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Abstract

A recent study on the Taylor series method of second order and
the trapezoidal rule for dynamic equations on time scales has been
continued by introducing a derivation of the Taylor series method of
arbitrary order p on time scales. The error and convergence analysis of
the method is also obtained. The 2 step Adams-Bashforth method for
dynamic equations on time scales is concluded and applied to examples
of initial value problems for nonlinear dynamic equations. Numerical
results are presented and discussed.

1 Introduction

In a recent paper, the Taylor series method of second order and in particular,
the trapezoidal rule for dynamic equations on time scales was developed [11].
The authors of the paper presented the derivation of the method and the error
analysis for the method. The well known trapezoidal rule which is concluded
from the second order Taylor series method was introduced and applied to
examples of initial value problems for nonlinear dynamic equations of first
order.

The purpose of this paper is to establish a continuation of the study given
in [11] by deriving a general Taylor series method of order p for nonlinear
dynamic equations on general time scales.
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The paper is organized as follows. In Section 2, Pötzsche chain rule for
functions of arbitrary number of variables is stated and proved. Section 3
contains the derivation of the Taylor series method of order p and is followed
by Section 4 in which the error analysis and convergence of the method is
presented. The 2-step Adams-Bashforth method is given in Section 5 and
applied to two examples of initial value problems associated with nonlinear
dynamic equations. Section 6 is devoted to conclusion and remarks.

2 A generalization of Pötzsche’s chain rule

Throughout the paper, T will denote a time scale, σ, ρ, ∆, and µ the forward
jump, backward jump, delta derivative operators and graininess function on
T, respectively. We refer the reader to [3, 4, 6, 7, 12] for basic concepts on
time scales and dynamic equations.

To develop the Taylor series method, we need a chain rule for derivative
of a composite function of n + 1 variables. A chain rule for the case of a two
variable functions already exists and is known as the Pötzsche’s chain rule.
We first recall this rule.

Theorem 2.1. (Theorem B.3, [8]) For a fixed a ∈ Tκ, let g : T → R and
f : T × R → R be functions such that g, f(·, g(a)) are delta differentiable at
a and let U ⊂ T be a neighborhood of a such that f(t, ·) is differentiable for

t ∈ U ∪ {σ(a)}, ∂

∂x
f(σ(a), ·) is continuous on the line segment

{g(a) + sµ(a)g∆(a) ∈ R : s ∈ [0, 1]}

and
∂f

∂x
is continuous at (a, g(a)). Then the composition function F : T→ R

given as F (t) = f(t, g(t)) is delta differentiable at a with delta derivative

F∆(a) = ∆1f(a, g(a)) +

(∫ 1

0

∂

∂x
f(σ(a), g(a) + sµ(a)g∆(a))ds

)
g∆(a). (2.1)

Here ∆1f(·, g(a)) denotes the delta derivative of f(t, x) with respect to its first

variable and
∂

∂x
f(t, ·) denotes the partial derivative of f(t, x) with respect to

its second variable.

The derivation of the method, requires a generalization of this rule. Let
g : T× Rn → R be a given function. Then for the function g(t, y1, . . . , yn) we
denote by ∆1g(·, y1, . . . , yn) its delta derivative.

Theorem 2.2. For some fixed t0 ∈ Tκ, let yj : T → R, j ∈ {1, . . . , n},
f : T× Rn → R be continuous functions such that f(·, y1(t0), . . . , yn(t0)), and
yj, j ∈ {1, . . . , n}, are differentiable at t0. Let U ⊆ T be a neighborhood of t0
such that,
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1. f(t, ·, . . . , ·) is continuously-differentiable for t ∈ U ∪ {σ(t0)},

2. ∆1f(·, y1(·), . . . , yn(·)) is continuous at t0,

3.
∂

∂yj
f(σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), ·, yj+1(t), . . . , yn(t))

is continuous in the line segment

{yj(t)+h(yj(σ(t0))−yj(t)) ∈ R : h ∈ [0, 1]}, j ∈ {1, . . . , n}, ∀t ∈ U∪{t0},

4.
∂

∂yj
f is continuous at (t0, y1(t0), . . . , yn(t0)).

Then the composition function F : T → R, F (t) = f(t, y1(t), y2(t), . . . , yn(t)),
is differentiable at t0 with derivative

F∆(t0) = ∆1f(t0, y1(t0), y2(t0), . . . , yn(t0))

+

(∫ 1

0

∂

∂y1
f(σ(t0), y1(t0) + hµ(t0)y∆

1 (t0), y2(t0), . . . , yn(t0))dh

)
y∆

1 (t0)

+

(∫ 1

0

∂

∂y2
f(σ(t0), y1(σ(t0)), y2(t0) + hµ(t0)y∆

2 (t0), . . . , yn(t0))dh

)
y∆

2 (t0)

+ · · ·

+

(∫ 1

0

∂

∂yn
f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn−1(σ(t0)), yn(t0) + hµ(t0)y∆

n (t0))dh

)
y∆
n (t0).

