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Abstract

This investigation is concerned with the 2D acoustic scattering problem of a plane wave
propagating in a non-lossy, isotropic, homogeneous fluid host and soliciting a linear, isotropic,
macroscopically-homogeneous, generally-lossy, flat-plane layer in which the mass density and
wavespeed are different from those of the host. The focus is on the inverse problem of the
retrieval of the layer mass density. The data is the transmitted pressure field, obtained by
simulation (resolution of the forward problem) in exact, explicit form via the domain integral
form of the Bergman wave equation. This solution is exact and more explicit in terms of
the mass-density contrast (between the host and layer) than the classical solution obtained by
separation of variables. A perturbation technique enables the solution (in its form obtained
by the domain integral method) to be cast as a series of powers of the mass density contrast,
the first three terms of which are employed as the trial models in the treatment of the inverse
problem. The aptitude of these models to retrieve the mass density contrast is demonstrated
both theoretically and numerically.

Keywords: acoustics, inverse scattering, domain integral equation, small density contrast, retrieval
accuracy

Abbreviated title: Retrieval of the mass density in inverse acoustic scattering

Corresponding author: Armand Wirgin,
e-mail: wirgin@lma.cnrs-mrs.fr

∗LMA, CNRS, UMR 7031, Aix-Marseille Univ, Centrale Marseille, F-13453 Marseille Cedex 13, France.

1



Contents

1 Introduction 3

2 Description of the problem of scattering of a plane wave by a layer-like obstacle 4

3 The (forward-scattering) solution of the BDIE 5
3.1 Conqsequence in the BDIE of the assumption of invariance with respect to x1 = x . 5
3.2 Consequence in the BDIE of the further assumption of piecewise-constant density

with respect to y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 The final assumption of constant wavespeed within the layer . . . . . . . . . . . . . . 6
3.4 BDIE solutions for the pressure fields in Ω0 and Ω2 . . . . . . . . . . . . . . . . . . . 8
3.5 Approximate models, obtained by a perturbation method, for the transmission co-

efficient for later use in the inverse problem . . . . . . . . . . . . . . . . . . . . . . . 10

4 The inverse-scattering problem 11
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Explicit retrievals of the mass density contrast . . . . . . . . . . . . . . . . . . . . . 12
4.3 Numerical results for the retrieval of the mass density contrast . . . . . . . . . . . . 15

4.3.1 First and second-order retrievals as a function of the frequency f . . . . . . . 15
4.3.2 First and second-order retrievals as a function of the actual density contrast ϵ 21
4.3.3 First and second-order retrievals as a function of the layer thickness h . . . . 23

5 Conclusions 26

2



1 Introduction

Fluid acoustics is governed by the partial differential equation [4]

∇x · ∇xp(x, t)−
1

c(x)2
∂2p(x, t)

∂t2
− ∇xρ(x)

ρ(x)
· ∇xp(x, t) = ρ(x)∇x · f(x, t) ; ∀x ∈ Rn , (1)

wherein x is the set of cartesian spatial variables for n = 1, 2 or 3, t the time variable, p the pressure,
ρ the mass density, f the applied force associated with the source, and

1

c(x)2
:= ρ(x)κ(x), (2)

with c(x) and κ(x) the phase velocity (also termed wavespeed) and isentropic compressibility within
the fluid medium.

By expanding the time domain pressure and force in the Fourier integrals

p(x, t) =

∫ ∞

−∞
p(x, ω) exp(−iωt)dω , (3)

f(x, t) =

∫ ∞

−∞
f(x, ω) exp(−iωt)dω , (4)

wherein ω = 2πf is the angular frequency and f the frequency, one obtains the frequency domain
expression of the Bergman partial differential (wave) equation (BPDE) [3]

∇x · ∇xp(x, ω) + k2(x, ω)p(x, ω)− ∇xρ(x, ω)

ρ(x, ω)
· ∇xp(x, ω) = ρ(x, ω)∇x · f(x, ω) ; ∀x ∈ Rn , (5)

wherein
k(x, ω) :=

ω

c(x)
(6)

is the wavenumber, which is a generally-complex quantity due to the fact that c is assumed to be
generally-complex (to account for losses in the configuration).

Radiation is the term which designates the situation in which ρ(x) and c(x) are spatially-
constant, i.e ρ(x) = ρ[0] and c(x) = c[0] throughout Rn, in which case the pressure field satisfies

∇x · ∇xp
[0](x, ω) + k[0]2(x, ω)p[0](x, ω) = ρ[0](x, ω)∇x · f(x, ω) ; ∀x ∈ Rn , (7)

wherein k[0] = ω
c[0]

. The so-called free-space Green’s function (termed G[0](x, ω) in a homogeneous

medium characterized by the constant parameters ρ[0], c[0]) is the radiation produced by a delta-like
singularity source (located at x′) satisfying

∇x · ∇xG
[0](x,x′, ω) + k[0]2G[0](x, ω)(x,x′, ω) = −δ(x− x′) ; ∀x ∈ Rn . (8)

Since this source, like all sources, gives rise to waves that are outgoing or incoming at all points
infinitely-distant from the source, on physical grounds one chooses only the outgoing wave solution,
amounting to what is called the radiation condition [4].

Scattering is the term which designates what becomes of the pressure wavefield when ρ(x) and
c(x) are not spatially-constant. The situation of interest herein is that in which space is occupied by
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a homogeneous (termed host or outer) medium M(ρ[0], c[0]) containing a generally-inhomogenous
inclusion (termed obstacle) occupied by the (inner) medium M(ρ[O](x, ω), c[O](x, ω)). Note that
the superscripts 0, O designate the outer and obstacle media respectively.

The BPDE is the differential form of the frequency domain governing equation of the scattering
problem. As is well-known, it is also possible to cast this problem in integral form. The result is
the so-called Bergman domain integral equation (BDIE) [15, 16], valid for the description of both
radiation and scattering phenomena in fluids:

p(x, ω) = pi(x, ω)+∫
Rn

G[0](x;x′;ω)

([(
k(x′, ω)

)2 − (k[0])2] p(x′, ω)− ∇x′ρ(x′, ω)

ρ(x′, ω)
· ∇x′p(x′, ω)

)
dΩ(x′) ; ∀ x ∈ Rn ,

(9)

wherein dΩ is the differential volume element in Rn,

pi(x, ω) = −
∫
Rn

G[0](x;x′;ω)ρ(x′, ω)∇x′ · f(x′, ω)dΩ(x′) , (10)

which is termed either the solicitation or incident wavefield, and use has been made of Green’s
second identity and the radiation condition (as applied to both G[0] and p) to result in∫

Rn

[
G[0](x;x′;ω)∇x′ · ∇x′p(x′, ω)− p(x′, ω)∇x′ · ∇x′G[0](x;x′;ω)

]
dΩ(x′) = 0 ; ∀ x ∈ Rn (11)

Henceforth, we shall: (a) solve the forward scattering problem of the determination of p(x, ω)
via the BDIE for a specific (i.e., layer-like) obstacle and solicitation (i.e., plane wave), and (b) from
various approximations of the so-obtained rigorous solution for the scattered field solve the inverse
scattering problem of the retrieval of ρ(x, ω).

