
Why we should not necessarily expect life history
strategies to inform on sensitivity to environmental

change
Letter

(PNAS Latex submission format)

Mark Rademaker1,2, Anieke van Leeuwen1∗ , Isabel M. Smallegange3
∗

*Shared senior authors

1Department of Coastal Systems, Royal NIOZ and Utrecht University, Texel,1797 SZ, The Netherlands;

mark.rademaker@nioz.nl
2Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, 1012 WX,

The Netherlands; anieke.vanleeuwen@nioz.nl
3School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU,

UK; isabel.smallegange@newcastle.ac.uk

Running title: Life history strategies and sensitivity

Abstract length: 148 words

Main text length: 4358 words

N. references: 51 in Main text, 3 in Supplementary files

N. figures: 4

N. tables: 2

N. text boxes: 0

Keywords: Fast-slow continuum | Reproductive strategies | Dynamic energy budget |
Integral projection model | Functional traits

Corresponding author: Mark Rademaker

Department of Coastal Systems, Royal NIOZ and Utrecht University,

Landsdiep 4,1797 SZ Den Hoorn, Texel, The Netherlands;

mark.rademaker@nioz.nl;

+31 (0)222 36 9341

Statement of authorship: IMS conceived the idea, IMS & MR designed the study, MR

performed the research, all authors discussed results and contributed substantially to the writing

and revising of the manuscript.

Data accessibility statement: Should the manuscript be accepted, all supporting code

and data will be publicly accessible through Github.



Abstract

Speed of life and reproductive strategy form the two major axes that organise variation in life history

strategies across plant and animal species. This cross-taxonomical structuring can inform on the

sensitivity of species to environmental change. However, predictions based on broad cross-taxonomical

patterns do not necessarily align with those from detailed research on a smaller range of species.

Here, we use Dynamic Energy Budget Integral Projection Models (DEB-IPMs) to quantify the

extent to which patterns in the life history strategies of a large and diverse taxonomic class of fish

(Actinopterygii) inform on their sensitivity to environmental change. By accounting for additional

complexity in individual life histories, the classical association between life history strategies and

sensitivity to environmental change breaks down. We discuss which trait-based approach is best

suited to tackle challenges in linking life histories to population responses to change, and summarise

our perspective in a conceptual framework.
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Speed of life and reproductive strategy form the two major axes that organise variation in life history strategies across plant

and animal species. This cross-taxonomical structuring can inform on the sensitivity of species to environmental change.

However, predictions based on broad cross-taxonomical patterns do not necessarily align with those from detailed research

on a smaller range of species. Here, we use Dynamic Energy Budget Integral Projection Models (DEB-IPMs) to quantify the

extent to which patterns in the life history strategies of a large and diverse taxonomic class of fish (Actinopterygii) inform

on their sensitivity to environmental change. By accounting for additional complexity in individual life histories, the classical

association between life history strategies and sensitivity to environmental change breaks down. We discuss which trait-

based approach is best suited to tackle challenges in linking life histories to population responses to change, and summarise

our perspective in a conceptual framework.
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Introduction1

Populations are subject to temporal variation in environmental conditions that affects individual survival, growth, and2

reproduction in organisms (1, 2). Distinct combinations of these demographic rates comprise different life history strategies and3

different life history strategies are linked to population dynamics under environmental variation (3–5). Classifying a species4

by their life history strategy can therefore be useful in predicting population responses to environmental change (6). For5

example, in plants, the majority of life history variation is structured along (i) a fast-slow life history continuum including6

fast-growing, short-lived plant species at one extreme, and slow-growing, long-lived species at the other, and (ii) a reproductive7

strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with8

frequent shrinkage at the other (7). In animals, life history variation is also structured along the fast-slow life history contin-9

uum (8, 9), and a secondary axis defined by the distribution of age-specific mortality hazards and the spread of reproduction (10).10

11

Demographic analyses across a wide range of plant and animal taxa have shown that the ranking of species across life12

history strategy axes informs on their sensitivity to environmental change. For example, species with slow life histories13

are less sensitive to environmental change than species with fast life histories (9, 11). The idea of structuring life history14

variation along one or two main axes is appealing, because it brings the high-dimensional complexity of life down to a15

more linear representation that allows for broad generalizations across different taxonomical groups. Also, this approach16

requires knowledge of only a few trait values to determine the position of a species along these main axes (e.g. six traits17

in (12)), allowing applications to a wide range of species that would be difficult to study in detail. However, the broad18
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cross-taxonomical predictions on sensitivity to environmental change obtained through this framework do not always align19

with those from more detailed life history analyses carried out on a narrow taxonomical range (e.g. (13, 14)). These latter20

findings can be interpreted as taxonomic oddities, but also call for a reflection on our current approach to life history structuring.21

