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Summary

In the present work, we define a new anomaly, Ψ, termed semifocal anomaly. It is

determined by the mean between the true anomaly, f , and the antifocal anomaly, f ′;

Fukushima defined f ′ as the angle between the periapsis and the secondary around

the empty focus.

In this first part of the paper, we take an approach to the study of the semifocal

anomaly in the hyperbolic motion and in the limit case correspoding to the parabolic

movement. From here we find a relation beetween the semifocal anomaly and the

true anomaly that holds independently of the movement type. We focus on the study

of the two-body problem when this new anomaly is used as the temporal variable.

In the second part, we show the use of this anomaly —combined with numerical

integration methods— to improve integration errors in one revolution.

Finally, we analyze the errors committed in the integration process —depending on

several values of the eccentricity— for the elliptic, parabolic and hyperbolic cases in

the apsidal region.
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1 INTRODUCTION

The study of the motion in the Solar System is one of the strengths of Celestial Mechanics. This issue involves the development

of planetary theories and the motion of artificial satellites around the Earth. In this paper, we deal with both topics. To tackle

these problems, first, we will consider the elliptic movement as the leading case; we will then study the hyperbolic movement

due to its great importance in astronautics, and we will finally deal with the limit case of the parabolic movement. The elliptic

†Study of a new symmetric anomaly in the elliptic, hyperbolic and parabolic keplerian motion



2 J.A. López ET AL

movement case is the most studied and is of enormous importance because of its adequacy to the study of most of the problems

in the Solar System, such as planetary movements or artificial satellites.

The study of the movement in the Solar System can be accomplished by numerical or analytical ways. Analytical methods

are appropriate when the eccentricities of the bodies are small. In this case, it may be feasible to describe their movements by

use of series developments; this is the case, for instance, of the planetary theories. Analytical methods are complicated, but they

present a significant advantage: once the method has been designed, the position of the bodies included in the model can be

easily obtained; the process is as simple as replacing the time in a function, hence the high interest of these methods. Numerical

methods allow high precision results in any case, but analytical methods are only suitable for small eccentricities. In the elliptic

case and when the eccentricities are high, given that there will always exist perturbative masses, it is necessary the use of

numerical integrators. Among these integrators we mention the symplectic intergators and the variable step size integrators.

In the process of constructing a planetary theory two major approaches can be considered: the use of a numerical integrator9,8

or the use of analytical methods to integrate the problem1,26,27,29.

Analytical methods are based on the solution of the two-body problem (Sun-planet) through a set of orbital elements, for

example the third set of Brower and Clemence2 (a, e, i,Ω, !,M). In this set, M =M0+n(t− t0), n is the mean motion, t0 is the

initial epoch, whose value is a constant in the unperturbed two-body problem, and Mo is the mean anomaly in the initial epoch

t0. This solution can be considered as a first approximation of the perturbed problem and we can use the Lagrange method of

variation of constants to replace the first elements by the osculating ones given by the Lagrange planetary equations15
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Notice that � is a new variable defined by the equation
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∫
t0

n dt (2)
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and it coincides with M0 in the case of the unperturbed motion. R is the disturbing potential, R =
N∑
k=1

Ri, due to the disturbing

bodies i = 1, ..., N and is defined as15

R =

N∑

k=1

Gmk

[(
1

Δk

)
−
x ⋅ xk + y ⋅ yk + z ⋅ zk

r3
k

]

, (3)

where r⃗ = (x, y, z) and r⃗k = (xk, yk, zk) are the heliocentric vector position of the secondary and the kth disturbing body,

respectively, Δk is the distance between the secondary body and the disturbing body, and mk the mass of the disturbing body.

In order to integrate the Lagrange planetary equations through analytical methods it is necessary to develop the second mem-

ber of the Lagrange planetary equations as truncated Fourier series; this is a classical problem in Celestial Mechanics29,11,2,3,14.

The analytical methods provide long-termed series as solutions, but it would be more convenient to obtain more compact

developments; this can be accomplished by using an appropriate anomaly as temporal variable.

To obtain the expansions according to an anomaly Ψi it is necessary to obtain the developments of the coordinates for each

planet, i, and the inverse of the radius in Fourier series of Ψi. Then, the integration of the Lagrange planetary equations with

respect to the Ψi anomalies requires to compute the corresponding Kepler equation Mi =Mi(Ψi)
16,17.

When using numerical integration methods it is more appropriate to consider the equation of the motion in the form of the

second Newton law. The efficiency of the numerical integrators can improve with an appropriate change in the temporal variable.