2 Description of the problem of scattering of a plane wave by a
layer-like obstacle

The obstacle is assumed to be a flat-faced layer of infinite extent in the x and z directions filled
with a fluid, in some ways different from the fluid occupying the homogeneous host.

We restrict our attention to the 2D case (i.e., n = 2) which arises when the constitutive pa-
rameters, as well as the solicitation, do not depend on x3 = z. Thus, the following discussion takes
place in the sagittal (x− y) plane in which the position vector takes the form x = (x, y).

The traces in the sagittal plane of the upper and lower faces of the layer are the lines y = 0
and y = −h respectively, with h the thickness of the layer. The domains above (y > 0), within
(0 > y > −h) and below (y < −h) the layer are designated by Ω0,Ω1,Ω2, respectively. The
media within Ω0 and Ω2 are M(ρ[0], c[0]) and the medium occupying Ω1 is M(ρ[O](x), c[O](x), the
latter being, for the moment, inhomogeneous, but nevertheless depending only on y (later on,
particularly in connection with the inverse scattering problem, we shall assume Ω1 to be occupied
by the homogeneous medium M(ρ[1], c[1])).

The solicitation is assumed to take the form of a plane wave pi(x, ω) = ai(ω) exp(iki(x, ω) · x),
in which ai(ω) is the spectral amplitude, ki = (k

i[0]
x ,−k

i[0]
y ) = (k[0] sin θi,−k[0] cos θi) the incident

wavevector and θi the angle of incidence (measured counterclockwise from the positive y axis).
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3 The (forward-scattering) solution of the BDIE

The point of departure is now the Bergman integral equation (6) wherein G[0] is the 2D Helmholtz
operator free-space Green’s function for medium M [0] given by [8]

G[0](x;x′) =
i

4
H

(1)
0 (k[0](x;x′)) , (12)

wherein H
(1)
0 is the zeroth-order Hankel function of the first kind [1]. Note that we have dropped

the ω-dependence in this relation and shall do so from now on for all functions that depend on this
variable. This Green’s function admits the following representation in cartesian coordinates (([8],
p. 823):

G[0](x;x′) =
i

4π

∫ ∞

−∞
exp[i(kx(x− x′) + k[0]y |y − y′|)]dkx

k
[0]
y

, (13)

in which

k[j]y =
√

(k[j)2 − (kx)2 ; ℜk[j]y ≥ 0 , ℑk[j]y ≥ ; ω ≥ 0 . (14)

3.1 Conqsequence in the BDIE of the assumption of invariance with respect to
x1 = x

The previously-assumed homogeneity of M [0] and invariance M [O] with respect to x entails

k(x) = k(y) , ρ(x) = ρ(y) . (15)

The consequence of this is, on account of the plane wave nature of the incident pressure field:

p(x) = p(y) exp(iki[0]x x) (16)

so that, after projection of (6) and employment of the identity∫ ∞

−∞
exp[i(ki[0]x − kx)x

′]dx′ = 2πδ(ki[0]x − kx) , (17)

(with δ( ) the Dirac delta distribution), we are led to the 1D integral equation

p(y) = pi(y)+

i

2k
i[0]
y

∫ ∞

−∞
dy′
([(

k(y′)
)2 − (k[0])2] p(y′)− ρy′(y

′)

ρ(y′)
p,y′(y

′)

)
exp(iki[0]y |y − y′|) ; ∀y ∈ R , (18)

in which F(ξ),ξ :=
dF
dξ .

3.2 Consequence in the BDIE of the further assumption of piecewise-constant
density with respect to y

We now make the even more radical assumption that the mass density ρ (but not the wavespeed
c) is piecewise-constant with respect to y. This translates to the relation

ρ(y′) = ρ[0] +
(
ρ[1] − ρ[0

)
[H(y′ + h)−H(y′)] , (19)
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in which ρ[0] and ρ[1] are constants with respect to the spatial coordinates and H( ) is the Heaviside
distribution. It follows that

ρ,y′(y
′) =

(
ρ[1] − ρ[0

)
[δ(y′ + h)− δ(y′)] , (20)

so that (18) becomes

p(y) = pi(y) +
i

2k
i[0]
y

∫ ∞

−∞
dy′
([(

k(y′)
)2 − (k[0])2] p(y′)−(

ρ[1] − ρ[0
)
[δ(y′ + h)− δ(y′)]

ρ(y′)
p,y′(y

′)
)
exp(iki[0]y |y − y′|) = pi(y) + I(y)−K(y) ; ∀y ∈ R , (21)

wherein

I(y) =
i

2k
i[0]
y

∫ ∞

−∞
dy′
[(
k(y′)

)2 − (k[0])2] p(y′) exp(iki[0]y |y − y′|) ; ∀y ∈ R , (22)

K(y) =
i

2k
i[0]
y

(
ρ[1] − ρ[0

)∫ ∞

−∞
dy′)[δ(y′ + h)− δ(y′)]

p,y′(y
′)

ρ(y′)
) exp(iki[0]y |y − y′|) ; ∀y ∈ R , (23)

Using the fact that since we assumed at the outset that c(x) = c[0] in Ω0 and Ω2 it follows that

I(y) =
i

2k
i[0]
y

∫ 0

−h
dy′
[(
k(y′)

)2 − (k[0])2] p(y′) exp(iki[0]y |y − y′|) ; ∀y ∈ R . (24)

Now, let us return to K(y). Using the sifting property of the delta distributions we obtain

K(y) =
i

2k
i[0]
y

(
ρ[1] − ρ[0

)[p,y′(−h)

ρ(−h)
exp(iki[0]y |y + h|)−

p,y′(0)

ρ(0)
exp(iki[0]y |y|)

]
; ∀y ∈ R , (25)

We cannot deal with I and K in analytic manner beyond this point unless further assumptions are
made.