22

Currently, life history variation is most often structured using linear dimensionality reduction methods, such as Principal23

Component Analysis (PCA), after which post-hoc explanations describe which life history trade-offs likely underlie the24

structuring (e.g. (7, 9, 12)). This approach assumes that the underlying trade-offs align with patterns in life history traits25

across species (15). For example, from the fast-slow continuum we expect that larger-bodied animal species live longer and26

produce fewer offspring than smaller-bodied animals (16). Yet, this is not the case for all animals (17). In fish, for example,27

individuals of larger and longer-lived species can produce offspring numbers that are orders of magnitude higher than those28

of smaller, short-lived species (See, for example, differences in egg production between Atlantic cod (Gadus morhua), and29

zebrafish (Danio rerio) in Table 1). Such demographic details are not included in current, linearized accounts of life history30

variation, which are therefore unlikely to accurately predict how sensitive these species are to environmental change (18).31

32

The question is whether additional life history details helps models predict accurately how sensitive species are to33

environmental change. One way to test this would be to explicitly account for underlying life history trade-offs a priori, and34

to examine whether this a priori classification is reflected in a post-hoc analysis of life history variation and the predicted35

sensitivity of species to environmental change. An important life history trade-off is that between energy investment into36

growth and/or survival, versus reproduction (6, 19); this trade-off is currently taken to post hoc explain the fast-slow life history37

speed axis (7). A second important trade-off is that between current and future reproduction (20), which is currently taken38

to post hoc explain the reproductive strategy axis (21). Here we test if explicitly accounting for trade-offs and reproductive39

decisions results in generalizable predictions on how sensitive life histories of different speed or reproductive strategy are to40

environmental change. To this end, we parameterised Dynamic Energy Budget Integral Projection Models (DEB-IPMs) (22)41

for 34 species of ray-finned fish (Actinopterygii) (Fig. 1); a taxonomic class of ∼ 30.000 species that represent half of all42

known vertebrates today (23), and which comprises an exceptional range of reproductive strategies that are also found in other43

vertebrate groups. In each DEB-IPM, the demographic rates of growth and reproduction are based on a trade-off between44

energy investment into growth versus reproduction. We also explicitly account for different reproductive decisions (skip versus45

obligate breeding across iteroparous and semelparous species). We used the parameterised DEB-IPMs to investigate if (i)46

ray-finned fish life history variation is structured along axes that reflect the growth-reproduction trade-off and reproductive47

strategies, and (ii) if the main axes of life history variation inform on the sensitivity of ray-finned fish populations to shifts in48

environmental autocorrelation. We focus on shifts in environmental autocorrelation, because environmental fluctuations often49

show temporal autocorrelation (24, 25), that shifts towards more negative, or ‘blue’, autocorrelation in response to climate50

change (at least on a continental scale (26)).51

We implemented each DEB-IPM into a stochastic model, from which we calculated the stochastic population growth rate,52

IMS conceived the idea, IMS & MR designed the study, MR performed the research, all authors discussed results and contributed substantially to the writing and revising of the manuscript.
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log(λs), over the full range of the environmental autocorrelation ρ from ρ = -1.0, or blue noise, to ρ = 0.0, or white noise, and ρ53

= 1.0, or red noise. We subsequently applied a perturbation analysis to identify the traits most strongly affecting log(λs). Next,54

we took the difference in maximum and minimum log(λs) across ρ = -1:1, ∆ log(λs), as our measure of how sensitive a species55

is to a shift in environmental autocorrelation. To answer question (i), we classified ray-finned fish according to their main life56

history strategies using a phylogenetically informed principle component analysis (PCA) (27) on the DEB-IPM species-specific57

trait values, and then assessed if main life history strategies were linked to our measure of sensitivity to environmental change,58