Proof. Let s ∈ (t0 − δ, t0 + δ) ∩ T, s 6= σ(t0), for δ > 0 small enough, and
s < σ(t0) if σ(t0) > t0. Then

F (σ(t0))− F (s)

= f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(σ(t0)))− f(s, y1(s), y2(s), . . . , yn(s))

= f(σ(t0), y1(s), y2(s), . . . , yn(s))− f(s, y1(s), y2(s), . . . , yn(s))

+f(σ(t0), y1(σ(t0)), y2(s), . . . , yn(s))− f(σ(t0), y1(s), y2(s), . . . , yn(s))

+f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s))− f(σ(t0), y1(σ(t0)), y2(s), . . . , yn(s))

+ · · ·

+f(σ(t0), y1(σ(t0), y2(σ(t0)), . . . , yn(σ(t0)))− f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s))
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Then, we have

F (σ(t0))− F (s)

= f(σ(t0), y1(s), y2(s), . . . , yn(s))− f(s, y1(s), y2(s), . . . , yn(s))

+

(∫ 1

0

∂

∂y1
f(σ(t0), y1(s) + h(y1(σ(t0))− y1(s)), y2(s), . . . , yn(s))dh

)
(y1(σ(t0))− y1(s))

+

(∫ 1

0

∂

∂y2
f(σ(t0), y1(σ(t0)), y2(s) + h(y2(σ(t0))− y2(s)), . . . , yn(s))dh

)
(y2(σ(t0))− y2(s))

+ · · ·

+

(∫ 1

0

∂

∂yn
f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s) + h(yn(σ(t0))− yn(s)))dh

)
×(yn(σ(t0))− yn(s)).

If σ(t0) > t0, by the Mean value theorem there exist ξ1, ξ2 ∈ [s, σ(t0)) = [s, t0]
so that

∆1f(ξ1, y1(s), y2(s), . . . , yn(s))(σ(t0)− s) ≤ f(σ(t0), y1(s), y2(s), . . . , yn(s))

−f(s, y1(s), y2(s), . . . , yn(s)) ≤ ∆1f(ξ2, y1(s), y2(s), . . . , yn(s))(σ(t0)− s)

and

∆1f(t0, y1(t0), y2(t0), . . . , yn(t0)) = lim
s→t0

∆1f(ξ1, y1(s), y2(s), . . . , yn(s))

≤ lim
s→t0

1

σ(t0)− s
(f(σ(t0), y1(s), y2(s), . . . , yn(s))− f(s, y1(s), y2(s), . . . , yn(s)))

≤ lim
s→t0

∆1f(ξ2, y1(s), y2(s), . . . , yn(s))

= ∆1f(t0, y1(t0), y2(t0), . . . , yn(t0)).

If σ(t0) = t0, by the Mean value theorem, there exist ξ1, ξ2 between s and t0
so that

∆1f(ξ1, y1(s), y2(s), . . . , yn(s))(t0 − s) ≤ f(t0, y1(s), y2(s), . . . , yn(s))

−f(s, y1(s), y2(s), . . . , yn(s)) ≤ ∆1f(ξ2, y1(s), y2(s), . . . , yn(s))(t0 − s).
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In this case, if s < t0 we have

∆1f(t0, y1(t0), y2(t0), . . . , yn(t0)) = lim
s→t0−

∆1f(ξ1, y1(s), y2(s), . . . , yn(s))

≤ lim
s→t0−

1

t0 − s
(f(σ(t0), y1(s), y2(s), . . . , yn(s))− f(s, y1(s), y2(s), . . . , yn(s)))

≤ lim
s→t0−

∆1f(ξ2, y1(s), y2(s), . . . , yn(s))

= ∆1f(t0, y1(t0), y2(t0), . . . , yn(t0)),

and if s > t0 we have

∆1f(t0, y1(t0), y2(t0), . . . , yn(t0)) = lim
s→t0+

∆1f(ξ1, y1(s), y2(s), . . . , yn(s))

≥ lim
s→t0+

1

t0 − s
(f(σ(t0), y1(s), y2(s), . . . , yn(s))− f(s, y1(s), y2(s), . . . , yn(s)))

≥ lim
s→t0+

∆1f(ξ2, y1(s), y2(s), . . . , yn(s))

= ∆1f(t0, y1(t0), y2(t0), . . . , yn(t0)).