3.3 The final assumption of constant wavespeed within the layer

We now make the further assumption that

c(x) = c[1] = const. ⇒ k(x) = k[1] = const. , (26)

the principal consequence of which is that it seems legitimate to suppose (this is actually a con-
sequence of separation of variables (SOV) applied to the Helmholtz PDE in Ω1) that the pressure
field within the layer can be represented by the sum of two plane waves:

p(y) = a[1] exp(−iki[1]y y) + b[1] exp(iki[1]y y) ; ∀y ∈ [−h, 0] , (27)

(a[1] and b[1] are constants) from which it follows (in addition to the continuity property of 1
ρp,y

inherent in the BPDE) that

p,y(−h)
ρ(−h) =

ik
i[1]
y

ρ[1]

[
−a[1] exp(ik

i[1]
y h) + b[1] exp(−ik

i[1]
y h)

]
p,y(0)
ρ(0) =

ik
i[1]
y

ρ[1]

[
−a[1] + b[1]

] . (28)
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This suggests that we focus our attention on the integral equation

p(y) = I(y)−K(y) ; ∀y ∈]− h, 0[ . (29)

It is easy to find via (27):

I(y) =
i

2k
i[0]
y

[(
k[1]
)2

−
(
k[0]
)2]

×(∫ y

−h
dy′p(y′) exp[iki[0]y (y − y′)] +

∫ 0

y
dy′p(y′) exp[−iki[0]y (y − y′)]

)
; ∀y ∈]− h, 0[ , (30)

or, on account of (27) and the fact that
(
k
i[1]
y

)2
−
(
k
i[0]
y

)2
=
(
k[1]
)2 − (k[0])2:

I(y) = a[1] exp[−iki[1]y y] + b[1] exp[iki[1]y y]+[
−a[1]

(
k
i[0]
y − k

i[1]
y

2k
i[0]
y

)
exp[i(ki[1]y + ki[0]y )h]− b[1]

(
k
i[0]
y + k

i[1]
y

2k
i[0]
y

)
exp[−i(ki[1]y − ki[0]y )h]

]
exp[iki[0]y y]+[

−a[1]

(
k
i[0]
y + k

i[1]
y

2k
i[0]
y

)
− b[1]

(
k
i[0]
y − k

i[0]
y

2k
i[0]
y

)]
exp[−iki[0]y y] ; ∀y ∈]− h, 0[ . (31)

It is also readily found via (28) that:

K(y) =
k
i[1]
y

2k
i[0]
y

(
ρi[1] − ρi[0]

ρ[1]

)[
a[1] exp[i(ki[1]y + ki[0]y )h]− b[1] exp[−i(ki[1]y − ki0y )h]

]
exp[iki0y y]−

k
i[1]
y

2k
i[0]
y

(
ρi[1] − ρi[0]

ρ[1]

)[
a[1] − b[1]

]
exp[−iki[0]y y] ; ∀y ∈]− h, 0[ . (32)

It follows that (29) takes the form:

a[1] exp[−iki[1]y y] + b[1] exp[iki[1]y y] = a[0] exp[−iki[0]y y] + a[1] exp[−iki[1]y y] + b[1] exp[iki[1]y y]+[
−a[1]

(
k
i[0]
y − k

i[1]
y

2k
i[0]
y

)
exp[i(ki[1]y + ki[1]y )h]− b[1]

(
k
i[0]
y + k

i[1]
y

2k
i[0]
y

)
exp[−i(ki[1]y − ki[0]y )h]

]
exp[iki[0]y y]+[

−a[1]

(
k
i[0]
y + k

i[1]
y

2k
i[0]
y

)
− b[1]

(
k
i[0]
y − k

i[1]
y

2k
i[0]
y

)]
exp[−iki[0]y y]−

k
i[1]
y

2k
i[0]
y

(
ρi[1] − ρi[0]

ρ[1]

)[
a[1] exp[i(ki[1]y + ki0y )h]− b[1] exp[−i(ki[1]y − ki0y )h]

]
exp[iki[0]y y]−

k
i[1]
y

2k
i[0]
y

(
ρi[1] − ρi[0]

ρ[1]

)[
a[1] − b[1]

]
exp[−iki[0]y y] ; ∀y ∈]− h, 0[ , (33)

from which, after cancelations of like terms, and the fact that the term multiplying exp
[
− ik

i[0]
y

]
must be equal to a[0] and the terms multiplying exp

[
ik

i[0]
y

]
must vanish if the relation (33) is to
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hold for every y in ]− h, 0[, that we are left with the two results:

a[0] =

[
a[1]

(
k
i[0]
y + k

i[1]
y

2k
i[0]
y

)
+ b[1]

(
k
i[0]
y − k

i[1]
y

2k
i[0]
y

)]
−
[
a[1] − b[1]

] k
i[1]
y

2k
i[0]
y

(
ρi[1] − ρi[0]

ρ[1]

)
, (34)

0 =

[
a[1]

(
k
i[0]
y − k

i[1]
y

2k
i[0]
y

)
exp[i(ki[1]y + ki0y )h] + b[1]

(
k
i[0]
y + k

i[1]
y

2k
i[0]
y

)
exp[−i(ki[1]y − ki0y )h]

]
+

k
i[1]
y

2k
i[0]
y

(
ρi[1] − ρi[0]

ρ[1]

)[
a[1] exp[i(ki[1]y + ki0y )h]− b[1] exp[−i(ki[1]y − ki0y )h]

]
. (35)

These two equations can be put in the form:

a[0]2
k
i[0]
y

ρ[0]
= a[1]

[(
k
i[0]
y

ρ[0]
+

k
i[1]
y

ρ[0]

)
− k

i[1]
y

ρ[0]
ϵ

]
+ b[1]

[(
k
i[0]
y

ρ[0]
− k

i[1]
y

ρ[0]

)
+

k
i[1]
y

ρ[0]
ϵ

]
, (36)

0 = a[1]eik
i[1]
y h

[(
k
i[0]
y

ρ[0]
− k

i[1]
y

ρ[0]

)
+

k
i[1]
y

ρ[0]
ϵ

]
+ b[1]e−ik

i[1]
y h

[(
k
i[0]
y

ρ[0]
+

k
i[1]
y

ρ[0]

)
− k

i[1]
y

ρ[0]
ϵ

]
, (37)

wherein

ϵ =
ρ[1] − ρ[0]

ρ[1]
, (38)

is the mass density contrast. The solution of the two linear equations (36)-(37) in the two unknowns
a[1], b[1] is then readily found to be:

a[1] = a[0]

 k
i[0]
y

[
k
i[0]
y + k

i[1]
y (1− ϵ)

]
e−ik

i[1]
y h

2k
i[1]
y k

i[0]
y (1− ϵ) cos(k

i[1]
y h)−

[(
k
i[0]
y

)2
+
(
k
i[1]
y

)2
(1− ϵ)2

]
i sin(k

i[1]
y h)

 , (39)

b[1] = a[0]

 k
i[0]
y

[
k
i[1]
y (1− ϵ)− k

i[0]
y

]
eik

i[1]
y h

2k
i[1]
y k

i[0]
y (1− ϵ) cos(k

i[1]
y h)−

[(
k
i[0]
y

)2
+
(
k
i[1]
y

)2
(1− ϵ)2

]
i sin(k

i[1]
y h)

 . (40)

Since 1 − ϵ = ρ[0]/ρ[1] it is easy to see that (39)-(40) are identical to the well-known [15] SOV
counterparts.