∆ log(λs), to answer question (ii). Finally, we used a combination of perturbation analysis, additive models and (non)linear59

test statistics to determine if (iii) population responses to shifts in environmental autocorrelation can be linked to individual60

life history traits and reproductive strategies in an informative way.61

Materials and Methods62

General structure of a DEB-IPM. We used a demographic modelling approach based on DEB-IPMs to compute the population63

growth rate and sensitivity of ray-finned fish to environmental autocorrelation. A DEB-IPM is a population model that tracks64

the survival, growth and reproduction of cohorts of individuals in a population (22). The model integrates over discrete time65

and a continuous size distribution. Individual life history trajectories are captured in the DEB-IPM by four fundamental66

functions: (1) The survival function S(L(t)) denotes the probability that an individual survives from time t to t+ 1 given that67

it is of length L. (2) The growth function G(L(t)) describes the probability that an individual grows from length L at time t68

to L′ at t + 1, conditional on survival. (3) The reproduction function R(L(t)) describes the number of offspring produced69

from time t to t+ 1 by a female of length L at time t. (4) The parent-offspring function D(L′, L(t)) denotes the probability70

that a female of length L at time t produces offspring of length L′ at t+ 1, conditional on reproduction. Together, the four71

fundamental functions describe the dynamics of the number of female individuals in a population N , over the length domain Ω,72

from time t to t+ 1 (28).73

N(L′, L(t+ 1)) =
∫

Ω
[D(L′, L(t))R(L(t)) +G(L′, L(t))]N(L, t)dL [1]74

We constructed three different DEB-IPMs to capture the different breeder types that occur among the ray-finned fish in our75

dataset, and which reflect the three types of reproductive decisions that we explore: (1) iteroparous obligate breeders, which76

have multiple reproductive events over their life cycle and reproduce every season irrespective of environmental conditions. (2)77

Iteroparous skip breeders that also have multiple reproductive events over their life cycle, but pass up on the opportunity to78

breed in bad environments, and (3) Semelparous skip breeders that have a single reproductive event in their life cycle, and pass79

up on the opportunity to breed in bad environments. Based on these characteristics, we formulated different survival and80

reproduction functions for the three breeder types, but maintained the same growth and parent-offspring functions.81

Growth. Body growth of fish is typically indeterminate and food supply driven (29), following a von Bertalanffy growth curve:82

G(L′, L(t)) = 1√
2πσ2

L(L(t+ 1))
e

−(L′−E(L(t+1))2

2σ2
L

(L(t+1)) [2]83

where E(L(t+ 1)) is the expected growth of individuals of length L:84
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E(L(t+ 1)) =

L(t)e−rB + (1− e−rB )LmE(Y ), if L ≤ LmE(Y ),

0, otherwise.
[3]85

with rB as the von Bertallanfy growth coefficient, Lm as the maximum length, E(Y ) as the expected feeding level, scaled86

between zero and one, and σ2
L the individual variance in length at t+ 1.87

σ2(L(t+ 1)) =

(1− e−rB )Lmσ2(Y ), if L ≤ LmE(Y ),

0, otherwise.
[4]88

where σ(Y ) is the standard deviation of the expected feeding level89

Parent-offspring association. The parent offspring association function describes the probability that the offspring of an90

individual of length L is of length L′ at t+ 1.91

D(L′, L(t)) =


0, if L <Lp,

1√
2πσ2

Lb
(L(t)

e

−(L′−ELb (L(t))2

2σ2
Lb

(L(t))
, otherwise.

[5]92

Where E(Lb) is the expected length at birth of the offspring, and σ2
(Lb) is the expected variation in offspring size, as measured93

at the next population census in the model at t+ 1.94

Survival. The survival of individual fish is generally size-dependent, especially in the early life stages, with a decrease in95

predation mortality for increasing body sizes (30). Size-dependent survival is modelled using an exponential function. In96

iteroparous obligate and iteroparous skip breeders it takes the form:97

S(L(t)) =

e
−
(
µp

Lm
L(t)

)
, if L ≤ LmE(Y )

k

0, otherwise.
[6]98

Where µp is the adult background mortality rate due to predation, and k denotes the fraction of assimilated energy allocated to99

metabolic maintenance and growth, following the Kooijman-Metz model (31). Semelparous skip breeders have two additional100

conditional statements on this survival function, that which ensures they die after having reproduced.101

S(L(t)) =



e
−
(
µp

Lm
L(t)

)
, if L ≤ Lp & L ≤ LmE(Y )

κ
,

e
−
(
µp

Lm
L(t)

)
, if L > Lp & L ≤ LmE(Y )

κ
& E(Y )t−1 = E(Y )low,

0, if L > Lp & L ≤ LmE(Y )
κ

& E(Y )t−1 = E(Y )high,

0, otherwise.