In this paper, we will study the performance of the previous family of anomalies. To this aim, we have chosen the problem of

the motion of an artificial satellite around the Earth. The relative motion of the secondary with respect to the Earth is defined

by the second order differential equations

d2r⃗

dt2
= −GM

r⃗

r3
− ∇⃗U − F⃗ , (4)

where r⃗ is the radius vector of the satellite, U the potential from which the perturbative conservative forces are derived, and F⃗

combines the non-conservative forces. To integrate the system (4) it is necessary to known the initial value of the radius vector

r⃗0 and velocity v⃗0.

In order to uniformize the truncation errors when a numerical integrator is used, three main techniques can be followed:

1. The use of a very small step size.

2. The use of an adaptative step size method.

3. A change in the temporal variable to arrange an appropriate distribution of the points on the orbit so that the points are

mostly concentrated in the regions where the speed and curvature are maxima.

This paper deploys the third technique. Several authors have already studied this question; see, for instance, Sundman28, who

introduced a new temporal variable, �, related to the time, t, through dt = Crd�; Nacozy25 proposed a new temporal variable
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dt = Cr3∕3d�; Brumberg4 proposed the usage of the regularized length of arc and Brumberg and Fukushima5 introduced the

elliptic anomaly as temporal variable. Janin12,13 and Velez30 extended this technique defining a new one-parameter family of

transformations � called generalized Sundman transformations dt = Q(r, �)d�� , where Q(r, �) = C�r
� . The function Q(r) is

usually known as the partition function. A more complicated family of transformations was introduced by Ferrandiz7 Q(r) =

r2∕3(a0+a1r)
−1∕2. López18 introduces an new family of anomalies, called natural anomalies, as dΨ� = (1−�)f ′+�f ; � ∈ [0, 1],

where f, f ′ are the true and secondary anomalies. f is the angle between the periapsis and the secondary position taking as

origin the primary focus F of the ellipse; f ′ is the angle between the periapsis and the position of the secondary taking as origin

the empty focus F ′. Analytical and numerical properties of the generalized Sundman anomalies and the natural anomaly have

been studied by López et al.19,20,21.

The generalized Sundman family and the natural anomalies may have several inconveniences: the main quantities of the two-

body problem, such as the orbital coordinates (�, �), the radius vector, and the generalized Kepler equation cannot be written

by means of a closed formula, except for a small set of values of the parameter �. Besides, in general terms, the coefficients of

the necessary developments for the construction of analytical theories of the planetary motion cannot be written using closed

formulas, either. Finally, these anomalies have not an easy geometrical interpretation.

In 2016 López22 introduced a new family of anomalies including the eccentric anomaly, g, the true anomaly, f , the antifocal

anomaly, f ′, submitted by Fukushima10, by means of a simple set of geometric transformations. López demonstrated that the

main magnitudes involved in the two-body problem can be obtained in closed form for all the anomalies in the family. Besides,

he also determined that the coefficients of the series developments can be obtained in closed form too.

In the year 2017 López24 extended the mentioned family to the hyperbolic movement in both cases: the attractive branch,

linked to a two-body problem, and the repulsive branch, connected to the movent of two magnetic charges of the same sign. More-

over, López23 defined a new bi-parametic family of anomalies comprising Sundman’s generalized family, the elliptic anomaly,

the regularized length of arch anomaly and the antifocal anomaly.

In this paper we define, in the first place, a new anomaly Ψ as the mean between the true and antifocal anomaly, Ψ =
f ′+f

2
.

Then, we extend this anomaly to the hyperbolic case of the two-body problem and, finally, we study this anomaly in the limit

case of the parabolic motion. This anomaly is by definition contained in the natural family of anomalies18 and we will show that

this anomaly is included in the biparametric family too.

In this introductory section the general background has been settled. The rest of this article is organized as follows. In section

two, we introduce the semifocal anomaly in the elliptic case. There is a subsection that describes the series developments of

the most important magnitudes that appear in the two-body problem according to the semifocal anomaly obtaining the exact

analytical expressions for the coefficients of the mentioned developments. Section three extends the usage of the semifocal

anomaly to the hyperbolic case and the results are akin to the ones obtained in the elliptic case. Section four covers the study of
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FIGURE 1 True, f , and antifocal, f ′, anomalies.

the parabolic movement; it is shown that it is possible to extend the use of the semifocal anomaly to this limit case. In section

five, we analyze, from a numerical point of view, the study of the integration errors in the elliptic, hyperbolic and parabolic

movements. Finally, in section six, we show the main conclusionÅŻ that have been drawn from the study.