Moreover,

lim
s→t0

((∫ 1

0

∂

∂yj
f(σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(s) + h(yj(σ(t0))− yj(s)),

yj+1(s), . . . , yn(s))dh

)
yj(σ(t0))− yj(t0)

σ(t0)− s

)

= lim
s→t0

(∫ 1

0

∂

∂yj
f(σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(s) + h(yj(σ(t0))− yj(s)),

yj+1(s), . . . , yn(s))dh

)
lim
s→t0

yj(σ(t0))− yj(t0)

σ(t0)− s

=

(∫ 1

0

∂

∂yj
f(σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(t0) + h(yj(σ(t0))− yj(t0)),

yj+1(t0), . . . , yn(t0))dh

)
y∆
j (t0)

=

(∫ 1

0

∂

∂yj
f(σ(t0), y1(σ(t0)), . . . , yj−1(σ(t0)), yj(t0) + hµ(t0)y∆

j (t0), yj+1(t0), . . . , yn(t0))dh

)
×y∆

j (t0), j ∈ {1, . . . , n}.

5



Therefore

lim
s→t0

F (σ(t0))− F (s)

σ(t0)− s

= lim
s→t0

f(σ(t0), y1(s), y2(s), . . . , yn(s))− f(s, y1(s), y2(s), . . . , yn(s))

σ(t0)− s

+ lim
s→t0

((∫ 1

0

∂

∂y1
f(σ(t0), y1(s) + h(y1(σ(t0))− y1(s)), y2(s), . . . , yn(s))dh

)

×y1(σ(t0))− y1(s)

σ(t0)− s

)

+ lim
s→t0

((∫ 1

0

∂

∂y2
f(σ(t0), y1(σ(t0)), y2(s) + h(y2(σ(t0))− y2(s)), . . . , yn(s))dh

)

×y2(σ(t0))− y2(s)

σ(t0)− s

)
+ · · ·

+ lim
s→t0

((∫ 1

0

∂

∂yn
f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn(s) + h(yn(σ(t0))− yn(s)))dh

)

×yn(σ(t0))− yn(s)

σ(t0)− s

)
= ∆1f(t0, y1(t0), y2(t0), . . . , yn(t0))

+

(∫ 1

0

∂

∂y1
f(σ(t0), y1(t0) + hµ(t0)y∆

1 (t0), y2(t0), . . . , yn(t0))dh

)
y∆

1 (t0)

+

(∫ 1

0

∂

∂y2
f(σ(t0), y1(σ(t0)), y2(t0) + hµ(t0)y∆

2 (t0), . . . , yn(t0))dh

)
y∆

2 (t0)

+ · · ·

+

(∫ 1

0

∂

∂yn
f(σ(t0), y1(σ(t0)), y2(σ(t0)), . . . , yn−1(σ(t0)), yn(t0) + hµ(t0)y∆

n (t0))dh

)
y∆
n (t0).

This completes the proof.

3 The Taylor series method of order p

In this section we derive the Taylor series method of order p ≥ 2. As a matter
of fact, we generalize the derivation of Taylor series method of order 2 given
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in [11].
Let T be a time scale and ∆ denotes the differentiation operator in T as

usual. Suppose that p ∈ N, p ≥ 2, t0, tf ∈ T, t0 < tf <∞, r > 0 be such that
t, t+ r ∈ [t0, tf ]. Consider the initial value problem (IVP)

x∆(t) = f(t, x(t)), t ∈ [t0, tf ],

x(t0) = x0,
(3.1)

where x0 ∈ R is a given constant, the function f satisfies the following condi-
tions

(H1)



|f(t, x)| ≤ A, t ∈ T, x ∈ R,
there exists gk(t, x(t), . . . , x∆k

(t)) = (f(t, x(t)))∆k

, k ∈ {1, . . . , p− 1},

such that

∣∣∣∣∂f∂y (t, z)

∣∣∣∣ ≤ A, |∆1gk(t, y1, . . . , yk+1)| ≤ A,

and

∣∣∣∣ ∂∂yj gk(t, y1, . . . , yk+1)

∣∣∣∣ ≤ A, j ∈ {1, . . . , k + 1},

for any t ∈ T and for z, yj ∈ R, j ∈ {1, . . . , p− 1},
where petf−t0A < 1 and A > 0.

By the Taylor formula on time scales (see Theorem 2.1, [11]), we get

x(t+ r) = x(t) + h1(t+ r, t)x∆(t) + h2(t+ r, t)x∆2

(t) + · · ·+ hp(t+ r, t)x∆p

(t)

+

∫ ρp(t+r)

t

hp(t+ r, σ(u))x∆p+1

(u)∆u.

Let

Rp(t) =

∫ ρp(t+r)

t

hp(t+ r, σ(u))x∆p+1

(u)∆u,

be the remainder term. Let also, t0 < t1 < . . . < tm+1 = tf be a partition of
the interval [t0, tf ] such that tn+1 = tn + rn+1 ∈ T, rn+1 > 0, n ∈ {0, . . . ,m}.
Then

x(tn+1) = x(tn) + h1(tn+1, tn)x∆(tn) + h2(tn+1, tn)x∆2

(tn)

+ · · ·+ hp(tn+1, tn)x∆p

(tn) +Rp(tn+1).