[7]102

With E(Y )low as the low expected feeding level and E(Y )high as the high expected feeding level.103

Reproduction. Following the Kooijman-Metz model (31), we assume a quadratic scaling of reproductive output with female104

body size. In iteroparous obligate breeders, the reproduction function takes the form:105
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R(L(t)) =



0, if Lb < L < Lp,

φ

(
E(Y )Rm

L(t)2

L2
m

)
, if Lp < L < LmE(Y )

φ

(
Rm

1− k

[
E(Y )L(t)2 − kL(t)3

Lm

])
, if Lm < L ≤ LmE(Y )

k

[8]106

107

Where φ is the survival during the egg and larval phase, and Rm is the maximum reproduction in number of eggs of an108

individual of maximum size Lm. Iteroparous and semelparous skip breeders pass up on the opportunity to breed in bad109

environments. This imposes an additional restriction on the fundamental reproductive function as compared to iteroparous110

obligate breeders:111

R(L(t)) =



0, if Lb < L < Lp,

0, if Lp < L < LmE(Y ) & E(Y ) = E(Y )low,

φ

(
E(Y )Rm

L(t)2

L2
m

)
, if Lp < L < LmE(Y ) & E(Y ) = E(Y )high,

φ

(
Rm

1− k

[
E(Y )L(t)2 − kL(t)3

Lm

])
, if Lm < L ≤ LmE(Y )

k

[9]112

DEB-IPM parametrisation and implementation. We used a set of eight traits to parametrize the DEB-IPMs: Larval transforma-113

tion length (Lb), variation in transformation length (σLb), maturation length (Lp), maximum adult length (Lm), maximum114

number of eggs produced by adult of maximum length ( Rm), egg and larval stage survival rate (φ), and natural mortality115

rate (µp). Parameter values for each of the model species are listed in Supplementary table S1, and additional life history116

information required to categorise species along different breeder types is listed in Supplementary table S2. We calculated117

six of the DEB-IPM parameters directly from literature, but computed the survival during the egg and larval phase, φ, and118

variation in offspring size, σ2
Lb
, manually:119

φ = 1− e(−M·n) [10]120

Where M is the instantaneous mortality coefficient of the species during the egg and larval phase, and n is the duration of121

the egg and larval phase, both in unit days.122

σ2
Lb = (ci · ||

minLb − µLb
3 ||)2 [11]123

In which minLb represents the minimal larval or hatching size, µLb is the mean of the distribution of larval size, assumed to124

follow a normal distribution, and ci is a multiplier constant set to 0.1, 0.5 or 1.0 for species with low, medium and high spread125

in spawning, respectively. The rationale being that species releasing all eggs in a single event will have a lower variation in126

offspring size measured at the next population census compared to species that release eggs daily over an extended period of127

time. The equation itself is an adaptation of the z-score formula to calculate the standard deviation of a normal distribution (32).128

129
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Stochastic demographic model. We implemented the DEB-IPMs in the stochastic demographic model p(t+ 1) = A(t) · p(t),130

to calculate population sensitivity to shifts in environmental autocorrelation, which we had defined as ∆ log(λs), the difference131

between maximum and minimum log(λs) across ρ = −1 : 1. The vector p(t) is the population vector at time t, and A(t) is a132

DEB-IPM at time t, defined by a two-state Markov chain habitat transition matrix H (33):133

H =

1− p q

p 1− q

 [12]

In the habitat transition matrix, p equals the probability of switching from the good to the bad environment, and q equals134

the probability of switching from the bad to the good environment. The autocorrelation equals ρ = 1 − p − q (33). We135

defined good and bad environmental states as individuals experiencing either high feeding levels E(Y )high, or low feeding levels136

E(Y )low, respectively. The feeding levels were based on the feeding levels associated with population declines (log(λs) < 1.0),137

and population increases (log(λs) > 1.0). We set the feeding levels at E(Y )high = 1.0, and E(Y )low = 0.7, for all species. We138

accounted for variation in experienced feeding levels between individuals through the parameter σ(Y ), that was set at an139

intermediate level of σ(Y ) = 0.3 (22).140

141

We ran simulations for each of the 34 model species, across an autocorrelation range of ρ = −1 : 1, corresponding to a142

gradient of blue to white and red environmental noise, with a step size of 0.001, and a fixed frequency of good environments of143

f = 0.5. Each simulation consisted of 50,000 time steps, with an initial transient of 400 time steps, a starting population of one144

individual in each size bin, and a randomly chosen initial environmental state (34). At each time step, the DEB-IPM at time t,145

