REFERENCES
Akoko, E., Atekwana, E. A., Cruse,
A. M., Molwalefhe, L., and Masamba, W. R. (2013). River-wetland
interaction and carbon cycling in a semi-arid riverine system: the
Okavango Delta, Botswana. Biogeochemistry , 114 (1-3),
359-380.
Alin, S. R. and Johnson, T. C. (2007). Carbon cycling in large lakes of
the world: A synthesis of production, burial, and lake‐atmosphere
exchange estimates. Global Biogeochemical Cycles , 21 (3).
Aucour, A. M., Sheppard, S. M., Guyomar, O., and Wattelet, J. (1999).
Use of 13C to trace origin and cycling of inorganic carbon in the Rhône
river system. Chemical Geology , 159 (1-4), 87-105.
Bade, D. L., Carpenter, S. R., Cole, J. J., Hanson, P. C., and Hesslein,
R. H. (2004). Controls of δ13C‐DIC in lakes: Geochemistry, lake
metabolism, and morphometry. Limnology and Oceanography ,49 (4), 1160-1172.
Brunet, F., Dubois, K., Veizer, J., Ndondo, G. N., Ngoupayou, J. N.,
Boeglin, J. L., and Probst, J. L. (2009). Terrestrial and fluvial carbon
fluxes in a tropical watershed: Nyong Basin, Cameroon. Chemical
Geology , 265 (3-4), 563-572.
Brunet, F., Gaiero, D., Probst, J. L., Depetris, P. J., Gauthier Lafaye,
F., and Stille, P. (2005). δ13C tracing of dissolved inorganic carbon
sources in Patagonian rivers (Argentina). Hydrological Processes ,19 (17), 3321-3344.
Cartwright, I. (2010). The origins and behaviour of carbon in a major
semi-arid river, the Murray River, Australia, as constrained by carbon
isotopes and hydrochemistry. Applied Geochemistry , 25 (11),
1734-1745.
Cole, J. J., Caraco, N. F., Kling, G. W., and Kratz, T. K. (1994).
Carbon dioxide supersaturation in the surface waters of lakes.Science , 265 (5178), 1568-1570.
Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L.
J., Striegl, R. G., and Melack, J. (2007). Plumbing the global carbon
cycle: integrating inland waters into the terrestrial carbon budget.Ecosystems , 10 (1), 172-185.
Dong, G.R, Gao, S.Y., and Jin, J. (1993). Desertification and
Controls in the Gonghe Basin, Qinghai Province . Science Press, Beijing,
China, pp. 1-166.
Deuser, W. G. and Degens, E. T. (1967) Carbon isotope fractionation in
the system CO2 (gas)—CO2(aqueous)—HCO3−(aqueous). Nature ,215 (5105), 1033.
Fang, Y., Cheng, W., Zhang, Y., Wang, N., Zhao, S., Zhou, C., and Bao,
A. (2016). Changes in inland lakes on the Tibetan Plateau over the past
40 years. Journal of Geographical Sciences , 26 (4),
415-438.
Guan, Z. H., Chen, C. Y., and Ou, Y. X. (1984). In: Rivers and
Lakes of Xizang . Science Press, Beijing, China, pp. 176-182.
Herczeg, A. L. and Fairbanks, R. G. (1987). Anomalous carbon isotope
fractionation between atmospheric CO2 and dissolved
inorganic carbon induced by intense photosynthesis. Geochimica et
Cosmochimica Acta , 51 (4), 895-899.
Herczeg, A. L., Leaney, F. W., Dighton, J. C., Lamontagne, S., Schiff,
S. L., Telfer, A. L., and English, M. C. (2003). A modern isotope record
of changes in water and carbon budgets in a groundwater‐fed lake: Blue
Lake, South Australia. Limnology and Oceanography , 48 (6),
2093-2105.
Holgerson, M. A. and Raymond, P. A. (2016), Large contribution to inland
water CO2 and CH4 emissions from very
small ponds. Nature Geoscience , 9 (3), 222.