2 THE SEMIFOCAL ANOMALY IN THE ELLIPTIC MOTION.

In this section a new family of anomalies depending on one parameter is defined. Figure 1 shows the elliptic orbit corresponding

to the motion of the two-body problem. This ellipse is fully defined by its major semiaxis, a = OQ, and its eccentricity,

e =
c

a
, 0 ≤ e < 1, where c is the focal semidistance, c = FF ′

2
; the minor semiaxis, b, is defined as b = a

√
1 − e2. Let O be the

center of the ellipse, F the primary focus and F ′ the secondary focus (also called equality point).

Let us define F� as the point of coordinates (� e a, 0), � ∈ [−1, 1], Q is the periapsis and P the position of the secondary in

the orbit. The point F� is the primary focus of an ellipse with the same center and same major and minor semiaxes as the orbit;

e is the eccentricity of the orbit and � ∈ [−1, 1]. Notice that if � = −1, then F� = F ′; if � = 0, then F� = O and if � = 1,

F� = F . Let us define (�, �) as the orbital coordinates referred to the primary focus, F , and let r and r′ be the distance between

the secondary, P , and the primary focus, F , and the secondary focus F ′, respectively. The angle g is called eccentric anomaly,

the angle f is called true anomaly and for the angle f ′ we propose the name secondary true anomaly.

Let Ψ be a new anomaly defined as

Ψ =
f + f ′

2
. (5)
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In order to link g to Ψ we consider the classical relations described below; the main quantities of the two-body problem can

be described through the eccentric g, true f , and antifocal f ′ anomalies using the relationships

r + r′ = 2a, (6)

� = a(e − cos g), � = a
√
1 − e2 sin g, (7)

r = a(1 − e cos g), r′ = a(1 + e cos g), (8)

� = r cosf, � = r sin f, r =
a(1 − e2)

1 + e cosf
, (9)

� = r′ cosf ′ − 2ae, � = r′ sin f ′, r′ =
a(1 − e2)

1 − e cosf ′
. (10)

The eccentric anomaly is connected to the mean anomaly, M , through the Kepler equation

M = g − e sin g. (11)

To describe Ψ in terms of g, we consider

sin f =
a

r

√
1 − e2 sin g, sin f ′ =

a

r′

√
1 − e2 sin g (12)

and

cosf =
a

r
(cos g − e), cosf ′ =

a

r
(cos g + e). (13)

From (12) and (13) it is easy to deduce

sin 2Ψ =
a2

r r′

√
1 − e2 sin 2g (14)

and

cos 2Ψ =
a2

r r′

{
cos 2g −

e2

2
(1 + cos 2g)

}
. (15)

Thus

1 − cos 2Ψ = 2
a2

r r′
sin2 g, 1 + cos 2Ψ = 2

a2

r r′
(1 − e2) cos2 g. (16)

The values of sinΨ and cosΨ are given by

sinΨ =
a

√
r r′

sin g, cosΨ =
a

√
r r′

√
1 − e2 cos g (17)
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and taking into account (8), we obtain

sin =
sin g

√
1 − e2 cos2 g

, cosΨ =

√
1 − e2 cos g

√
1 − e2 cos2 g

. (18)

Finally, from (18) we get

cos g =
cosΨ

√
1 − e2 sin2 Ψ

, sin g =

√
1 − e2 sinΨ

√
1 − e2 sin2 Ψ

. (19)

In order to deal with Ψ and M we derive (19) and after operating, we get

dg =

√
1 − e2

1 − e2 sin2 Ψ
dΨ. (20)

If we replace (19) in (8), we obtain

r = a

(

1 −
e cosΨ√

1 − e2 sin2 Ψ

)

, r′ = a

(

1 +
e cosΨ√

1 − e2 sin2 Ψ

)

(21)

and from this equation

r r′ =
a2(1 − e2)

1 − e2 sin2 Ψ
. (22)

If we replace (22) in (20), we get

dg =
r r′

a2
√
1 − e2

dΨ (23)

and taking into account that dM =
r

a
dg, we have

dM =
r2 r′

a3
√
1 − e2

dΨ. (24)

From the last equation we easily conclude that the semifocal anomaly is included in the biparametic family dM = K�,�r
�r′�dΨ�,�

defined by López23.

Besides, if we take into account that

dM =
r2

a2
√
1 − e2

df (25)

and we replace this value in (24), we obtain

df =
r′

a
dΨ. (26)

If we replace (21) in (26) and integrate the equality, we obtain

f = Ψ + arcsin
(
e sinΨ

)
(27)

and from here, we deduce the interesting equation

sin
(
f − Ψ

)
= e sinΨ. (28)
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2.1 Analytical developments in the elliptic case

In order to integrate the Lagrange planetary equations by using analytical or semianalytical methods it is necessary to develop

their second members as Fourier series according to the selected anomalies for each couple of planets. To this aim, it is necessary

to obtain the expansions with respect to the selected anomaly of the two-body problem quantities g, sin g, cos g, r∕a, a∕r, andM .