A(t) is calculated based on the experienced feeding level E(Y ) at time t, and stored. The log of the stochastic population146

growth rate, log(λs), could then be calculated for each of the simulations.147

log(λs) = 1
τ

τ−1∑
τ=0

log
p(t+ 1)

p(t) [12]148

PCA analysis. We used a phylogenetically informed principle component analysis (PCA)(27), to examine if the main life149

history strategies of ray-finned fish reflect the growth-reproduction trade-off and reproductive strategies (research question150

i), and if main life history strategies were linked to our measure of sensitivity to environmental change, ∆ log(λs) (research151

question ii). The input parameters of the phylogenetic PCA were the eight species traits values included as parameters in152

the DEB-IPMs (Table 1), and ∆ log(λs), calculated for each species. The trait and ∆ log(λs) values were log-transformed153

and scaled with a mean of one and standard deviation of zero to meet PCA assumptions of normality. We accounted for154

phylogenetic relatedness between the species in the PCA by constructing a species level phylogenetic tree using the phytools155

package (35). The phylogenetic relatedness of species, expressed as tree branch length, was linked to the life history traits and156

∆ log(λs) values via a modified covariance matrix. Next, we calculated Pagel’s λ, which functions as a scalar for the correlation157

observed between the values in the trait matrix and the phylogenetic relatedness matrix (36). A Pagel’s λ value of zero indicates158

that the correlation in traits observed between species are independent of their shared evolutionary history, whereas a value of159

1 suggests the correlation in traits is fully determined by it (37). We applied the Kaiser’s criterion to select the number of160

PCA-axes to keep, retaining only those axes with an eigenvalue > 1 (38). Finally, we applied a K-means clustering to the PCA161

Rademaker et al. Ecology Letters | March 11, 2022 | vol. XXX | no. XX | 6
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results to evaluate and visualise how different groups of species varied in their loadings across the PCA axes. The optimal162

amount of clusters in the data was determined using the NbClust package in R (39), which compares 30 different clustering163

indices and uses the majority rule to decide the optimum amount of clusters. One species (G. mirrabilis), with outlier values164

for sensitivity and mortality (∆ log(λs) = 1.77, z∆ log(λs) = 4.18; µp = 4.76, zµp = 4.65) was excluded from the PCA-analysis.165

Perturbation analysis. We used a perturbation analysis to examine which of the eight life history traits listed in table 1 most166

strongly affected (log(λs), and how trait importance might shift over the gradient of environmental autocorrelation; in partial167

answer to research question iii. Each trait parameter was perturbed by 1% and the elasticity of log(λs) calculated.168

Additive modelling and (non)linear correlation metrics. We used two separate measures of population responses, the previously169

defined measure of sensitivity, ∆ log(λs), and the new measure of performance, to further statistically examine if individual170

traits and reproductive strategies can be linked to population responses in an informative way (research question iii). The171

measure of performance was defined as the complete time series of log(λs) for each value in the gradient of environmental172

autocorrelation. We then used a generalised additive model (GAM) to fit a smoother trend to species performance data.173

Each categorical variable from the life history table (Table 2), was included into the model as a separate ordered factor. We174

accounted for the potential effect of related groups of species by including taxonomic order as an additional factor in the model.175

Subsequently, we used a double penalty approach to get to a final selection of relevant factors (40) (Supplementary information176

2). Significant differences in performance between the factor levels in the final model were visualised using difference smooths177

(41). Next, we used the Wilcoxon ranked-sum test to assess whether there was any difference in sensitivity between the levels178

of factors that had shown a significant difference in performance. Finally, we also examined the relationships between life179

history traits and sensitivity to environmental variability on a trait-by-trait basis. We used a set of five linear and nonlinear180

correlational metrics to account for the potentially varying nature of these relationships (1) Linear regression (2) Quadratic181

regression (3) Distance correlation (4) Two-sample Kolmogorov-Smirnov test, and (5) Fisher’s exact test.182