Neglecting the remainder term Rp(t), we obtain

x(tn+1) = x(tn) + h1(tn+1, tn)x∆(tn) + h2(tn+1, tn)x∆2

(tn)

+ · · ·+ hp(tn+1, tn)x∆p

(tn).
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Set
x∆k

n = x∆k

(tn), x∆kσ
n = x∆k

(σ(tn)), k ∈ {0, . . . , p}.

Thus, we get

xn+1 = xn + rn+1x
∆
n + h2(tn+1, tn)x∆2

n + · · ·+ hp(tn+1, tn)x∆p

n . (3.2)

To compute xn+1 we need to determine x∆q

n for q ∈ {1, . . . , p}. From the
dynamic equation in the IVP (3.1) we determine x∆

n as

x∆
n = f(tn, xn).

Now, we will determine x∆2

n , . . ., x∆p

n . By the generalized Pötzsche chain rule,
we have

(f(t, x(t)))∆ = ∆1f(t, x(t)) +

(∫ 1

0

∂

∂y1

f(σ(t), x(t) + hµ(t)x∆(t))dh

)
x∆(t)

= g1(t, x(t), x∆(t))

and for q ∈ {2, . . . , p} we compute

(f(t, x(t)))∆q

=
(
gq−1(t, x(t), x∆(t), . . . , x∆q−1

(t))
)∆

= ∆1gq−1(t, x(t), x∆(t), . . . , x∆q−1

(t))

+

(∫ 1

0

∂

∂y1

gq−1(σ(t), x(t) + hµ(t)x∆(t), x∆(t), . . . , x∆q−1

(t))dh

)
x∆(t)

+

(∫ 1

0

∂

∂y2

gq−1(σ(t), x(σ(t)), x∆(t) + hµ(t)x∆2

(t), . . . , x∆q−1

(t))dh

)
x∆2

(t)

+ · · ·

+

(∫ 1

0

∂

∂yq
gq−1(σ(t), x(σ(t)), x∆(σ(t)), . . . , x∆q−1

(t) + hµ(t)x∆q

(t))dh

)
x∆q

(t),
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for t ∈ Tκ. Therefore, we have

x∆2

n = ∆1f(tn, xn) +

(∫ 1

0

∂

∂y1

f(σ(tn), xn + hµ(tn)x∆
n )dh

)
x∆
n ,

x∆3

n = ∆1g1(tn, xn, x
∆
n )

+

(∫ 1

0

∂

∂y1

g1(σ(tn), xn + hµ(tn)x∆
n , x

∆
n )dh

)
x∆
n

+

(∫ 1

0

∂

∂y2

g1(σ(tn), xσn, x
∆
n + hµ(tn)x∆2

n )dh

)
x∆2

n

...

x∆p+1

n = ∆1gp−1(tn, xn, x
∆
n , . . . , x

∆p−1

n )

+

(∫ 1

0

∂

∂y1

gp−1(σ(tn), xn + hµ(tn)x∆
n , x

∆
n , . . . , x

∆p−1

n )dh

)
x∆
n

+

(∫ 1

0

∂

∂y2

gp−1(σ(tn), xσn, x
∆
n + hµ(tn)x∆2

n , . . . , x∆p−1

n )dh

)
x∆2

n

+ · · ·

+

(∫ 1

0

∂

∂yp
gp−1(σ(tn), xσn, x

∆σ
n , . . . , x∆p−1

n + hµ(tn)x∆p

n )dh

)
x∆p

n ,

from where we can find x∆2

n , . . ., x∆p+1

n .

4 Convergence and error analysis of the Tay-

lor series method

Now, we will investigate the convergence of the Taylor series method of order
p. We will use the following property of the monomials hq(t, s), q ∈ N0, which
is proved in [9].

Theorem 4.1. (Theorem 1.61, [9]). The following estimate

0 ≤ hq(t, s) ≤
(t− s)q

q!
, t ≥ s, (4.1)

holds for all q ∈ N.
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By the condition (H1) and the dynamic equation in (3.1), we find

|x∆(t)| ≤ A, t ∈ [t0, tf ].

Next, we estimate∣∣∣x∆2

(t)
∣∣∣ ≤ |∆1f(t, x(t))|+

(∫ 1

0

∣∣∣∣ ∂∂y1

f(σ(t), x(t) + hµ(t)x∆(t))

∣∣∣∣ dh) |x∆(t)|

≤ A(1 + A), t ∈ [t0, tf ],

and ∣∣∣x∆3

(t)
∣∣∣ ≤ ∣∣∆1g1(t, x(t), x∆(t))

∣∣
+

(∫ 1

0

∣∣∣∣ ∂∂y1

g1(σ(t), x(t) + hµ(t)x∆(t), x∆(t))

∣∣∣∣ dh) |x∆(t)|

+

(∫ 1

0

∣∣∣∣ ∂∂y2

g1(σ(t), x(σ(t)), x∆(t) + hµ(t)x∆2

(t))