3.4 BDIE solutions for the pressure fields in Ω0 and Ω2

We now turn to what is essential for undertaking the resolution of the inverse problem, which is
that of establishing suitable expressions of the pressure fields in Ω0 and Ω2 which is where these
fields can be easily-measured. These fields are necessarily an outcome of the solution obtained for
the field within the layer, as is expressed by the Bergman integral representations of these fields:

p(y) = pi(y) + I(y)−K(y) ; ∀y ∈]−∞,−h[ , ∀y ∈]0,∞[ . (41)
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wherein I(y) and K(y) (=0 for ϵ = 0) are functions of the previously-found p(y) ; y ∈]− h, 0[.
Let us first consider the field in Ω0. Proceeding as previously, we find

I(y) =
1

2
eik

i[0]
y y×[
a[1]

(
k
i[0]
y − k

i[1]
y

k
i[0]
y

)
+ b[1]

(
k
i[0]
y + k

i[1]
y

k
i[0]
y

)
− a[1]

(
k
i[0]
y − k

i[1]
y

k
i[0]
y

)
ei(k

i[0]
y +k

i[1]
y )h

− b[1]

(
k
i[0]
y + k

i[1]
y

k
i[0]
y

)
ei(k

i[0]
y −k

i[1]
y )h

]
; ∀y ∈]0,∞[ , (42)

K(y) = − ϵ

2

k
i[1]
y

k
i[0]
y

eik
i[0]
y y
[
− a[1]ei(k

i[0]
y +k

i[1]
y )h + b[1]ei(k

i[0]
y −k

i[1]
y )h + a[1] − b[1]

]
; ∀y ∈]0,∞[ , (43)

so that

p(y) = pi(y)− 1

2k
i[0]
y

eik
i[0]
y y×(

a[1]
[
ki[0]y − ki[1]y (1− ϵ)

]
+ b[1]

[
ki[0]y + ki[1]y (1− ϵ)

]
+ a[1]

[
−ki[0]y + ki[1]y (1− ϵ)

]
ei(k

i[0]
y +k

i[1]
y )h+

b[1]
[
−ki[0]y − ki[1]y (1− ϵ)

]
ei(k

i[0]
y −k

i[1]
y )h

)
; ∀y ∈]0,∞[ , (44)

which, upon the introduction of (39)-(40), yields

p(y) = b[0] exp(iki[0]y y) ; ∀y ∈]0,∞[ , (45)

wherein

b[0] = a[0]


[(

k
i[1]
y

)2
(1− ϵ)2 −

(
k
i[0]
y

)2]
i sin(k

i[1]
y h)

2k
i[1]
y k

i[0]
y (1− ϵ) cos(k

i[1]
y h)−

[(
k
i[0]
y

)2
+
(
k
i[1]
y

)2
(1− ϵ)2

]
i sin(k

i[1]
y h)

 . (46)

Since 1− ϵ = ρ[0]/ρ[1] it is easy to see that (46) is identical to its SOV counterpart ([16]).
Let us next consider the field in Ω2. Proceeding as previously, we find

I(y) = −1

2
e−ik

i[0]
y y×[

a[1]

(
k
i[0]
y + k

i[1]
y

k
i[0]
y

)[
1− e−i(k

i[0]
y −k

i[1]
y )h

]
+ b[1]

(
k
i[0]
y − k

i[1]
y

k
i[0]
y

)[
1− e−i(k

i[0]
y +k

i[1]
y )h

]]
; ∀y ∈]−∞,−h[ , (47)

K(y) = − ϵ

2

k
i[1]
y

k
i[0]
y

e−ik
i[0]
y y
[
− a[1]e−i(k

i[0]
y −k

i[1]
y )h + b[1]e−i(k

i[0]
y +k

i[1]
y )h + a[1] − b[1]

]
; ∀y ∈]−∞,−h[ ,

(48)
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so that

p(y) = pi(y)− 1

2k
i[0]
y

e−ik
i[0]
y y×(

a[1]
[
ki[0]y + ki[1]y (1− ϵ)

]
+ b[1]

[
ki[0]y − ki[1]y (1− ϵ)

]
+ a[1]

[
−ki[0]y − ki[1]y (1− ϵ)

]
e−i(k

i[0]
y −k

i[1]
y )h+

b[1]
[
−ki[0]y + ki[1]y (1− ϵ)

]
e−i(k

i[0]
y +k

i[1]
y )h

)
; ∀y ∈]−∞,−h[ , (49)

which, upon the introduction of (39)-(40), yields

p(y) = a[2] exp(−iki[0]y y) ; ∀y ∈]−∞,−h[ , (50)

wherein

a[2] = a[0]

 2k
i[1]
y k

i[0]
y (1− ϵ) exp(−ik

i[0]
y h)

2k
i[1]
y k

i[0]
y (1− ϵ) cos(k

i[1]
y h)−

[(
k
i[0]
y

)2
+
(
k
i[1]
y

)2
(1− ϵ)2

]
i sin(k

i[1]
y h)

 . (51)

Since 1− ϵ = ρ[0]/ρ[1] it is easy to see that (51) is identical to its SOV counterpart [16].
The important point to note here is that the BDIE expressions for b[0], a[1], b[1], a[2] enable,

contrary to their SOV counterparts, to account, in very explicit manner, for the mass density
contrast (expressed by ϵ) of the layer obstacle configuration. We shall see further on that this has
important consequences, especially in the inverse scattering context.

3.5 Approximate models, obtained by a perturbation method, for the trans-
mission coefficient for later use in the inverse problem

What will be offered here for the transmission coefficient a[2] is applicable, as well to the other
coefficients b[0], a[1], b[1].