The developments of the main magnitudes in the two-body problem can be straightforwardly deduced from the corresponding

ones in the biparametric family. This can be easily achieved by replacing � = 2 and � = 1. Likewise, the same developments

can be derived from the family of natural anomalies when � =
1

2
.

Another way to obtain the developments mentioned before is to resort to the classical technique of the inversion19,20,21.

Starting from the development of Ψ as a function of g and by the use of Deprit inversion algorithm6, it is possible to obtain the

developments of g, sin g, cos g, r∕a, and a∕r as a function of Ψ; then, with the help of those developments the Kepler equation

can also be transformed.

To that aim, from (18) we deduce

tanΨ =
√
1 − e2 tan g (29)

and taking into account the classical development31 of

tan y =
(
1 + m

1 − m

)
tan x (30)

as

y = x +

∞∑

k=1

mk

k
sin(kx), (31)

we obtain

Ψ = g +

∞∑

k=1

�k

k
sin(k g), (32)

where � =
(
2 − e2 − 2

√
1 − e2

)
∕e2.

With this, we are provided with the fundamental development of Ψ depending on g as a power series of the parameter �. To

make it dependable on e, it is enough to consider that

� =

∞∑

k=1

(2k − 1)!

22k−1(k + 1)!(k − 1)!
e2k. (33)

The first terms of this series are given by

� =
1

4
e2 +

1

8
e4 +

5

64
e6 +

7

128
e8 +

21

512
e10 +…

and if we adopt Deprit’s series inversion method, we obtain the required developments.
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On the other hand, in this particular case it is prefereable to follow another way in order to obtain the exact values of the

coeficients of the series. To do so, we proceed by developing in Fourier series the function

1√
1 − e2 sin2 Ψ

=
a0

2
+

∞∑

n=1

an cos 2nΨ, (34)

where

a0 =
1

�

2�

∫
0

1
√
1 − e2 sin2 Ψ

=
4

�
K(e) (35)

and K(e) is the complete elliptic integral of the first kind. Also

a1 =
1

�

2�

∫
0

cos 2Ψ
√
1 − e2 sin2 Ψ

=
8E(e) − 4

(
2 − e2

)
K(e)

� e2
, (36)

where E(e) is the complete elliptic integral of second kind.

To obtain the rest of the coefficients we derive the equation (43) with respect to Ψ

e2 sin 2Ψ

2
(
1 − e2 sin2 Ψ

)3∕2 = −2

∞∑

n=1

n an sin 2nΨ, (37)

and from them

e2 sin 2Ψ

(
a0

2
+

∞∑

n=1

an cos 2nΨ

)

= −
((

2 − e2
)
+ e2 cos 2Ψ

) ∞∑

n=1

n an sin 2nΨ. (38)

After operating, we obtain the recurrence formula

(
2n + 1

)
e2an + 4

(
n + 1

)(
2 − e2

)
an+1 +

(
2n + 3

)
e2an+2 = 0. (39)

To obtain the developments of sin g and cos g, we replace (43) in (19) and so we have

cos g =

∞∑

k=0

(
an + an+1

2

)
cos(2n + 1)Ψ (40)

and

sin g =

∞∑

k=0

√
1 − e2

(an − an+1
2

)
sin(2n + 1)Ψ. (41)

The development of r

a
can be easily obtained from (8).

Finally, to get a

r
, we consider

a

r
=

√
1 − e2 sin2 Ψ

√
1 − e2 sin2 Ψ − e cosΨ

=
1 − e2 sin2 Ψ + e cosΨ

√
1 − e2 sin2 Ψ

1 − e2
. (42)

Given this expression, it will be enough to obtain the development of
√
1 − e2 sin2 Ψ. To this aim, we have

√
1 − e2 sin2 Ψ =

b0

2
+

∞∑

n=1

bn cos(2nΨ) (43)
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and if we calculate de derivative, we have

sin(2Ψ)

2
√
1 − e2 sin2 Ψ

= 2

∞∑

n=1

n bn sin(2nΨ). (44)

From here

sin(2Ψ)
√
1 − e2 sin2 Ψ = 4

(
1 − e2 sin2 Ψ

) ∞∑

n=1

n bn sin(2nΨ) (45)

and after some algebraic manipulations, we finally obtain the recurrence

(
2n − 1

)
e2bn + 4

(
n + 1

)(
2 − e2

)
bn+1 +

(
2n + 5

)
e2bn+2 = 0. (46)

The initial values b0 and b1 are given by

b0 =
4

�
E(e), b1 =

4

3e2�

[(
2 − e2

)
E(e) +

(
1 − e2

)
K(e)

]
, (47)

where K(e) and E(e) are the elliptic integrals of first and second kind respectively.