∣∣∣∣ dh) ∣∣∣x∆2

(t)
∣∣∣

≤ A+ A2 + A(A+ A2)
= A(1 + A)2,∣∣∣x∆4

(t)
∣∣∣ ≤ ∣∣∣∆1g2(t, x(t), x∆(t), x∆2

(t))
∣∣∣

+

(∫ 1

0

∣∣∣∣ ∂∂y1

g2(σ(t), x(t) + hµ(t)x∆(t), x∆(t), x∆2

(t))

∣∣∣∣ dh) |x∆(t)|

+

(∫ 1

0

∣∣∣∣ ∂∂y2

g2(σ(t), x(σ(t)), x∆(t) + hµ(t)x∆2

(t), x∆2

(t))

∣∣∣∣ dh) ∣∣∣x∆2

(t)
∣∣∣

+

(∫ 1

0

∣∣∣∣ ∂∂y3

g2(σ(t), x(σ(t)), x∆(σ(t)), x∆2

(t) + hµ(t)x∆3

(t))

∣∣∣∣ dh) |x∆3

(t)|

≤ A+ A2 + A(A+ A2) + A
(
(A+ A2) + A(A+ A2)

)
= A+ A2 + 2A(A+ A2) + A2(A+ A2)
= A(1 + A)3,
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∣∣∣x∆5

(t)
∣∣∣ ≤ ∣∣∣∆1g3(t, x(t), x∆(t), x∆2

(t), x∆3

(t))
∣∣∣

+

(∫ 1

0

∣∣∣∣ ∂∂y1

g3(σ(t), x(t) + hµ(t)x∆(t), x∆(t), x∆2

(t), x∆3

(t))

∣∣∣∣ dh) |x∆(t)|

+

(∫ 1

0

∣∣∣∣ ∂∂y2

g3(σ(t), x(σ(t)), x∆(t) + hµ(t)x∆2

(t), x∆2

(t), x∆3

(t))

∣∣∣∣ dh) ∣∣∣x∆2

(t)
∣∣∣

+

(∫ 1

0

∣∣∣∣ ∂∂y3

g3(σ(t), x(σ(t)), x∆(σ(t)), x∆2

(t) + hµ(t)x∆3

(t), x∆3

(t))

∣∣∣∣ dh) ∣∣∣x∆3

(t)
∣∣∣

+

(∫ 1

0

∣∣∣∣ ∂∂y4

g3(σ(t), x(σ(t)), x∆(σ(t)), x∆2

(σ(t)), x∆3

(t) + hµ(t)x∆4

(t))

∣∣∣∣ dh) ∣∣∣x∆4

(t)
∣∣∣

≤ A+ A2 + A(A+ A2) + A(1 + A)(A+ A2) + A(A+ A2)(1 + A)2

= (A+ A2)(1 + A+ A+ A2 + A+ 2A2 + A3)
= A(1 + A)4, t ∈ [t0, tf ],

so that we deduce ∣∣x∆p

(t)
∣∣ ≤ A(1 + A)p−1,∣∣∣x∆p+1

(t)
∣∣∣ ≤ A(1 + A)p, t ∈ [t0, tf ].

Moreover, for the remaider terms

Rq(r) =

∫ ρq(t+r)

t

hq(t+ r, σ(u))x∆q+1

(u)∆u, q ∈ {1, . . . , p}, t ∈ [t0, tf ],

employing the estimate (4.1) and the fact that ρq(t + r) − t ≤ t + r − t = r,
we get

|Rq(r)| ≤
∫ ρq(t+r)

t

hq(t+ r, σ(u))
∣∣∣x∆q+1

(u)
∣∣∣∆u

≤ rq

q!
A(1 + A)q (ρq(t+ r)− t)

≤ rq+1

q!
A(1 + A)q, q ∈ {1, . . . , p}.

(4.2)

Therefore
Rq(r) = O

(
rq+1

)
, q ∈ {1, . . . , p}.

Denote
e∆k

n = x∆k

(tn)− x∆k

n , k ∈ {0, . . . , p− 1}.

11



Taking into account the fact that

x∆
n = f(tn, xn), x∆(tn) = f(tn, x(tn)),

x∆q

n = gq−1(tn, xn, x
∆
n , . . . , x

∆q−1

n ),

x∆q

(tn) = gq−1(tn, x(tn), x∆(tn), . . . , x∆q−1

(tn)), q ∈ {2, . . . , p}

we have

x(tn+1) = x(tn) + rn+1f(tn, x(tn)) + h2(tn+1, tn)g1(tn, x(tn), x∆(tn))

+ · · ·+ hp(tn+1, tn)gp−1(tn, x(tn), . . . , x∆p−1

(tn)) +Rp(rn+1)

and

xn+1 = xn + rn+1f(tn, xn) + h2(tn+1, tn)g1(tn, xn, x
∆
n )

+ · · ·+ hp(tn+1, tn)gp−1(tn, xn, . . . , x
∆p−1

n ).