Eq. (51) is of the form

a[2] =
a+ bϵ

c+ dϵ+ fϵ2
, (52)

in which:
a = a[0]2k

i[1]
y k

i[0]
y exp(−ik

i[0]
y h)

b = −a

c = 2k
i[1]
y k

i[0]
y cos(k

i[1]
y h)−

[(
k
i[0]
y

)2
+
(
k
i[1]
y

)2]
i sin(k

i[1]
y h)

d = −2k
i[1]
y k

i[0]
y cos(k

i[1]
y h) + 2

(
k
i[1]
y

)2
i sin(k

i[1]
y h)

f = −
(
k
i[1]
y

)2
i sin(k

i[1]
y h)

. (53)
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so that

a[2] =

(
a

c
+

b

c
ϵ

) ∞∑
l=0

[
−ϵ

(
d

c
+

f

c
ϵ

)]l
. (54)

This relation suggests that the transmission coefficient can be expressed in iterative manner as
follows:

a[2](0) = a
c

a[2](1) = a[2](0) +
(
b
c −

ad
c2

)
ϵ

a[2](2) = a[2](1) +
(
−af

c2
− bd

c2
+ ad2

c3

)
ϵ2

. . . . . . . .

. (55)

It is readily-verified that the zeroth-order approximation a[2](0) of a[2] is the constant-density (i.e.,
the ϵ = 0) solution for this coefficient. Similarly, the first-order approximation a[2](1) of a[2] consti-
tutes the first correction, presumably-valid for very small ϵ, of the constant-density solution. This
approximation is further corrected via the second-order approximation a[2](2), presumably-valid for
small ϵ, and so on.

Numerical comparisons are provided between the zeroth-, first-, and second-order approxima-
tions of a[2] and its exact counterpart in [16].

4 The inverse-scattering problem

4.1 Preliminaries

The following material concerns the retrieval of ϵ from data relating to the measured field p in Ω2.
Actually, we shall not measure this field, but rather obtain it by simulation, the latter appealing

to the exact solution of the forward problem.
Furthermore, we shall assume that the configurations of the forward and inverse problems

are exactly the same, this meaning that (a) the obstacle is the same layer (i.e., same: thickness,
macroscopic homogeneity invariant with respect to the three space coordinates, location in space,
but differing a priori only by the mass density contrast and/or the wavespeed), (b) the obstacle
is submitted to the same radiation (i.e., same plane wave), and (c) the measurement location and
device are the same (actually a device capable of detecting with perfect accuracy the amplitude
and phase of the pressure on the lower face of the layer).

Inversion of this sort normally is the outcome of the comparison of two pressure fields (at the
above-mentioned location): 1) the one predicted by a trial model of the layer involving a trial value
of the to-be-retrieved parameter (which may initially be far-removed from the actual value of this
parameter as it intervenes in the data) and 2) the simulated pressure field. If the difference (the
meaning of this word will be detailed further on) of the trial field from the measured (simulated)
data field is larger than some prescribed value, then the trial parameter in the trial model is changed
in some hopefully-rational manner and the new trial model is again compared to the data. This
comparison procedure is repeated as many times as necessary to obtain a difference equal to, or
smaller than, a prescribed value. This is the procedure for retrieving c[1] [16]. However, inversion
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is simpler when the difference between the predictions of (the pressure fields) trial model and the
simulated data are imposed at the outset to vanish and the equation translating this fact can be
solved in explicit, mathematical manner. This is the procedure [12] we adopt for retrieving the
density contrast ϵ.

In all the following material, upper-case letters will designate trial parameters (and the corre-
sponding trial fields) and lower-case letters will designate the actual parameters (and data fields)
involved in the simulation model employed to generate the data. When a parameter in the trial
model is not varied (i.e., not the object of the retrieval), it is termed ’prior’, and due to the afore-
mentioned assumptions, all the priors are considered to be equal to the corresponding parameters
in the simulation model. This means, in particular, that when trying to retrieve the mass density
contrast, we assume the layer wavespeed to be equal to its true value in the simulation model.

The simulation model employed to generate the data appeals to the exact BDIE (identical to
the SOV) solution for the transmitted pressure. We shall employ three trial models to retrieve
the density contrast: these are based on the zeroth, first and second-order ϵ approximations of
the pressure field, and we shall show that these three inversions can be carried out in explicit,
mathematical manner.

This will enable us to show that the employment of approximate trial models, such as the
one based on constant-density assumption, lead to impossible or inaccurate retrievals, much as
do the employment of exact trial models with one or several trial priors being different from the
corresponding parameters employed in the simulation model [7].

4.2 Explicit retrievals of the mass density contrast

The simulated (via the DD-SOV model) field in the transmission half-space is

p(x, z) = a[2] exp[i(ki[0]y x− ki[0]y y)] . (56)

We assume the data is collected at x = 0, y = −h, so that the simulated pressure data is

p(0,−h) = a[2](ϵ) exp[iki[0]y h)] . (57)

The trial fields, at the same location, for the three trial models, are of the general form

P (0,−h) = A[2](l)(E) exp[iKi[0]
y H] ; l = 0, 1, 2 , (58)

wherein E is the trial mass density contrast, and due to the assumption of the identity of the priors,

K
i[0]
y = k

i[0]
y , H = h, so that

P (l)(0,−h) = A[2](l) exp[iki[0]y h] ; l = 0, 1, 2 , (59)

wherein, it must be recalled:

A[2](l) =
l∑

j=0

A
[2]
j Ej ; l = 0, 1, 2 , (60)

with the coefficients A
[2]
j not depending on E.

The so-called cost function K is a function of the difference of P (l)(0,−h) from p(0,−h)

K(l)(E(l)) = F
(
P (l)(0,−h)− p(0,−h)

)
; l = 0, 1, 2 , (61)
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the object being to find the trial density contrast E(l) that minimizes K(l) for each l. For reasons
that will become obvious, we shall choose F

(
(P (l)(0,−h)− p(0,−h)

)
= P (l)(0,−h)−p(0,−h)) and

the minimum to be zero, so that the inverse problems reduce to finding E(l) from

K(l)(E(l)) = P (l)(0,−h)− p(0,−h) = 0 , (62)

or, more explicitly, (
A[2](l) − a[2]

)
exp[iki[0]y h] = 0 (63)

which implies
A[2](l) − a[2] = 0 , (64)

First consider the case l = 0. On account of (60) the previous equation reduces to

A
[2]
0 − a[2] = 0 , (65)

which possesses no solution for the mass density contrast since A
[2]
0 does not depend on this pa-

rameter. Thus, the somewhat-trivial conclusion is that it is not possible to retrieve the density
contrast when the constant-density assumption is made.

