REFERENCES
Akoko, E., Atekwana, E. A., Cruse, A. M., Molwalefhe, L., and Masamba, W. R. (2013). River-wetland interaction and carbon cycling in a semi-arid riverine system: the Okavango Delta, Botswana. Biogeochemistry , 114 (1-3), 359-380.
Alin, S. R. and Johnson, T. C. (2007). Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake‐atmosphere exchange estimates. Global Biogeochemical Cycles , 21 (3).
Aucour, A. M., Sheppard, S. M., Guyomar, O., and Wattelet, J. (1999). Use of 13C to trace origin and cycling of inorganic carbon in the Rhône river system. Chemical Geology , 159 (1-4), 87-105.
Bade, D. L., Carpenter, S. R., Cole, J. J., Hanson, P. C., and Hesslein, R. H. (2004). Controls of δ13C‐DIC in lakes: Geochemistry, lake metabolism, and morphometry. Limnology and Oceanography ,49 (4), 1160-1172.
Brunet, F., Dubois, K., Veizer, J., Ndondo, G. N., Ngoupayou, J. N., Boeglin, J. L., and Probst, J. L. (2009). Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong Basin, Cameroon. Chemical Geology , 265 (3-4), 563-572.
Brunet, F., Gaiero, D., Probst, J. L., Depetris, P. J., Gauthier Lafaye, F., and Stille, P. (2005). δ13C tracing of dissolved inorganic carbon sources in Patagonian rivers (Argentina). Hydrological Processes ,19 (17), 3321-3344.
Cartwright, I. (2010). The origins and behaviour of carbon in a major semi-arid river, the Murray River, Australia, as constrained by carbon isotopes and hydrochemistry. Applied Geochemistry , 25 (11), 1734-1745.
Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994). Carbon dioxide supersaturation in the surface waters of lakes.Science , 265 (5178), 1568-1570.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., and Melack, J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget.Ecosystems , 10 (1), 172-185.
Dong, G.R, Gao, S.Y., and Jin, J. (1993). Desertification and Controls in the Gonghe Basin, Qinghai Province . Science Press, Beijing, China, pp. 1-166.
Deuser, W. G. and Degens, E. T. (1967) Carbon isotope fractionation in the system CO2 (gas)—CO2(aqueous)—HCO3−(aqueous). Nature ,215 (5105), 1033.
Fang, Y., Cheng, W., Zhang, Y., Wang, N., Zhao, S., Zhou, C., and Bao, A. (2016). Changes in inland lakes on the Tibetan Plateau over the past 40 years. Journal of Geographical Sciences , 26 (4), 415-438.
Guan, Z. H., Chen, C. Y., and Ou, Y. X. (1984). In: Rivers and Lakes of Xizang . Science Press, Beijing, China, pp. 176-182.
Herczeg, A. L. and Fairbanks, R. G. (1987). Anomalous carbon isotope fractionation between atmospheric CO2 and dissolved inorganic carbon induced by intense photosynthesis. Geochimica et Cosmochimica Acta , 51 (4), 895-899.
Herczeg, A. L., Leaney, F. W., Dighton, J. C., Lamontagne, S., Schiff, S. L., Telfer, A. L., and English, M. C. (2003). A modern isotope record of changes in water and carbon budgets in a groundwater‐fed lake: Blue Lake, South Australia. Limnology and Oceanography , 48 (6), 2093-2105.
Holgerson, M. A. and Raymond, P. A. (2016), Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nature Geoscience , 9 (3), 222.
Jin, Y., Jin, X., Yang, D., and Mao, X. (2019). Controlling Factors of Surface Water Ionic Composition Characteristics in the Lake Genggahai Catchment, NE Qinghai–Tibetan Plateau, China. Water ,11 (7), 1329.
Kastowski, M., Hinderer, M., and Vecsei, A. (2011)., Long‐term carbon burial in European lakes: Analysis and estimate. Global Biogeochemical Cycles , 25 (3).
Lei, Y., Yao, T., Sheng, Y., Zhang, E., Wang, W., and Li, J. (2012). Characteristics of δ13CDIC in lakes on the Tibetan Plateau and its implications for the carbon cycle. Hydrological Processes ,26 (4), 535-543.
Leng, M. J. and Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews , 23 (7-8), 811-831.
Li, H. C. and Ku, T. L. (1997). δ13C–δ18C covariance as a paleohydrological indicator for closed-basin lakes.Palaeogeography, Palaeoclimatology, Palaeoecology ,133 (1-2), 69-80.
Lin G H. (2013). Stable Isotope Ecology . Higher Education Press: Beijing, China, 89-95.
McKenzie, J. A. (1982). Carbon-13 cycle in Lake Greifen: a model for restricted ocean basins. In: Schlanger, S.O., Cita, M.B. (Eds.)Nature and Origin of Cretaceous Carbon-Rich Facies . Academic Press, London, pp. 197-207.
McKenzie, J. A. (1985). Carbon isotopes and productivity in the lacustrine and marine environment. In: Stumm, W. (Ed.), Chemical Processes in Lakes . Wiley, New York, N.Y., pp. 99-l 18.
Mu, C., Zhang, T., Wu, Q., Peng, X., Zhang, P., Yang, Y., and Cheng, G. (2016). Dissolved organic carbon, CO2, and CH4 concentrations and their stable isotope ratios in thermokarst lakes on the Qinghai-Tibetan Plateau. Journal of Limnology , 75 (2), 313-319.