3 THE SEMIFOCAL ANOMALY IN THE HYPERBOLIC MOTION

In this section we will study the hyperbolic case of the two-body problem when the new anomaly, Ψ, is considered. Ψ has been

similarly defined as in the elliptic case, but considering the peculiarity that in the elliptic case both focuses lie at the same side

of the periapsis, while in the hyperbolic case the primary focus is placed to the left of the periapsis and the secondary focus to

the right. According to this particularity, in order to be 0 in the apoapsis, the anomaly Ψ must be defined as shown in Figure 2.

Ψ =
f + f ′

2
−
�

2
. (48)

In the hyperbolic case, we have the relations

r cosf − r′ cosf ′ = 2ae, r cosf = ae − a coshH, r sin f = a
√
e2 − 1 sinhH, (49)

e sinh(H) −H =M, (50)

where M = �(t − t0), � =
√
�∕a3 and t0 is the transit epoch at the periapsis,

r = a
(
e coshH − 1

)
, r′ = a

(
e coshH + 1

)
(51)
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FIGURE 2 True, f , and antifocal, f ′, anomalies in the hyperbolic motion.

and, obviously, r′ − r = 2a. From these equations it is easy to obtain

cosf =
a

r

(
e − coshH

)
, sin f =

a

r

√
e2 − 1 sinhH,

cosf ′ = −
a

r′

(
e + coshH

)
, sin f ′ =

a

r′

√
e2 − 1 sinhH. (52)

On the other hand, cosh2H − sinh2H = 1. It is a necessary condition for Ψ to be an anomaly that Ψ = 0 when f = 0 and for

this reason in the hyperbolic case it is necessary to define Ψ as Ψ =
f+f ′

2
−

�

2
, as mentioned before.

We obtain the relationships

cos
(
f + f ′

)
= −

a2

r r′

(
e2 − cosh2H + (e2 − 1) sinh2H

)
(53)

and from them

sin

(
f + f ′

2

)
=

1 − cos(f + f ′)

2
=

a
√
r r′

√
e2 − 1 coshH,

cos

(
f + f ′

2

)
=

1 + cos(f + f ′)

2
= −

a√
r r′

sinhH. (54)

We have

cosΨ = sin

(
f + f ′

2

)
=

a
√
r r′

√
e2 − 1 coshH,

sinΨ = − cos

(
f + f ′

2

)
=

a
√
r r′

sinhH, (55)

cosΨ =

√
e2 − 1 coshH

√
e2 cosh2H − 1

, sinΨ =
sinhH

√
e2 cosh2H − 1

(56)
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and so

cosℎH =
cosΨ

√
1 − e2 sin2 Ψ

, sinhH =

√
e2 − 1 sinΨ

√
1 − e2 sin2 Ψ

. (57)

Replacing (57) in (51), we obtain

r = a

(
e cosΨ√

1 − e2 sin2 Ψ

− 1

)
, r′ = a

(
e cosΨ√

1 − e2 sin2 Ψ

+ 1

)
. (58)

On the other hand

dH =
e2 − 1

1 − e2 sin2 Ψ
dΨ, (59)

r r′

a2(e2 − 1)
=

1

1 − e2 sin2 Ψ
(60)

and we have

dH =
r r′

a
√
e2 − 1

dΨ. (61)

Finally, after some algebraic manipulations, the change of anomaly can be written as

dM =
r2 r′

a3
√
e2 − 1

dΨ = Q(r, r′)dΨ, (62)

where Q(r, r′) = r2 r′

a3
√
e2−1

is the partition function.

In addition, taking into account that

dM =
r2

a2
√
e2 − 1

df, (63)

if we substitute (62) in (63), we get

df =
r′

a
dΨ. (64)

Now considering (58) and integrating, we obtain

f = arcsin
(
e sinΨ

)
+ Ψ, (65)

which leads to the noteworthy relation

sin
(
f − Ψ

)
= e sinΨ. (66)

4 THE SEMIFOCAL ANOMALY IN THE PARABOLIC MOTION

The parabolic movement can be considered as a limit case, both in the elliptic and in the hyperbolic problems. In the parabolic

movement the apsidal distance, q, and the parameter, p, satisfy the relation p = 2q and this fact holds both in the elliptic and

in the hyperbolic cases when e = 1. The parabola can be considered a boundary or separatrix between conics; in the ellipse
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both focuses are placed on the left of the periapsis, while in the hyperbola one focus is on the left and the other on the right of

the periapsis. In the parabolic case the secondary focus does not exist. If we approximate to the parabolic case from the elliptic

case, the secondary focus tends to (−∞, 0); if we do so from the hyperbolic case, the secondary focus tends to (0,+∞). This is

the reason why we can state that in the parabolic case, if we approximate from the elliptic case, the f ′ anomaly tends to 0; on

the contrary, if our approximation is from the hyperbolic movement, f ′ tends to � and in both cases Ψ =
f

2
. This intuitive fact

suggests that the semifocal anomaly, f ′, exists in the parabolic case and is continuous in e = 1.