Next consider the case l = 1. On account of (60) the comparison equation (64) reduces to the
linear equation (in terms of the mass density contrast)

A
[2]
0 +A

[2]
1 E(1) − a[2] = 0 , (66)

whose single solution is simply

E(1) = −

(
A

[2]
0 − a[2]

A
[2]
1

)
. (67)

This shows that the employment of the linearized approximation A[2](1) of A[2] as the trial model
enables: (1) not only to solve the inverse problem in explicit, mathematical form, (2) but also to
obtain a unique solution of this problem. These are the reasons why linearization is often employed
in dealing with inverse problems. A last property of this solution: it may be complex even when ϵ
is real, this being due to the fact that the different terms in (67) are generally-complex.

Finally, consider the l = 2 case. On account of (60) the comparison equation (64) reduces to
the quadratic equation (in terms of the mass density contrast)

A
[2]
0 +A

[2]
1 E(2) +A

[2]
2

(
E(2)

)2
− a[2] = 0 , (68)

whose two solutions are simply

E(2)± = − A
[2]
1

2A
[2]
2

±

√(
A

[2]
1

)2
− 4A

[2]
2

(
A

[2]
0 − a[2]

)
2A

[2]
2

. (69)

This shows that the employment of the second-order approximation A[2](2) of A[2] as the trial model
enables: (1) not only to solve the inverse problem in explicit, mathematical form, (2) but also to
obtain a non-unique solution of this problem. In fact, we find two solutions to this problem, and
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there does not appear to exist any easily-discernible relation between these two solutions on the
one hand and the sole solution of the the l = 1 problem on the other hand. A last property of the
second-order solution: it may be complex even when ϵ is real, this being due to the fact that the
different terms in (69) are generally-complex.

It has been suggested that to alleviate the non-uniqueness problem, and/or improve the accuracy
of the retrievals, one should take advantage of the fact that a retrieved constitutive parameter should
not depend on the characteristics of the solicitation (because of the implicit assumption of isotropy
of the media in presence). We translate this remark here to: E[2] should not depend on the angle of
incidence θi, so that to possibly alleviate the non-uniqueness problem and/or increase the accuracy
of the retrieval, we generalize the comparison equation (65) to N realizations which differ from
each other only by the choice of incident angle.

The chosen incident angles form the set

Θi = {θi1, θi2, ..., θiN} , (70)

and for the n-th realization, the simulated transmission coefficient is a[2](θin) while its trial coun-
terpart is A[2](θin) so that the comparison equation now takes the form

N∑
n=1

(
A[2](θin)− a[2](θin)

)
= 0 . (71)

which is the same as (65) when N = 1.
Proceeding as previously, we make the expansion (for each incident angle realization)

A[2](l)(θin) =
l∑

m=1

A[2]
m (θin)

(
E(l)

)m
, (72)

whence (71) becomes
N∑

n=1

(
l∑

m=1

A[2]
m (θin)

(
E(l)

)m
− a[2](θin)

)
= 0 . (73)

For l = 1 this equation yields the unique solution

E(1) = −

(
A[2]

0 − α[2]

A[2]
1

)
, (74)

whereas for l = 2 it gives rise to the two solutions

E(2)± = − A[2]
1

2A[2]
2

±

√(
A[2]

1

)2
− 4A[2]

2

(
A[2]

0 − α[2]
)

2A[2]
2

. (75)

wherein:

A[2]
m =

N∑
n=1

A[2]
m (θin) , α[2] =

N∑
n=1

a[2](θin) . (76)

As previously, the l = 1 and l = 2 retrievals for the mass density contrast may turn out to be
complex even though ϵ is real, this being due to the fact that the different terms in (74) and (75)
are generally-complex.
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4.3 Numerical results for the retrieval of the mass density contrast

The aim of the computations was to compare numerically the actual density contrast ϵ to the
retrievals thereof: (a) E(1)) obtained via the first-order ϵ trial model, and (b) E(2) obtained via the
second-order ϵ trial model, as a function of the various parameters ℜ

(
c[1]
)
, ℑ
(
c[1]
)
, ϵ, f , h and θi,

the other parameters being fixed at the following values: ρ[0] = 1000 Kgm−3, c[0] = 1500 ms−1,
a[0] = 1. As concerns the set of incident angle(s), we shall designate it in condensed form by
Θi = (θib, θ

i
e, N), which means that N equally-spaced values of θi are chosen for the retrieval

ranging from θib to θie.

