References
1. Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014 46:1258096.
2. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015 163, 759–771.
3. Kim,H. and Kim,J.S. (2014) A guide to genome engineering with programmable nucleases. Nat. Rev. Genet., 15, 321¨C334.
4. Sander,J.D. and Joung,J.K. (2014) CRISPR¨CCas systems for editing, regulating and targeting genomes. Nat. Biotechnol., 32, 347¨C350.
5. Cox,D.B.T., Platt,R.J. and Zhang,F. (2015) Therapeutic genome editing: prospects and challenges. Nat. Med., 21, 121¨C131.
6 Mohanraju,P., Makarova,K.S., Zetsche,B., Zhang,F., Koonin,E. V. and Van Der Oost,J. (2016) Diverse evolutionary roots and mechanistic variations of the CRISPR¨CCas systems. Science, 353,
556¨C568.
7 Hart,T., Chandrashekhar,M., Aregger,M., Steinhart,Z., Brown,K.R., MacLeod,G., Mis,M., Zimmermann,M., Fradet-Turcotte,A., Sun,S. et al. (2015) High-Resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell, 163, 1515¨C1526.
8 Shalem,O., Sanjana,N.E. and Zhang,F. (2015) High-throughputfunctional genomics using CRISPR¨CCas9. Nat. Rev. Genet., 16,299¨C311.
9. Wang,W., Ye,C., Liu,J., Zhang,D., Kimata,J.T. and Zhou,P. (2014)CCR5 gene disruption via lentiviral vectors expressing Cas9 andsingle guided RNA renders cells resistant to HIV-1 infection. PLoS
One, 9, e115987.
10. Zhou,H., Liu,B., Weeks,D.P., Spalding,M.H. and Yang,B. (2014)Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nucleic Acids Res., 42,
10903¨C10914.
11. Wu,W.Y., Lebbink,J.H.G., Kanaar,R., Geijsen,N. and Van Der Oost,J. (2018) Genome editing by natural and engineered CRISPR-associated nucleases. Nat. Chem. Biol., 14, 642¨C651.
12 Nakade S, Yamamoto T, Sakuma T. Cas9, Cpf1 and C2c1/2/3-What’s next ? Bioengineered. 2017;8(3):265–273.
13. Tang X, Liu G, Zhou J, Ren Q, You Q, Tian L, Xin X, Zhong Z, Liu B, Zheng X, Zhang D, Malzahn A, Gong Z, Qi Y, Zhang T, Zhang Y. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biol. 2018 Jul 4;19(1):84.
14. Lee K, Zhang Y, Kleinstiver BP, Guo JA, Aryee MJ, Miller J, Malzahn A, Zarecor S, Lawrence-Dill CJ, Joung JK, Qi Y, Wang K. Activities and specificities of CRISPR/Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnol J. 2019 Feb;17(2):362-372.
15. Safari F, Zare K, Negahdaripour M, Barekati-Mowahed M, Ghasemi Y. CRISPR Cpf1 proteins: structure, function and implications for genome editing. Cell Biosci. 2019;9:36
16 Bayat H, Modarressi MH, Rahimpour A. The Conspicuity of CRISPR-Cpf1 System as a Significant Breakthrough in Genome Editing. Curr Microbiol. 2018 Jan;75(1):107-115.
17 Ding D, Chen K, Chen Y, Li H, Xie K. Engineering Introns to Express RNA Guides for Cas9- and Cpf1-Mediated Multiplex Genome Editing. Mol Plant. 2018 Apr 2;11(4):542-552.
18 Creutzburg SCA, Wu WY, Mohanraju P, Swartjes T, Alkan F, Gorodkin J, Staals RHJ, van der Oost J. Good guide, bad guide: spacer sequence-dependent cleavage efficiency of Cas12a. Nucleic Acids Res. 2020 Apr 6;48(6):3228-3243.
19 Kim H, Lee WJ, Oh Y, Kang SH, Hur JK, Lee H, Song W, Lim KS, Park YH, Song BS, Jin YB, Jun BH, Jung C, Lee DS, Kim SU, Lee SH. Enhancement of target specificity of CRISPR-Cas12a by using a chimeric DNA-RNA guide. Nucleic Acids Res. 2020 Sep 4;48(15):8601-8616.
20. Doench,J.G., Fusi,N., Sullender,M., Hegde,M., Vaimberg,E.W., Donovan,K.F., Smith,I., Tothova,Z., Wilen,C., Orchard,R. et al.(2016) Optimized sgRNA design to maximize activity and minimize
off-target effects of CRISPR–Cas9. Nat. Biotechnol., 34, 184–191.
21. Wang,T., Wei,J.J., Sabatini,D.M. and Lander,E.S. (2014) Genetic screens in human cells using the CRISPR–Cas9 system. Science(80-.)., 343, 80–84.
