi-

gation. For example, in this paper, our model is autonomous, it is of interest to investigate the non-autonomous case and study
other important properties, such as seasonal variation, individual life cycle, etc. In addition, it is also significant to introduce the
colored noise, such as continuous-time Markov chain, into the model (6). These will leave our future works.
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