Then

x(tn+1)− xn+1 = (x(tn)− xn) + rn+1(f(tn, x(tn))− f(tn, xn))

+ h2(tn+1, tn)
(
g1(tn, x(tn), x∆(tn))− g1(tn, xn, x

∆
n )
)

+ · · ·
+ hp(tn+1, tn)

(
gp−1(tn, x(tn), . . . , x∆p−1

(tn))− gp−1(tn, xn, . . . , x
∆p−1

n )
)

+ Rp(rn+1).

Note that by the condition (H1), the Mean value theorem for f and gk implies
that

f(tn, x(tn))− f(tn, xn) =
∂f

∂y
(tn, ξ

0
1)(x(tn)− xn) =

∂f

∂y
(tn, ξ

0
1)en,

where ξ0
1 is between x(tn) and xn, and ∂f

∂y
stands for the partial derivative with

respect to the second variable. Also,

gk(tn, x(tn), x∆(tn), . . . , x∆k

(tn))− gk(tn, xn, x∆
n , . . . , x

∆k

n )

= gk(tn, x(tn), x∆(tn), . . . , x∆k

(tn))− gk(tn, xn, x∆(tn), . . . , x∆k

(tn))

+ gk(tn, xn, x
∆(tn), . . . , x∆k

(tn))− gk(tn, xn, x∆
n , . . . , x

∆k

(tn))

+ · · ·
+ gk(tn, xn, x

∆
n , . . . , x

∆k−1

n , x∆k

(tn))− gk(tn, xn, x∆
n , . . . , x

∆k−1

n , x∆k

n )

12



=
∂

∂y1

gk(tn, ξ
k
1 , x

∆(tn), . . . , x∆k

(tn))en

+
∂

∂y2

gk(tn, xn, ξ
k
2 , . . . , x

∆k

(tn))e∆
n

+ · · ·

+
∂

∂yk+1

gk(tn, xn, . . . , x
∆k−1

n , ξkk+1)e∆k

n , , k ∈ {1, . . . , p− 1},

where ξkj is between x∆j−1
(tn) and x∆j−1

n , j ∈ {1, . . . , k+1} and the ∂
∂yj

denotes

the partial derivative with respect to the (j + 1)-st variable. Consequently,

en+1 = en + rn+1
∂f

∂y1

(tn, ξ
0
1)en

+h2(tn+1, tn)

(
∂g1

∂y1

(tn, ξ
1
1 , x

∆(tn))en +
∂g1

∂y2

(tn, xn, ξ
1
2)e∆

n

)
+ · · ·

+hp(tn+1, tn)

(
∂gp−1

∂y1

(tn, ξ
p−1
1 , x∆(tn), . . . , x∆p−1

(tn))en

+
∂gp−1

∂y2

(tn, xn, ξ
p−1
2 , . . . , x∆p−1

(tn))e∆
n

+ · · ·

+
∂gp−1

∂yp
(tn, xn, x

∆
n , . . . , ξ

p−1
p )e∆p−1

n

)
+Rp(rn+1).

Let rmax = max{r1, . . . , rm+1}. Since tf <∞, there is a constant B > 0 such
that

1

p!
rmaxA(1 + A)p (ermaxA+ 1) ≤ B.

Then

|en+1| ≤ (1 + h1(tn+1, tn) + · · ·+ hp(tn+1, tn))A
(
|en|+ |e∆

n |+ · · ·+
∣∣∣e∆p−1

n

∣∣∣)+ |Rp(rn+1)|

≤
(

1 + rmax +
r2
max

2!
+ · · ·+ rpmax

p!

)
A
(
|en|+ |e∆

n |+ · · ·+ |e∆p−1

n |
)

+ |Rp(rn+1)|

≤ ermaxA
(
|en|+ |e∆

n |+ · · ·+ |e∆p−1

n |
)

+ |Rp(rn+1)|

13



In a similar way, we make the following estimates.∣∣e∆
n+1

∣∣ ≤ ermaxA
(∣∣e∆

n

∣∣+ · · ·+
∣∣∣e∆p−1

n

∣∣∣)+ |Rp−1(rn+1)|,∣∣∣e∆2

n+1

∣∣∣ ≤ ermaxA
(∣∣∣e∆2

n

∣∣∣+ · · ·+
∣∣∣e∆p−1

n

∣∣∣)+ |Rp−2(rn+1)|,

· · ·∣∣∣e∆p−2

n

∣∣∣ ≤ ermaxA
∣∣∣e∆p−1

n

∣∣∣+ |R2(rn+1)|,∣∣∣e∆p−1

n+1

∣∣∣ ≤ |R1(rn+1)|.

Let
Bn = |en|+

∣∣e∆
n

∣∣+ · · ·+
∣∣∣e∆p−1

n

∣∣∣ .
Then

Bn+1 ≤ permaxABn + |R1(rn+1)|+ · · ·+ |Rp(rn+1)|.