Qiang, M., Song, L., Chen, F., Li, M., Liu, X., and Wang, Q. (2013). A 16-ka lake-level record inferred from macrofossils in a sediment core from Genggahai Lake, northeastern Qinghai–Tibetan Plateau (China).Journal of Paleolimnology , 49 (4), 575-590.
Qiang, M., Song, L., Jin, Y., Li, Y., Liu, L., Zhang, J., and Chen, F. (2017). A 16-ka oxygen-isotope record from Genggahai Lake on the northeastern Qinghai-Tibetan Plateau: Hydroclimatic evolution and changes in atmospheric circulation. Quaternary Science Reviews ,162 , 72-87.
Quay, P. D., Wilbur, D. 0., Richey, J. E., Hedges, J. I., Devol, A. H., and Victoria, R. (1992). Carbon cycling in the Amazon River: Implications from the 13C compositions of particles and solutes.Limnology and Oceanography , 37 (4), 857-871.
Ran, L., Lu, X. X., and Liu, S. (2017). Dynamics of riverine CO2 in the Yangtze River fluvial network and their implications for carbon evasion. Biogeosciences , 14 (8), 2183-2198.
Rau, G. (1978). Carbon-13 depletion in a subalpine lake: Carbon flow implications. Science , 201 (4359), 901-902.
Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B., and Petsch, S. T. (2004). Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Marine Chemistry , 92 (1-4), 353-366.
Shen, J., Yuan, H., Liu, E., Wang, J., and Wang, Y. (2011). Spatial distribution and stratigraphic characteristics of surface sediments in Taihu Lake. China Science Bulletin , 56 (2), 179-187.
Sobek, S., Tranvik, L. J., and Cole, J. J. (2005). Temperature independence of carbon dioxide supersaturation in global lakes.Global Biogeochemical Cycles , 19 (2).
Striegl, R. G., Kortelainen, P., Chanton, J. P., Wickland, K. P., Bugna, G. C., and Rantakari, M. (2001). Carbon dioxide partial pressure and 13C content of north temperate and boreal lakes at spring ice melt.Limnology and Oceanography , 46 (4), 941-945.
Stumm, W. and Morgan, J. J. (1970). Aquatic chemistry; an introduction emphasizing chemical equilibria in natural waters . Wiley, New York, p. 583.
Sun, Q., Xie, M., Shi, L., Zhang, Z., Lin, Y., Shang, W., and Chu, G. (2013). Alkanes, compound-specific carbon isotope measures and climate variation during the last millennium from varved sediments of Lake Xiaolongwan, northeast China. Journal of Paleolimnology ,50 (3), 331-344.
Telmer, K. and Veizer, J. (1999). Carbon fluxes, pCO2and substrate weathering in a large northern river basin, Canada: Carbon isotope perspectives. Chemical Geology , 159 (1-4), 61-86.
Van den Berg, M. S., Coops, H., Simons, J., and Pilon, J. (2002). A comparative study of the use of inorganic carbon resources byChara aspera and Potamogeton pectinatus . Aquatic Botany , 72 (3-4), 219-233.
Wachniew, P. and Różański, K. (1997). Carbon budget of a mid-latitude, groundwater-controlled lake: Isotopic evidence for the importance of dissolved inorganic carbon recycling. Geochimica et Cosmochimica Acta , 61 (12), 2453-2465.
Wang, M., Chen, H., Yu, Z., Wu, J., Zhu, Q. A., Peng, C., and Qin, B. (2015). Carbon accumulation and sequestration of lakes in China during the Holocene. Global Change Biology , 21 (12), 4436-4448.
Weynell, M., Wiechert, U., and Zhang, C. (2016). Chemical and isotopic (O, H, C) composition of surface waters in the catchment of Lake Donggi Cona (NW China) and implications for paleoenvironmental reconstructions.Chemical Geology , 435 , 92-107.
Winkler, M. G. and Wang, P. K. (1993). The late-Quaternary vegetation and climate of China. In: Wright, Jr., H.E., Kutzbach, J.E., Webb III, T., Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. (Eds.),Global Climates Since the Last Glacial Maximum . University of Minnesota Press, Minneapolis, pp. 221-264.
Yan, F., Sillanpää, M., Kang, S., Aho, K. S., Qu, B., Wei, D., and Raymond, P. A. (2018). Lakes on the Tibetan Plateau as conduits of greenhouse gases to the atmosphere. Journal of Geophysical Research-Biogeosciences , 123 (7), 2091-2103.
Yuan, D. G. and Cai G. H. (1988). The Science of Karst Environment . Chongqing Press, Chongqing, China, 1-383.
Zeng, F. W. and Masiello, C. A. (2010). Sources of CO2evasion from two subtropical rivers in North America.Biogeochemistry , 100 (1-3), 211-225.
Zeng, F. W., Masiello, C. A., and Hockaday, W. C. (2011). Controls on the origin and cycling of riverine dissolved inorganic carbon in the Brazos River, Texas. Biogeochemistry , 104 (1-3), 275-291.
Zhang F.B., Hu, W.P., Hu, X.X., Li, F., Liu, D., Liu, B. and Xia, F. (2008). Study on the model of carbon cycle in the water of Taihu lake.Advances in Water Science , 19 (2), 171-178 (In Chinese).
Zhang, F. B., Hu, W. P., and Yang, Y. L. (2004). Daily variation of carbon dioxide flux on the water-air interface of the Taihu lake in spring. Ecology and Environment , 13 (2), 186-190.
Zhang, J., Quay, P. D., and Wilbur, D. O. (1995). Carbon isotope fractionation during gas-water exchange and dissolution of CO2. Geochimica et Cosmochimica Acta ,59 (1), 107-114.