Jin, Y., Jin, X., Yang, D., and Mao, X. (2019). Controlling Factors of
Surface Water Ionic Composition Characteristics in the Lake Genggahai
Catchment, NE Qinghai–Tibetan Plateau, China. Water ,11 (7), 1329.
Kastowski, M., Hinderer, M., and Vecsei, A. (2011)., Long‐term carbon
burial in European lakes: Analysis and estimate. Global
Biogeochemical Cycles , 25 (3).
Lei, Y., Yao, T., Sheng, Y., Zhang, E., Wang, W., and Li, J. (2012).
Characteristics of δ13CDIC in lakes on the Tibetan Plateau and its
implications for the carbon cycle. Hydrological Processes ,26 (4), 535-543.
Leng, M. J. and Marshall, J. D. (2004). Palaeoclimate interpretation of
stable isotope data from lake sediment archives. Quaternary
Science Reviews , 23 (7-8), 811-831.
Li, H. C. and Ku, T. L. (1997). δ13C–δ18C covariance as a
paleohydrological indicator for closed-basin lakes.Palaeogeography, Palaeoclimatology, Palaeoecology ,133 (1-2), 69-80.
Lin G H. (2013). Stable Isotope Ecology . Higher Education Press:
Beijing, China, 89-95.
McKenzie, J. A. (1982). Carbon-13 cycle in Lake Greifen: a model for
restricted ocean basins. In: Schlanger, S.O., Cita, M.B. (Eds.)Nature and Origin of Cretaceous Carbon-Rich Facies . Academic
Press, London, pp. 197-207.
McKenzie, J. A. (1985). Carbon isotopes and productivity in the
lacustrine and marine environment. In: Stumm, W. (Ed.), Chemical
Processes in Lakes . Wiley, New York, N.Y., pp. 99-l 18.
Mu, C., Zhang, T., Wu, Q., Peng, X., Zhang, P., Yang, Y., and Cheng, G.
(2016). Dissolved organic carbon, CO2, and
CH4 concentrations and their stable isotope ratios in
thermokarst lakes on the Qinghai-Tibetan Plateau. Journal of
Limnology , 75 (2), 313-319.
Qiang, M., Song, L., Chen, F., Li, M., Liu, X., and Wang, Q. (2013). A
16-ka lake-level record inferred from macrofossils in a sediment core
from Genggahai Lake, northeastern Qinghai–Tibetan Plateau (China).Journal of Paleolimnology , 49 (4), 575-590.
Qiang, M., Song, L., Jin, Y., Li, Y., Liu, L., Zhang, J., and Chen, F.
(2017). A 16-ka oxygen-isotope record from Genggahai Lake on the
northeastern Qinghai-Tibetan Plateau: Hydroclimatic evolution and
changes in atmospheric circulation. Quaternary Science Reviews ,162 , 72-87.
Quay, P. D., Wilbur, D. 0., Richey, J. E., Hedges, J. I., Devol, A. H.,
and Victoria, R. (1992). Carbon cycling in the Amazon River:
Implications from the 13C compositions of particles and solutes.Limnology and Oceanography , 37 (4), 857-871.
Ran, L., Lu, X. X., and Liu, S. (2017). Dynamics of riverine
CO2 in the Yangtze River fluvial network and their
implications for carbon evasion. Biogeosciences , 14 (8),
2183-2198.
Rau, G. (1978). Carbon-13 depletion in a subalpine lake: Carbon flow
implications. Science , 201 (4359), 901-902.
Raymond, P. A., Bauer, J. E., Caraco, N. F., Cole, J. J., Longworth, B.,
and Petsch, S. T. (2004). Controls on the variability of organic matter
and dissolved inorganic carbon ages in northeast US rivers. Marine
Chemistry , 92 (1-4), 353-366.
Shen, J., Yuan, H., Liu, E., Wang, J., and Wang, Y. (2011). Spatial
distribution and stratigraphic characteristics of surface sediments in
Taihu Lake. China Science Bulletin , 56 (2), 179-187.
Sobek, S., Tranvik, L. J., and Cole, J. J. (2005). Temperature
independence of carbon dioxide supersaturation in global lakes.Global Biogeochemical Cycles , 19 (2).