4.3.1 First and second-order retrievals as a function of the frequency f
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Figure 1: Retrieved (E) mass density contrast compared to the actual (ϵ) mass density contrast
as a function of the frequency f . The left(right)-hand panels depict the real(imaginary) parts of ϵ
(red—–), E(1) (blue ——), E(2)− (blue - - - -), E(2)+ (blue + + + +). Case ρ[1] = 1300 Kgm−3,
c[1] = 1700− 210i ms−1, h = 0.2 m, Θi = (0◦, 0◦, 1).
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Figure 2: Same as fig. 1 except that Θi = (40◦, 40◦, 1).
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Figure 3: Same as fig. 1 except that Θi = (0◦, 40◦, 5).
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Figure 4: Same as fig. 1 except that Θi = (0◦, 40◦, 9).
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Figure 5: Retrieved (E) mass density contrast compared to the actual (ϵ) mass density contrast as
a function of, and for a different range of, the frequency f . The left(right)-hand panels depict the
real(imaginary) parts of ϵ (red—–), E(1) (blue ——), E(2)− (blue - - - -), E(2)+ (blue + + + +).
Case ρ[1] = 1300 Kgm−3, c[1] = 1700− 210i ms−1, h = 0.2 m, Θi = (0◦, 0◦, 1).
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Figure 6: Same as fig. 5 except that Θi = (0◦, 40◦, 5).
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Figure 7: Same as fig. 5 except that Θi = (0◦, 40◦, 9).
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Figure 8: Retrieved (E) mass density contrast compared to the actual (ϵ) mass density contrast as
a function of, and for a different range of, the frequency f . The left(right)-hand panels depict the
real(imaginary) parts of ϵ (red—–), E(1) (blue ——), E(2)− (blue - - - -), E(2)+ (blue + + + +).
Case ρ[1] = 1300 Kgm−3, c[1] = 1700− 210i ms−1, h = 0.2 m, Θi = (30◦, 60◦, 5).
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Figure 9: Same as fig. 8 except that ρ[1] = 700 Kgm−3.
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Figure 10: Same as fig. 9 except that Θi = (0◦, 30◦, 5).
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What changes between the figures 1-4 (relative to the narrow low-frequency range f = [5KHz, 10KHz])
and the figures 5-7 (relative to the wider, including high-frequencies, range f = [0 KHz, 50 KHz])
is Θi. The increase of the number of incident-angle realizations is observed to have the unexpected
effect of decreasing the quality of the first-order mass-density retrievals. It is also observed that
the second-order retrievals are divided into two widely-separated branches, one of which is rather
close to the exact mass density ϵ, with the + and − solutions suddenly shifting between these two
branches as the frequency increases. These sudden shifts have been observed in other inverse prob-
lems and can be qualified as ’instability’ which is known to be one of the characteristics (although
usually associated with data, rather than trial model, error [10, 5]) of the ’solutions’ of ill-posed
mathematical problems. The increase of the number N of realizations seems not to affect the height
of the branch closest to ϵ, which suggests that this might be a useful indicator for distinguishing
the ’good branch’ from the ’bad’ branch. Also the increase of N seems, for small N , to shift to
higher frequencies the moment of shift from one branch to the other, but for larger N , ceases to
produce this possibly-useful effect. Besides this, the ’good branches’ of the second-order retrievals
are clearly-closer than the corresponding first-order retrievals to the actual mass-density ϵ, as one
would expect, and clearly, the first-order retrievals are way off mark. Other than these remarks
, the noticeable feature of figs. 5-7, also discernible to some extent in figs. 1-4, is the dispersive
nature of the retrieved mass density contrast even though the actual mass density contrast was as-
sumed to be non-dispersive (i.e., to not depend on f). This dispersive nature is seen to particularly
affect: 1) the first-order retrieval and 2) the particular second-order retrieval (of the two possible
second-order retrievals) which is the farthest from the actual mass density contrast. This suggests
that the dispersion of the retrieval is induced by trial model error and is all the larger the larger is
the trial model error.

What changes between the two figures 8-9 is ρ[1]. Other than the previous remarks which apply
as well here as for a different layer mass density (and therefore different ϵ), one gets the impression
that the effects of changing Θi are not obviously-beneficial. These remarks also hold for figs. 9-10
which differ from each other by the choice (but not the number) of incident angles.

4.3.2 First and second-order retrievals as a function of the actual density contrast ϵ
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Figure 11: Retrieved (E) mass density contrast compared to the actual (ϵ) mass density contrast as
a function of the actual density contrast ϵ. The left(right)-hand panels depict the real(imaginary)
parts of ϵ (red—–), E(1) (blue ——), E(2)− (blue - - - -), E(2)+ (blue + + + +). Case f = 20000 Hz,
c[1] = 1700− 210i ms−1, h = 0.2 m, Θi = (0◦, 30◦, 5).
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Figure 12: Same as fig. 11 except that Θi = (0◦, 0◦, 1).
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What changes between the two figures 11 and 12 is again Θi which is seen to have a small effect
on the first-order, but no visible effect on the second-order retrievals. Otherwise, the patterns are
the same as previously: first-order retrieval rather far from the actual ϵ except for very small ϵ,
and double-branch second-order retrievals, the ’bad’ one of which is really way off from ϵ except for
very small ϵ, and the ’good’ one of which is quite close to ϵ, especially in the interval ϵ ≈ [−0.2, 0.2],
with the + and − solutions suddenly shifting between these two branches as ϵ increases. Due to
this latter behavior there does not appear to exist a reliable way to spot the ’good’ retrieval for a
given ϵ. This is, in fact, only possible when one disposes of rather narrow-range a priori information
(such as: E should lie in the interval [Emin, Emax], with the difference of the two values being as
small as possible) as to where the retrieved parameter should lie. However, if the trial model is
rather crude, as in the case of the first-order model, the single retrieved solution might lie outside
the range [Emin, Emax] in which case one would be led to the conclusion that the retrieval (with
this crude model) is impossible, this being an incorrect conclusion for a wider range [Emin, Emax],
so that one should be cautious about the use of a priori information for the retrieval.

4.3.3 First and second-order retrievals as a function of the layer thickness h
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Figure 13: Retrieved (E) mass density contrast compared to the actual (ϵ) mass density contrast
as a function of the layer thickness h. The left(right)-hand panels depict the real(imaginary) parts
of ϵ (red—–), E(1) (blue ——), E(2)− (blue - - - -), E(2)+ (blue + + + +). Case f = 20000 Hz,
ρ[1] = 700 Kgm−3, c[1] = 1700− 210i ms−1, Θi = (0◦, 0◦, 1).
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Figure 14: Same as fig. 13 for a different range of h.
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Figure 15: Same as fig. 14 except that ρ[1] = 900 Kgm−3.
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Figure 16: Same as fig. 14 except that ρ[1] = 1100 Kgm−3.
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Figure 17: Same as fig. 14 except that ρ[1] = 1300 Kgm−3.
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What changes between fig. 13 and fig. 14 is the range of h, the latter figure constituting a sort
of zoom to highlight the dispersive (with respect to h) behavior of the retrievals.

What changes between fig. 14 and fig. 17 is ρ[1], but this does not change the general pattern of
behavior. Again, the dispersive (with respect to h) effects are quite apparent, more so for the first-
order and second-order ’bad’ branch retrievals than for the second-order ’good’ branch retrievals,
thus providing a possible manner of spotting the retrieval branch that is closest to the actual mass
density contrast ϵ.

In the retrievals of figs. 13-17 it should be noticed that we have renounced at considering more
than one incident angle realization because the figures in the previous subsections showed that
taking more than one incident angle into account does not consistently improve the accuracy nor
the uniqueness of the retrievals.

5 Conclusions

This investigation dealt in fine with the question of how small must the mass density contrast ϵ
(which is unknown when it is the sought-for-parameter) be for the retrieval of ϵ to be reliable if at
the outset the small (or zero)-ϵ assumption is incorporated in the trial model?