Observe that from (4.2) we get

|R1(rn+1)|+ · · ·+ |Rp(rn+1)| ≤ r2
maxA(1 + A) +

r3
max

2!
A(1 + A)2

+ · · ·+ rp+1
max

p!
A(1 + A)p

≤ r2
maxA(1 + A)p

(
1 +

rmax
2!

+ · · ·+ rp−1
max

p!

)

≤ r2
maxA(1 + A)p

(
1 + rmax +

r2
max

2!
+ · · ·+ rp−1

max

(p− 1)!

)
≤ r2

maxA(1 + A)permax .
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Thus,

Bn+1 ≤ permaxABn + r2
maxA(1 + A)permax

≤ permaxA

(
permaxABn−1 + r2

maxA(1 + A)permax

)
+ r2

maxA(1 + A)permax

= (permaxA)2Bn−1 + (permaxA+ 1) r2
maxA(1 + A)permax

≤ · · ·

≤ (permaxA)n+1 B0 +

(
(permaxA)n + · · ·+ permaxA+ 1

)
r2
maxA(1 + A)permax

≤ r2
maxA(1 + A)permax

∞∑
j=0

(permaxA)j

≤ r2
maxA(1 + A)petf−t0

∞∑
j=0

(
petf−t0A

)j
=

1

1− petf−t0A
r2
maxA(1 + A)petf−t0 .

In the last inequality we have used the fact that B0 = 0 and rmax ≤ tf − t0.
Consequently

|en|+
∣∣e∆
n

∣∣+ · · ·+
∣∣∣e∆p−1

n

∣∣∣ = O
(
r2
max

)
.

5 The 2-step Adams-Bashforth method: AB(2)

In this section we consider the special case of the Taylor series method of order
p, which in the case of T = R reduces to the numerical method known as the
2-step Adams-Bashforth method [13]. We shall call this method the 2-step
Adams-Bashforth method on time scales.

Consider again the IVP (3.1). Suppose that r, l > 0, t, t+ r, t− l ∈ [t0, tf ],
ρ2(t + r), ρ(t − l) ∈ [t0, tf ]. Applying the Taylor formula of the second order,
we compute

x(t+ r) = x(t) + h1(t+ r, t)x∆(t) + h2(t+ r, t)x∆2

(t) +R2(r) (5.1)

and applying the Taylor formula of the first order, we get

x∆(t− l) = x∆(t) + h1(t− l, t)x∆2

(t) +R1(l)

= x∆(t)− lx∆2

(t) +R1(l),
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whereupon

x∆2

(t) =
1

l

(
x∆(t)− x∆(t− l)

)
+

1

l
R1(l).

We put this expression in (5.1) and we find

x(t+ r) = x(t) + rx∆(t) +
h2(t+ r, t)

l

(
x∆(t)− x∆(t− l) +R1(l)

)
+R2(r)

= x(t) + rf(t, x(t)) +
h2(t+ r, t)

l
(f(t, x(t))− f(t− l, x(t− l)))

+
h2(t+ r, t)

l
R1(l) +R2(r).

(5.2)
Assume that {t0 < t1 < . . . < tm+1 = tf} is a partition of the interval [t0, tf ]
such that tn+1 = tn + rn+1 ∈ T, rn+1 > 0, n ∈ {0, . . . ,m}. Take t = tn,
r = rn+1, l = rn in (5.2) and we obtain

x(tn+1) = x(tn) + rn+1f(tn, x(tn)) +
h2(tn+1, tn)

rn
(f(tn, x(tn))− f(tn−1, x(tn−1)))

+
h2(tn+1, tn)

rn
R1(rn) +R2(rn+1).

Let xn = x(tn), fn = f(tn, x(tn)). Then, neglecting the remainder terms, we
arrive at the 2-step Adams-Bashforth method (AB(2) method).

xn+1 = xn + rn+1fn +
h2(tn+1, tn)

rn
(fn − fn−1)

or

xn+1 = xn +

(
rn+1 +

h2(tn+1, tn)

rn

)
fn −

h2(tn+1, tn)

rn
fn−1. (5.3)

Remark 5.1. 1. Note that the 2-step Adams-Bashforth method (5.3) is of
order (1 +O(rn))O(r2

n+1).

2. If T = R and rn = h is constant, then we have h2(tn+1, tn) = (tn+1−tn)2

2
=

h2

2
and hence, (5.3) takes the form

xn+1 = xn +

(
h+

h

2

)
fn −

h

2
fn−1 = xn +

3h

2
fn −

h

2
fn−1,

which is the classical 2-step Adams-Bashforth method.
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3. The initial condition x(t0) = x0 provides the first term of the sequence
{xn}, but one needs the second term x1 in order to compute the following
terms of the sequence. For the computation of x1, one can use the Euler
method on time scales given in [5] or the trapezoidal rule on time scales
[11].

Below, we apply the method to specific examples of initial value problems
associated with nonlinear dynamic equations.