Results183

Life history variation and sensitivity to environmental autocorrelation. We found evidence that the main life history strategies184

in ray-finned fish were analogous to the growth-reproduction trade-off and reproductive strategy axes (research question i). In185

total, we found three main PCA axes that together explained 78 % of the total variation in the set of species life history traits186

and sensitivity (PC1: 49%, PC2: 17%, PC3: 12%; Table 3). Phylogenetic relatedness had little effect on species trait and187

sensitivity values (Pagel’s λ = 6.7 · 10−5 ± 5.4 · 10−7); a finding that is reflected in species clustering of PCA-scores (Fig. 2),188

where each of the four clusters found in the data contained species from across the phylogenetic tree. PC1 was most strongly189

associated with traits relating to growth and survival, with the highest positive loadings for maximum length (Lm), maturation190

size (Lp), and negative loadings for mortality rate (µp), variation in offspring size (σLb), and growth rate (rB). This reflects a191

trade-off between growth and survival, i.e. larger, slow growing species with high survival, versus smaller, fast growing species192

with lower survival. PC2 contained a high positive loading for egg-and larval survival (φ)and a high negative loading for the193

maximum number of offspring produced (Rm); reflecting a trade-off between investing in a large number of offspring with194

lowered survival and less offspring with increased survival.195

We found that our measure of sensitivity to environmental change was not associated to PC1 and PC2 (research question196

Rademaker et al. Ecology Letters | March 11, 2022 | vol. XXX | no. XX | 7
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ii), but was most strongly linked to the third PCA axis. PC3 contained high negative loadings of both offspring size (Lb) and197

sensitivity to shifts in environmental autocorrelation ∆ log(λs); indicating that species with smaller offspring sizes also tended198

to have lower ∆ log(λs) to shifts in environmental autocorrelation. However, when examined individually, the relationship199

between Lb and ∆ log(λs) was found to be highly non-significant (Table 4). This indicates that rather than being strongly200

associated to each other, Lb and ∆ log(λs) have in common that they are strongly dissociated from the patterns in traits on201

PC1 and PC2. Furthermore, both variables are strongly separated from each other when including PC4 (∆ log(λs)PC4 = 0.976,202

Lb,PC4 = 0.057). However, we dropped PC4 as it did not add substantial information in describing the complete set of traits203

based on the Kaiser criterion (Eigenvalue PC4= 0.817).204

Links between sensitivity to environmental autocorrelation and individual life history traits and reproductive strategies. We205

did not find any significant linear or non-linear correlations between ∆ log(λs) and individual life history traits (research206

question iii; Table 4; Supporting plots in Supplementary Information 2). The ∆ log(λs) of species did differ significantly207

between several of the reproductive strategy variables. Specifically, marine species were found to have significantly lower208

∆ log(λs) than freshwater species (Wilcoxon ranked sum test, W = 109, p = 0.004; Supplementary Figure S2a). Next to209

this, iteroparous breeders had significantly lower ∆ log(λs) than semelparous breeders (Wilcoxon ranked sum test, W = 23,210

p = 0.013; Supplementary Figure S2b), and obligate breeders significantly lower ∆ log(λs) than skip breeders (Wilcoxon ranked211

sum test, W = 0, p < 0.001; Supplementary Figure S2c). The log(λs) of species under environmental autocorrelation also212

differred significantly between reproductive strategy variables. These findings can be found in Supplementary Materials III.213

Stochastic demographic model. Our stochastic demographic models captured the population growth rates of the 34 model214

species and showed different responses between models across the gradient of environmental autocorrelation (Supplementary215

Figure S10). The perturbation analysis of our demographic model revealed that log(λs) was most sensitive to perturbation of216

four traits related to growth and reproduction (research question iii; Fig. 3): Egg-larval survival (φ), maturation length (Lp),217

maximum length (Lm), and growth rate (rB). In iteroparous obligate breeders, log(λs) of 94% of species was most sensitive218

to a single trait across the gradient of environmental autocorrelation, compared to 36% and 4% of species in iteroparous219

skip and semelparous breeders respectively. In the latter two models, trait importance across the gradient of environmental220

autocorrelation alternated between a maximum of two traits. The trait that was most influential to log(λs) in iteroparous221

obligate breeders was Lp (67%), followed by φ (22%). In iteroparous skip breeders, Lm (72%), and rB (55%), were found to222

be most important. Finally, in semelparous species, φ (60%) was the most important trait, followed in equal terms by Lp,223