The trial model is nothing but a (method of) solution of a forward problem. Since our inquiry
had to do with a small-ϵ assumption, we first searched for a small-ϵ, preferably mathematical,
rather than numerical, solution of the forward-scattering problem. This cannot be easily-done for
an obstacle of arbitrary shape, so that the first idea was to treat the obstacle as being a flat-faced
layer submitted to a plane wave. The mathematically-explicit solution to this forward-scattering
problem is easily-obtained by separation of variables applied to the BPDE, but the way ϵ intervenes
in this solution is not easy to discern. For this reason, we chose to search for the solution via the
domain integral formulation, whereby we found the same solution as previously, but in a form in
which ϵ clearly emerges. Moreover, this new form of the solution lends itself to a perturbation
analysis by which the solution, and thus the sought-for trial model (of similar form to what is
found in [12, 11, 2]) is expressed as a series of powers of ϵ, the coefficients of which were obtained
in explicit, algebraic form.

What we called the zeroth-order trial model results from neglecting all except the first terms
in the series, and this model (which does not involve ϵ and therefore is as if ϵ were equal to zero) is
nothing but the one resulting from the constant-density assumption. We showed that the inverse
problem of the retrieval of ϵ is trivially-impossible using this zeroth-order trial model.

Next, we called the first-order trial model the one that results from neglecting all except the
first two terms in the series. The employment of this linearized (in terms of ϵ) model enabled, via
comparison with simulated data relative to the transmitted field, the retrieval problem to be cast
as a linear algebraic equation which was easily-solved for the mass density contrast. The solution
was thus found to exist and be unique, these being features of inverse problems that are often
strived-for.

Finally, we called the second-order trial model the one that results from neglecting all except
the first three terms in the series. The employment of this model enabled, via comparison with
simulated data relative to the transmitted field, the retrieval problem to be cast as a quadratic
equation which was again easily and explicitly-solved for the mass density contrast. The solution
was found to exist, but not to be unique since the quadratic equation possesses two solutions, both
of which are equally-plausible.
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Since there is no obvious relation between the solutions for the mass density contrast obtained
via these three trial models, one can say that either we are not obtaining a solution, obtaining a
single solution, or obtaining two solutions that all seem to differ from each other solely on account
of the fact of employing different trial models to solve the inverse problem. This result is similar
to what happens when one or more of the priors (i.e., the parameters that are not retrieved, but
assumed to be known) in the trial model are, in fact, different from the corresponding parameters
in the model employed to simulate the scattered field data, or different from what is guessed to be
these parameters in actually-measured data [7, 9].

We showed that the use of approximate trial models (i.e., those corresponding to the various
orders of ϵ) lead (this was shown numerically) to several remarkable features concerning the retrieved
mass density contrast:
1) complex retrievals of what is a real quantity,
2) frequency dispersion of this parameter although the latter is assumed at the outset to be non-
dispersive,
3) branch-hopping for the second-order trial model solutions which means, for example, that the
solution skips from one branch to another in apparently-haphazard fashion as the frequency (or
another parameter) increases,
4) first-order (i.e., based on a very small density contrast assumption) retrievals that are way off
mark,
5) one of the second-order solutions is more affected by frequency dispersion, and is farther from
the actual mass density contrast, than the other solution, which fact furnishes a possible means of
spotting the ’right’ retrieval, provided, of course, the to-be-retrieved parameter is known a priori
to actually be non- or feebly-dispersive in the frequency range of interest.

Not unsurprisingly, we found that the ’right’ second-order retrievals were generally-closer than
the first-order retrievals to the actual ϵ for a diversity of priors and frequencies. In fact, the ’right’
second-order retrieval was found to be practically-coincident with the actual ϵ for ϵ ∈ [−0.2, 0.2].
Finally, we found that increasing the amount of angle of incidence realizations does not have a
systematically-beneficial effect on the quality of the retrievals.

It follows from the preceding remarks and [16] that the mass density contrast (ϵ, which equals
zero when the constant density assumption is made) is a constitutive parameter that plays an
important role in the forward problem solution for the scattered field transmitted by the fluid-like
layer solicited by a plane acoustic wave, and consequently this role is as, if not more, important
in the inverse problem context in which one strives to retrieve the mass density contrast ϵ from
transmitted field data (the same is probably true for the other constitutive parameters and perhaps
for the characteristics of the solicitation).

Another, more general, conclusion of this study (underlined in our previous investigation [12]
for a much simpler scattering configuration), has to do with another aspect of the non-uniqueness of
inverse problem ’solutions’: there exist as many of such ’solutions’ as the number of mathematical
translations (here related to the number of terms in the ϵ series) of the trial models one might want
to employ.

Choosing the ’most accurate’ trial model does not eliminate this paradox when real, measured,
data is compared to the trial model, because it is not certain a priori that this data is as ’exact’
(i.e., devoid of systematic and random errors) as the the trial model and this discrepancy can
lead to a difficulty whose origin is described in the next paragraph. Moreover, the adopted trial
model necessarily involves a number (which usually is larger the more exact is the trial model) of
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priors (i.e., the parameters which are not retrieved, but whose values are assumed to be known)
and the uncertain knowledge one may have concerning these priors can induce the same type of
non-uniqueness of the retrieval [9] as the variety of mathematical expressions for the trial-model.
As far as we know, no method, including FWI (full-wave inversion [6, 11, 14]), are immune to these
pathological aspects of inverse problem ’solving’.

Finally, a nagging issue in the inverse problem context concerns how to obtain what one can
qualify as the ’best’ retrieval. If, for example, the sought-for parameter is the mass density contrast
ϵ, then the ’best’ retrieval is obviously attained when the trial parameter E is equal to ϵ, in which
case, whatever the definition of the cost function, the latter attains the value zero. In our study,
we employed exact simulated data and compared it to approximate trial models with the objective
of attaining a zero cost, the result of which generally led to a solution E ̸= ϵ which cannot be
qualified as ’best’ even though it is associated with zero cost. The question is then: how to obtain
E = ϵ and zero cost at the same time? The answer is that the simulated pressure field data must
be identical to the trial model prediction of the pressure field, this meaning, that we should have
simulated the data with the same ϵ series as the one employed for the trial model (with, of course,
the mass-density contrast being denoted by ϵ in the data series of l + 1 terms, and by E in the
trial model series of L+1 terms), which would have led, after imposing the zero- cost condition, to
E = ϵ, whatever the number (l+ 1 = L+ 1 > 1) of terms in both these series. From this one must
conclude that the ’best’ retrieval is obtained by tailoring the trial model to the data (this is called
committing the ’inverse crime’ [13]), which means that if the data is ’bad’, the trial model should
be ’bad’ and if the data is ’good’, the trial model should be ’good’. Of course, tailoring of this sort
is only possible when the data is simulated, which means, that when the data is real (as opposed
to simulated), it is: 1) impossible to commit the ’inverse crime’ and 2) impossible to obtain the
’best’ retrieval of the sought-for parameter(s).
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