22. Doench,J.G., Hartenian,E., Graham,D.B., Tothova,Z., Hegde,M., Smith,I., Sullender,M., Ebert,B.L., Xavier,R.J. and Root,D.E. (2014)Rational design of highly active sgRNAs for CRISPR–Cas9-mediatedgene inactivation. Nat. Biotechnol., 32, 1262–1267.
23. Ren,X., Yang,Z., Xu,J., Sun,J., Mao,D., Hu,Y., Yang,S.J., Qiao,H.H., Wang,X., Hu,Q. et al. (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep., 9, 1151–1162.
24. Malina,A., Katigbak,A., Cencic,R., Ma¨ýga,R.I., Robert,F., Miura,H. and Pelletier,J. (2014) Adapting CRISPR/Cas9 for functional genomics screens. Methods Enzymol., 546, 193–213.
25. Moreno-Mateos,M.A., Vejnar,C.E., Beaudoin,J.D., Fernandez,J.P.,Mis,E.K., Khokha,M.K. and Giraldez,A.J. (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR–Cas9 targeting in
vivo. Nat. Methods, 12, 982–988.
26. Xu,H., Xiao,T., Chen,C.H., Li,W., Meyer,C.A., Wu,Q., Wu,D., Cong,L., Zhang,F., Liu,J.S. et al. (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res., 25, 1147–1157.
27. Wong,N., Liu,W. and Wang,X. (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biol., 16, 218.
28. Guo J, Wang T, Guan C, Liu B, Luo C, Xie Z, Zhang C, Xing XH. Improved sgRNA design in bacteria via genome-wide activity profiling. Nucleic Acids Res. 2018 Aug 21;46(14):7052-7069.
29 .Yao R, Liu D, Jia X, Zheng Y, Liu W, Xiao Y. CRISPR-Cas9/Cas12a biotechnology and application in bacteria. Synth Syst Biotechnol. 2018 Oct 3;3(3):135-149.
30 Ungerer J., Pakrasi H.B. Cpf1 is a versatile tool for CRISPR genome editing across diverse species of cyanobacteria. Sci Rep. 2016;6:39681.
31 Zhang X., Wang J., Cheng Q., Zheng X., Zhao G., Wang J. Multiplex gene regulation by CRISPR-ddCpf1. Cell Discov. 2017;3:17018
32 Yan M.Y., Yan H.Q., Ren G.X., Zhao J.P., Guo X.P., Sun Y.C. CRISPR-Cas12a-Assisted recombineering in bacteria. Appl Environ Microbiol. 2017;83
33 Kim,H.K., Song,M., Lee,J., Menon,A.V., Jung,S., Kang,Y.M.,Choi,J.W., Woo,E., Koh,H.C., Nam,J.W. et al. (2017) In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat. Methods,14, 153¨C159.
Kleinstiver BP, Sousa AA, Walton RT, Tak YE, Hsu JY, Clement K, Welch MM, Horng JE, Malagon-Lopez J, Scarfò I, Maus MV, Pinello L, Aryee MJ, Joung JK. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat Biotechnol. 2019 Mar;37(3):276-282.
Liu P, Luk K, Shin M, Idrizi F, Kwok S, Roscoe B, Mintzer E, Suresh S, Morrison K, Frazão JB, Bolukbasi MF, Ponnienselvan K, Luban J, Zhu LJ, Lawson ND, Wolfe SA. Enhanced Cas12a editing in mammalian cells and zebrafish. Nucleic Acids Res. 2019 May 7;47(8):4169-4180.
36. Deep learning improves prediction of CRISPR-Cpf1 guide RNA activity. Nat Biotechnol. 2018;36(3):239©\241.
37. Creutzburg SCA, Wu WY, Mohanraju P, Swartjes T, Alkan F, Gorodkin J, Staals RHJ, van der Oost J. Good guide, bad guide: spacer sequence-dependent cleavage efficiency of Cas12a. Nucleic Acids Res. 2020 Apr 6;48(6):3228-3243
38. Luo J, Chen W, Xue L, Tang B. Prediction of activity and specificity of CRISPR-Cpf1 using convolutional deep learning neural networks. BMC Bioinformatics. 2019;20(1):332.
39.Zhang G, Zeng T, Dai Z, Dai X. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks. Comput Struct Biotechnol J. 2021 Mar 7;19:1445-1457.
40.Wang J, Zhang X, Cheng L, Luo Y. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools. RNA Biol. 2020 Jan;17(1):13-22.
41.Kleinstiver, B. P. et al. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).
42.DeWeirdt PC, Sanson KR, Sangree AK, et al. Optimization of AsCas12a for combinatorial genetic screens in human cells. Nat Biotechnol. 2021
43.Zetsche B, Abudayyeh OO, Gootenberg JS, Scott DA, Zhang F. A Survey of Genome Editing Activity for 16 Cas12a Orthologs. Keio J Med. 2020
44.Li W, Teng F, Li T, Zhou Q. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol. 2013
45.Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013