Lm, and rB (all found in 40% of species). Changes in trait importance across the gradient of environmental autocorrelation224

did not follow changes in log(λs). For example, there was no observable shift in trait importance moving from white to225

red environmental autocorrelation in iteroparous skip breeders, or when moving from blue to white, and from white to red226

environmental autocorrelation in semelparous breeders.227

Discussion228

We used ray-finned fish as a model system to examine if explicitly accounting for life history trade-offs and reproductive229

decisions results in general patterns of how species of different life history speed and reproductive strategies respond to shifts in230

environmental autocorrelation. We found that the first two axes of life history variation in ray-finned fish were analogous to the231
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axes of life history speed and reproductive strategies found in previous cross-taxonomical analyses of plants and animals (Morris232

et al. 2008; Salguero-gomez et al. 2016; Paniw et al. 2018; Capdevilla et al. 2020; Healey et al. 2020). The next question is if233

these patterns in life history strategies relate to how sensitive species are to environmental autocorrelation. Unlike previous234

work that found that fast life histories were most sensitive to environmental autocorrelation, we found that our measure of235

sensitivity (the change in log stochastic population growth rate over the environmental autocorrelation gradient, ∆ log(λs)),236

was unrelated to species position on the life history speed or reproductive strategy axes. Sensitivity occupied a separate axes237

on PC3, together with length at birth. However, although they occupied the same axis, we found no significant (non)linear238

relationship between the two variables, indicating they do not inform on each other. Moreover, we found no relationship239

between sensitivity and any of the other individual trait values, and no relationship between trait elasticities and population240

growth rates under environmental autocorrelation. We surmise that these results motivate a more in-depth investigation of the241

relations between traits and population performance under environmental autocorrelation. Our results question to what extent242

different trait based approaches are suited to address different types of life history research questions, including the application243

of traits as bio-indicators of species vulnerability to environmental change.244

Life history traits are advocated to be used as bio-indicators of population performance to help inform conservation policy245

(42). One trait that is commonly associated with population performance is body size (43–45), and it has therefore been246

suggested as a useful bio-indicator (13, 46). Body-size as a trait is unspecified, but generally taken to be the average adult247

length or mass observed in a population. We were unable to link shifts in the values of any individual traits, including body-size248

related traits such as maximum length and length at birth, to shifts in stochastic population growth rates. We also found no249

statistically significant link between the values of individual traits and the values of sensitivity. Instead of using individual250

traits, specific groups of traits are sometimes suggested in the literature as bio-indicators of population performance. This251

approach is part of the continued search for the ‘holy-grail’ of cross-taxonomic functional traits (7, 47), whereby a single set252

of traits describes functions across the tree of life. Our PCA results indicate that there was no group of traits associated to253

sensitivity under environmental change. We suggest that this might be because the reproductive decisions included in our254

models more strongly affect population responses than specific trait combinations. This is supported by the fact that we255

found statistically significant differences in population growth rates between iteroparous and semelparous, and between skip256

and obligate breeding species, respectively (Supplementary information 3). It therefore seems that explicitly accounting for257

additional complexity in life history processes can disassociate trait values from measures of population performance, and this258

negates their use as bio-indicators of vulnerability to environmental change. It also raises the question on the type of method259

most suitable to answer certain types of life history research questions.260

Our results highlight that patterns in trait values alone can be insufficient to inform on sensitivity to environmental change.261

When we accounted for additional life history complexity through the inclusion of an individual-level dynamic energy budget and262

reproductive decisions, the classical association between life history traits and population performance broke down. Informing263

on species sensitivity to environmental change therefore requires us to include relevant complexity in life history a priori. The264

challenge lies in determining what kind of life history processes should be accounted for. Apart from the processes within the265

individual organism, as explored in the current study, there are also important structuring processes external to the individual,266

such as feedbacks between populations and their environments and trophic interactions. Theoretical approaches accounting267

for those elements (while maintaining the mechanistic process description at the individual level) show detailed population268
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dynamics (48, 49). In a multi-species context, community structure and stability can be linked to underlying mechanisms and,269

for example, show multiple stable community states (49, 50). Process- based models can therefore be a useful tool to gain270

insights into the mechanisms of ecological communities and identifying the boundary conditions under which populations can271

be maintained. However, their computational expense and high output complexity quickly makes them unwieldy when aiming272

to examine broad cross-taxonomical responses.273

We summarise our findings in a perspective that outlines which trait-based approach is most suitable in tackling different274

challenges in linking life histories to population responses to change (Fig. 4). We surmise that the biggest strength lies in275

combining different methods to address large and complex questions. For example, to know which species are most vulnerable to276

environmental change we can (1) use pattern based models to characterize the different life history strategies that have evolved277

across species, (2) a hybrid model, which combines patterns in traits in combination with a limited set of life history trade-offs278

and or processes, to identify which of these strategies and individual species show the highest sensitivity when exposed to279

environmental variation, and (3) a process model to study the responses of the most sensitive species to environmental change280

in a fuller ecological context, including feedbacks and accounting for trophic interactions. In this way, each approach acts as a281

focusing lens for the next one, and adds to their overall usefulness in addressing urgent conservation issues by combining their282

individual powers. We hope that our study can help pave the way towards a more integrative approach utilizing functional283

traits to understand complex demographic processes in an era of change (51).284
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Figures342