After this introduction, we show two analytical proofs of this fact. In the first proof, if we take into account (26) and knowing

that r + r′ = 2a, we have

df =
r′

a
dΨ =

2a − r

a
dΨ =

(
2 −

r

a

)
dΨ. (67)

First, if we approximate the parabolic case from the elliptic case, a tends to −∞ and we have df = 2dΨ; consequently, we

arrive to the conclusion that Ψ = f∕2. Similarly, if we approach from the hyperbolic case, taking into account (64) and the fact

that r′ − r = 2a, we have

df =
r′

a
dΨ = 2a + radΨ =

(
2 +

r

a

)
dΨ. (68)

Now, considering that we approach the parabola from the hyperbolic case, we have that a tends to +∞ and then df = 2dΨ;

therefore Ψ =
f

2
.

A second proof —also conclusive for both elliptic and hyperbolic cases— is based on the equations (28) and (66); considering

that in the periapsis f = Ψ = 0 and the parabolic limits corresponds to e = 1, we have that f − Ψ = Ψ, hence Ψ =
f

2
.

This fact is of paramount importance, since the semifocal anomaly can be considered as a universal anomaly, valid for elliptic,

parabolic and hyperbolic movements.

5 NUMERICAL EXAMPLES

In this section, we have designed some numerical experiments in order to test the new variable. The first of these experiments

applies to the case of the elliptical motion and consists in the integration of a fictitious artificial satellite orbiting the Earth.

Its semi-axis, a = 118363.47, is the same as the satellite Heos II and the eccentricity ranges from 0 and 0.95 with a fixed

step of 0.025. The experiment consists of the integration of the problem. We consider (x, y) the coordinates in the orbital

plane originating in the primary and we take the axis OX in the direction of the periapsis. Then, we obtain the position and

speed in the periapsis and with the help of a fourth-order classical Runge-Kutta method we integrate one revolution using the

semifocal anomaly and the mean anomaly as temporal variables; in both cases we have taken 1000 steps. After a revolution, the

error modulus is calculated in position and speed for the two variables. Table 1 shows the numerical results of the integration;

in this table we appreciate that for low eccentricities the difference between the results obtained using the semifocal and the
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TABLE 1 Integration errors in position (Km) and velocity (Km∕s) in a revolution for several values of e using the semifocal
and mean anomalies.

e |ΔrΨ| |ΔvΨ| |ΔrM | |ΔvM | e |ΔrΨ| |ΔvΨ| |ΔrM | |ΔvM |
0.000 9.66e-06 1.50e-10 9.66e-06 1.50e-10 0.500 7.36e-04 2.63e-08 3.73e-03 1.42e-07
0.025 3.18e-05 5.20e-10 2.64e-05 4.49e-10 0.525 8.57e-04 3.27e-08 5.79e-03 2.34e-07
0.050 3.75e-05 6.41e-10 2.64e-05 4.88e-10 0.550 9.96e-04 4.09e-08 9.16e-03 3.95e-07
0.075 4.45e-05 7.89e-10 2.74e-05 5.50e-10 0.575 1.16e-03 5.14e-08 1.48e-02 6.86e-07
0.100 5.29e-05 9.69e-10 2.98e-05 6.42e-10 0.600 1.35e-03 6.49e-08 2.46e-02 1.23e-06
0.125 6.29e-05 1.19e-09 3.39e-05 7.72e-10 0.625 1.57e-03 8.25e-08 4.22e-02 2.29e-06
0.150 7.49e-05 1.46e-09 4.01e-05 9.56e-10 0.650 1.82e-03 1.06e-07 7.47e-02 4.45e-06
0.175 8.92e-05 1.79e-09 4.92e-05 1.21e-09 0.675 2.12e-03 1.37e-07 1.38e-01 9.05e-06
0.200 1.06e-04 2.19e-09 6.22e-05 1.58e-09 0.700 2.48e-03 1.79e-07 2.66e-01 1.95e-05
0.225 1.26e-04 2.69e-09 8.05e-05 2.10e-09 0.725 2.91e-03 2.38e-07 5.41e-01 4.47e-05
0.250 1.49e-04 3.29e-09 1.06e-04 2.83e-09 0.750 3.43e-03 3.21e-07 1.18e+00 1.11e-04
0.275 1.77e-04 4.03e-09 1.43e-04 3.89e-09 0.775 4.06e-03 4.43e-07 2.77e+00 3.04e-04
0.300 2.09e-04 4.94e-09 1.95e-04 5.43e-09 0.800 4.88e-03 6.31e-07 7.22e+00 9.37e-04
0.325 2.46e-04 6.06e-09 2.69e-04 7.70e-09 0.825 5.96e-03 9.37e-07 2.14e+01 3.36e-03
0.350 2.89e-04 7.44e-09 3.77e-04 1.11e-08 0.850 7.53e-03 1.48e-06 7.50e+01 1.47e-02
0.375 3.39e-04 9.14e-09 5.34e-04 1.62e-08 0.875 1.01e-02 2.59e-06 3.33e+02 8.54e-02
0.400 3.97e-04 1.12e-08 7.66e-04 2.41e-08 0.900 1.50e-02 5.34e-06 2.09e+03 7.41e-01
0.425 4.64e-04 1.38e-08 1.11e-03 3.65e-08 0.925 2.73e-02 1.49e-05 1.92e+04 6.83e+00
0.450 5.42e-04 1.71e-08 1.64e-03 5.63e-08 0.950 7.30e-02 7.26e-05 1.41e+05 1.17e+01
0.475 6.32e-04 2.12e-08 2.45e-03 8.86e-08 0.975 4.34e-01 1.21e-03 8.30e+06 2.96e+01