Example 5.1. As a first example we consider the initial value problem for the
Beverton-Holt model given as follows.

x∆(t) =
αx(t)

1 + βx(t)
, x(0) = x0, (5.4)

where α, β are real numbers. This model has various applications in population
dynamics [1, 2]. Take T = N0 and [t0, tf ] = [0, 20]. The monomial h2 on this

time scale is in the form h2(t, s) =
(t− s)(t− s− 1)

2
. If we take constant step

size rn = h, then m = 20
h

and tn = nh for n ∈ {0, . . . ,m}. In this case the AB
(2) formula (5.3) takes the form

xn+1 = xn +

(
h+

h(h− 1)

2h

)
αxn

1 + βxn
− h(h− 1)

2h

αxn−1

1 + βxn−1

= xn +
3h− 1

2

αxn
1 + βxn

− h− 1

2

αxn−1

1 + βxn−1

.

Starting with x0 = x(0) we use the Euler method introduced in [5] to compute
x1 which gives

x1 = x0 + h
αx0

1 + βx0

,

and then compute the sequence xn, n ∈ {2, . . . ,m} by using the AB (2)
method.

On the other hand, it is easy to see that the exact solution of the prob-
lem can be obtained by writing the dynamic equation in (5.4) as a difference
equation, that is,

x0 = x(0),

xn+1 = xn +
αxn

1 + βxn
, n ∈ {0, . . . , 19}.

The solutions computed with the AB (2) method and the exact solutions for
different choices of x0, α and β and h are given in Figures 1-4. When h = 1,
the approximate solution is the same as the exact solution. However, for h = 2
an error is observed.
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Figure 1: Computed and exact
values of the solution with α =
1.5, β = 0.75, x0 = 1 and h = 1.
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Figure 2: Computed and exact
values of the solution with α =
1.5, β = 0.75, x0 = 1 and h = 2.
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Figure 3: Computed and exact val-
ues of the solution with α = 3, β =
1, x0 = 2 and h = 1.
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Figure 4: Computed and exact val-
ues of the solution with α = 3, β =
1, x0 = 2 and h = 2.

Example 5.2. Consider the initial value problem

x∆(t) =
1

1 + t2
+

t

1 + (x(t))2
, x(0) = x0, (5.5)

which is solved by the trapezoidal rule in [11]. As in [11], we take T = aN0 for
some a > 0 and [t0, tf ] = [0, 20]. The monomial h2 on this time scale is in the

form h2(t, s) =
(t− s)(t− s− a)

2
. If we take constant step size rn = h, then

m = 20
h

and tn = nh for n ∈ {0, . . . ,m}. In this case the AB(2) formula (5.3)
takes the form

xn+1 = xn +
3h− a

2

(
1

1 + (tn)2
+

tn
1 + (xn)2

)
− h− a

2

(
1

1 + (tn−1)2
+

tn−1

1 + (xn−1)2

)
.
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Starting with x0 = x(0) we use the Euler method introduced in [5] to compute
x1 which gives

x1 = x0 + h

(
1

1 + (t0)2
+

t0
1 + (x0)2

)
,

and then compute the sequence xn, n ∈ {2, . . . ,m} by using the AB (2)
method.

From the discrete structure of the time scale aN0, the dynamic equation in
(5.5) can be written as a difference equation, that is,

x0 = x(0),

xn+1 = xn + a

(
1

1 + (an)2
+

an

1 + (xn)2

)
, n ∈ {0, . . . , 19},

and hence, can be solved analytically on the inteval [0, 20]. The solutions
computed with the AB (2) method and the exact solutions for different choices
of x0, h are given in Figures 5-6. The errors in the computation with the
2-step Adams Bashforth method and the trapezoidal rule are compared in
Figures 7-8. The figures show that there is no significant difference between
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Figure 5: Computed and exact val-
ues of the solution with x0 = 1, a =
0.2 and h = 0.4.
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Figure 6: Computed and exact val-
ues of the solution with x0 = 1, a =
0.2 and h = 0.8.

the exact and computed solutions because h is small. The comparison of the
errors in trapezoidal rule and AB (2) method show that both errors have small
magnitude since the chosen values of h are small.

6 Conclusion

This paper can be regarded as a continuation of [11] and presents a general
Taylor series method of order p. As is known, in the continuous case, that is,
if T = R, different numerical methods can be obtained from the Taylor series
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Figure 7: Errors in the computed
solutions with AB(2) method and
trapezoidal rule for x0 = 1, a = 0.2
and h = 0.4.
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Figure 8: Errors in the computed
solutions with AB(2) method and
trapezoidal rule for x0 = 1, a = 0.2
and h = 0.8.

method of order p. Here we derived the 2 step Adams-Bashforth method,
however, it is possible to obtain other numerical schemes. In this sense, this
paper provides different perspectives for those who study numerical methods
for dynamic equations on time scales.
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