Striegl, R. G., Kortelainen, P., Chanton, J. P., Wickland, K. P., Bugna,
G. C., and Rantakari, M. (2001). Carbon dioxide partial pressure and 13C
content of north temperate and boreal lakes at spring ice melt.Limnology and Oceanography , 46 (4), 941-945.
Stumm, W. and Morgan, J. J. (1970). Aquatic chemistry; an
introduction emphasizing chemical equilibria in natural waters . Wiley,
New York, p. 583.
Sun, Q., Xie, M., Shi, L., Zhang, Z., Lin, Y., Shang, W., and Chu, G.
(2013). Alkanes, compound-specific carbon isotope measures and climate
variation during the last millennium from varved sediments of Lake
Xiaolongwan, northeast China. Journal of Paleolimnology ,50 (3), 331-344.
Telmer, K. and Veizer, J. (1999). Carbon fluxes, pCO2and substrate weathering in a large northern river basin, Canada: Carbon
isotope perspectives. Chemical Geology , 159 (1-4), 61-86.
Van den Berg, M. S., Coops, H., Simons, J., and Pilon, J. (2002). A
comparative study of the use of inorganic carbon resources byChara aspera and Potamogeton pectinatus . Aquatic
Botany , 72 (3-4), 219-233.
Wachniew, P. and Różański, K. (1997). Carbon budget of a mid-latitude,
groundwater-controlled lake: Isotopic evidence for the importance of
dissolved inorganic carbon recycling. Geochimica et Cosmochimica
Acta , 61 (12), 2453-2465.
Wang, M., Chen, H., Yu, Z., Wu, J., Zhu, Q. A., Peng, C., and Qin, B.
(2015). Carbon accumulation and sequestration of lakes in China during
the Holocene. Global Change Biology , 21 (12), 4436-4448.
Weynell, M., Wiechert, U., and Zhang, C. (2016). Chemical and isotopic
(O, H, C) composition of surface waters in the catchment of Lake Donggi
Cona (NW China) and implications for paleoenvironmental reconstructions.Chemical Geology , 435 , 92-107.
Winkler, M. G. and Wang, P. K. (1993). The late-Quaternary vegetation
and climate of China. In: Wright, Jr., H.E., Kutzbach, J.E., Webb III,
T., Ruddiman, W.F., Street-Perrott, F.A., Bartlein, P.J. (Eds.),Global Climates Since the Last Glacial Maximum . University of
Minnesota Press, Minneapolis, pp. 221-264.
Yan, F., Sillanpää, M., Kang, S., Aho, K. S., Qu, B., Wei, D., and
Raymond, P. A. (2018). Lakes on the Tibetan Plateau as conduits of
greenhouse gases to the atmosphere. Journal of Geophysical
Research-Biogeosciences , 123 (7), 2091-2103.
Yuan, D. G. and Cai G. H. (1988). The Science of Karst
Environment . Chongqing Press, Chongqing, China, 1-383.
Zeng, F. W. and Masiello, C. A. (2010). Sources of CO2evasion from two subtropical rivers in North America.Biogeochemistry , 100 (1-3), 211-225.
Zeng, F. W., Masiello, C. A., and Hockaday, W. C. (2011). Controls on
the origin and cycling of riverine dissolved inorganic carbon in the
Brazos River, Texas. Biogeochemistry , 104 (1-3), 275-291.
Zhang F.B., Hu, W.P., Hu, X.X., Li, F., Liu, D., Liu, B. and Xia, F.
(2008). Study on the model of carbon cycle in the water of Taihu lake.Advances in Water Science , 19 (2), 171-178 (In Chinese).
Zhang, F. B., Hu, W. P., and Yang, Y. L. (2004). Daily variation of
carbon dioxide flux on the water-air interface of the Taihu lake in
spring. Ecology and Environment , 13 (2), 186-190.
Zhang, J., Quay, P. D., and Wilbur, D. O. (1995). Carbon isotope
fractionation during gas-water exchange and dissolution of
CO2. Geochimica et Cosmochimica Acta ,59 (1), 107-114.