mean anomalies are similar. On the contrary, for high values of the eccentricity the use of the semifocal anomaly significantly

improves the results obtained when using the mean anomaly, that is, the natural time. In all the calculations the value of GM =

3.986004415 ⋅ 105 corresponding to the Earth has been taken.

In the numerical integration it is preferable to start from the equations of the movement expressed in cartesian coordinates

dx

dt
= vx,

dvx

dt
= −GM

x

r3
, (69)

dy

dt
= vy,

dvy

dt
= −GM

y

r3
,

where r =
√
x2 + y2.

Next, we proceed by studying the errors generated in the general case integration, where it is no longer possible to ensure

the periodicity. To that aim, we start from a point in the coordinates (−p, 0), where p is the parameter of the conic. After 1000

integration steps the point becomes (p, 0) and since symmetry has to be preserved, it can be taken as a measure of the error

(xi − xf , yi + yf ), where the subscripts i and f denote the values of the starting point and the ending point obtained in the

integration. In order to measure the error in speed we have taken (vi + vf , vi − vf ). The calculation will be made by taking the

apsidal distance q of the comet Heos II, for which the value of the parameter p is given by p = q(1+ e). Table 2 shows the errors

for a set of eccentricities ranging from 0 to 2 with a step of 0.05.
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TABLE 2 Integration errors in position (Km) and velocity (Km∕s) for several values of e using the semifocal anomaly.