Fig. 1. Phylogenetic tree of the diversity of the ray-finned fish species included in the study. The colours of the end nodes represents cluster identities of species trait and
sensitivity scores using a phylogenetically-informed PCA, further detailed in the Methods and Results sections.
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Fig. 2. hylogenetically informed PCA of species life history traits and sensitivity to environmental autocorrelation. (A) Clustering of species trait and sensitivity scores across the
three principal components (B) PCA biplot of PC1, most strongly associated with growth and mortality traits, and PC2, associated with reproductive traits. (C) A biplot showing
the scores of the two variables most strongly associated with PC3.
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DRAFTFig. 3. Life history traits with the highest elastisitcity in relation to log(λs) as a function of environmental autocorrelation for all model species. The black boxes indicate
species from the stochastic demographic models of Iteroparous obligate breeders (upper box), Iteroparous skip breeders (centre box) and Semelparous skip breeders (bottom
box), respectively.

Fig. 4. Conceptual framework highlighting the characteristics of different kinds of modelling approaches in life history research. The framework can be used to identify the most
appropriate approach based on research specifics. The columns list three different modelling approaches (pattern, hybrid, and process based models, respectively). The rows
describe important modelling assumptions. The text in the row cells explains the limitation of each of the three modelling approaches in relation to these assumptions. This
explanation is combined with both a 5-valued color scale that indicates how the different modelling approaches perform in relation to each assumption (Red: poor, Orange: bad,
Yellow: average, Light green: good, Dark green: very good). Finally, the bottom row lists an example research question that each modelling approach is suited to address.
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Tables343

Table 1. Phylogenetic PCA loadings of life history traits and sensitivity to shifts in environmental variability on the first three principal
components. Bold values indicate the principal component with which each trait is most strongly associated.

Life history traits PC1 (Eigenvalue = 4.377) PC2(Eigenvalue = 1.546) PC3 (Eigenvalue = 1.057)

1. µp -0.710 0.177 0.055
2. Lp 0.905 -0.280 -0.057
3. φ -0.183 0.918 -0.053
4. rB -0.869 0.179 -0.183
5. σLB -0.654 -0.413 -0.422
6. Rm 0.592 -0.736 0.067
7. Lb 0.295 0.047 -0.766
8. Lm 0.941 -0.213 -0.017
9. ∆ log(λs) -0.289 -0.026 -0.690

Table 2. Linear and non-linear test statistics of the relationship between ∆ log(λs) and log transformed life history traits. For the
Kolmogorov-Smirnov test, distributions of trait values were compared between species classified as sensitive and insensitive. For Fischer’s
exact test, the trait values of species were classified into three quantile groups (low, medium and high values). Supporting plots for data
grouping into classes and quantile groups are provided in Supplementary information III. There is no indication of significance, since none
of these measures showed a significant correlation.

Life history traits Pearson correlation Distance correlation Kolmogorov-smirnov test Fischer’s exact test

1. log10(µp) r = 0.162, p = 0.366 dCor = 0.293, p = 0.285 D = 0.169, p = 0.972 p = 0.490
2. log10(Lp) r = 0.139, p = 0.422 dCor = 0.282, p = 0.335 D = 0.287, p = 0.507 p = 0.240
3. log10(φ) r = 0.262, p = 0.140 dCor = 0.358, p = 0.076 D = 0.224, p = 0.801 p = 1.000
4. log10(rB) r = 0.250, p = 0.163 dCor = 0.328, p = 0.176 D = 0.290, p = 0.490 p = 0.092
5. log10(σLB ) r = 0.168, p = 0.431 dCor = 0.246, p = 0.467 D = 0.268, p = 0.593 p = 0.469
6. log10(Rm) r = −0.042, p = 0.815 dCor = 0.279, p = 0.318 D = 0.290, p = 0.490 p = 0.735
7. log10(Lb) r = 0.021, p = 0.909 dCor = 0.199, p = 0.880 D = 0.232, p = 0.768 p = 0.853
8. log10(Lm) r = −0.145, p = 0.419 dCor = 0.259, p = 0.395 D = 0.235, p = 0.751 p = 0.295
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