e |ΔrΨ| |ΔvΨ| e |ΔrΨ| |ΔvΨ| e |ΔrΨ| |ΔvΨ| e |ΔrΨ| |ΔvΨ|
0.025 1.4e-07 4.5e-07 0.525 1.3e-07 2.9e-06 1.025 3.8e-07 9.2e-11 1.525 2.4e-06 6.8e-08
0.050 1.4e-07 5.0e-07 0.550 1.3e-07 3.2e-06 1.050 4.1e-07 5.2e-08 1.550 2.7e-06 7.0e-08
0.075 1.4e-07 5.5e-07 0.575 1.4e-07 3.4e-06 1.075 4.5e-07 5.1e-08 1.575 2.9e-06 7.1e-08
0.100 1.4e-07 6.1e-07 0.600 1.4e-07 3.7e-06 1.100 5.0e-07 5.1e-08 1.600 3.2e-06 7.3e-08
0.125 1.4e-07 6.6e-07 0.625 1.4e-07 4.1e-06 1.125 5.5e-07 5.1e-08 1.625 3.4e-06 7.5e-08
0.150 1.4e-07 7.3e-07 0.650 1.4e-07 4.4e-06 1.150 6.1e-07 5.0e-08 1.650 3.7e-06 7.7e-08
0.175 1.4e-07 8.1e-07 0.675 1.5e-07 4.8e-06 1.175 6.6e-07 5.1e-08 1.675 4.1e-06 7.9e-08
0.200 1.4e-07 8.8e-07 0.700 1.5e-07 5.2e-06 1.200 7.3e-07 5.1e-08 1.700 4.4e-06 8.1e-08
0.225 1.3e-07 9.8e-07 0.725 1.6e-07 5.7e-06 1.225 8.1e-07 5.2e-08 1.725 4.8e-06 8.3e-08
0.250 1.3e-07 1.1e-06 0.750 1.7e-07 6.1e-06 1.250 8.8e-07 5.3e-08 1.750 5.2e-06 8.5e-08
0.275 1.3e-07 1.2e-06 0.775 1.8e-07 6.6e-06 1.275 9.8e-07 5.4e-08 1.775 5.7e-06 8.7e-08
0.300 1.3e-07 1.3e-06 0.800 1.9e-07 7.2e-06 1.300 1.1e-06 5.5e-08 1.800 6.1e-06 9.0e-08
0.325 1.3e-07 1.4e-06 0.825 2.0e-07 7.7e-06 1.325 1.2e-06 5.6e-08 1.825 6.6e-06 9.2e-08
0.350 1.3e-07 1.6e-06 0.850 2.1e-07 8.3e-06 1.350 1.3e-06 5.7e-08 1.850 7.2e-06 9.4e-08
0.375 1.3e-07 1.7e-06 0.875 2.3e-07 9.0e-06 1.375 1.4e-06 5.8e-08 1.875 7.7e-06 9.6e-08
0.400 1.3e-07 1.9e-06 0.900 2.5e-07 9.7e-06 1.400 1.6e-06 6.0e-08 1.900 8.3e-06 9.9e-08
0.425 1.3e-07 2.0e-06 0.925 2.7e-07 1.0e-05 1.425 1.7e-06 6.1e-08 1.925 9.0e-06 1.0e-07
0.450 1.3e-07 2.2e-06 0.950 2.9e-07 1.1e-05 1.450 1.9e-06 6.3e-08 1.950 9.7e-06 1.0e-07
0.475 1.3e-07 2.4e-06 0.975 3.2e-07 8.1e-11 1.475 2.0e-06 6.4e-08 1.975 1.0e-05 1.1e-07
0.500 1.3e-07 2.7e-06 1.000 3.5e-07 8.6e-11 1.500 2.2e-06 6.6e-08 2.000 1.1e-05 1.1e-07

Finally, Figure 3 shows the values of E and H ; both derived from the transformation dt = Krd�. Figure 4 shows the value

of semifocal anomaly, Ψ, linked to the true anomaly for f =
�

2
depending on the eccentricity.

2 4 6 8 10
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FIGURE 3 Anomalies E and H for f = �∕2 depending on the eccentricity e.
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FIGURE 4 Semifocal anomaly, Ψ, depending on the eccentricity e.

In Figure 4, it can be clearly noticed that Ψ is a universal varible; we say it is universal because its usage is appropriate for the

elliptic, parabolic and also the hyperbolic motion. It is important to mention that the use of Ψ is not convenient in the elliptic

case when the eccentricity is high. However, as shown in Figure 4, Ψ presents a remarkably good behavior in the parabolic case

and its neighborhoods.

6 CONCLUSIONS

In this paper, a new temporal variable has been defined to undertake the study of elliptical motion, called semifocal anomaly,

defined as one half of the sum of true anomaly and the antifocal anomaly.

First of all, it is shown that the main magnitudes of the two-body problem can be expressed in closed form using this new

anomaly as an independent variable. It is also proved that this anomaly is part of the family of symmetrical anomalies. Besides,

an interesting relationship between the true anomaly and the semifocal anomaly is obtained.

Next, the Fourier series developments of the main magnitudes of the two-body problem depending on the semifocal anomaly

are obtained. In the process, we demonstrate that these developments can be obtained from recurrence relations. Furthermore,

we are able to obtain in both cases (43), (43) their first two exact terms with the help of the complete elliptic integrals of the first

and second kind. These developments are of great interest when the values of the eccentricities are small, that is to say, when

the analytical methods may be appropriate.

Then, the study is extended to the case of hyperbolic motion by defining the semifocal anomaly as the relationship Ψ =

f+f ′

2
−

�

2
. In the hyperbolic Keplerian motion it is also proved that the main magnitudes of the two-body problem can also be

obtained in closed form depending on the new variable. Finally, it is obtained that the relationship between true anomaly and

semifocal anomaly obtained in the elliptical movement case can be uncomplicatedly extended to the hyperbolic motion.
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Next, the study of the limit case of the parabolic motion is addressed. We demonstrate by two analytical methods what the

geometric intuition seems to indicate, that is to say, in the parabolic case the semifocal anomaly Ψ coincides with half of the true

anomaly; in this sense, it has to be Ψ =
f

2
, maintaining continuity in the limit case and being, therefore, the semifocal anomaly

a universal variable.

Finally, by way of example, a set of numerical results are presented. Those examples feature the efficiency of this new variable

in the study of the Keplerian motion. The results obtained considerably improve those obtained when the ordinary time or,

equivalently, the mean anomaly are used as the integration variable.
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