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Abstract

Heterogeneous networks have multiple types of nodes and edges. Community detection in single layer and multiplex
networks has been extensively studied in the past decade. But there are few methods have constructed for hetero-
geneous networks. In this paper, we introduce heterogeneous stochastic block models for detecting communities in
heterogeneous networks. Generally these models are developed based on generalization of single-layer stochastic
block model, bipartite stochastic block model and multiplex stochastic block model. We define this two types of
stochastic block model, independent degree and shared degree. Independent degree models have one specific degree
parameter for each layers, shared degree models share one degree parameter for all layers. We introduce a method to
create synthetic networks with benchmark heterogeneous communities. We evaluate the performance of the proposed
community detection algorithm with generalization of Kernighan-Lin algorithm in the controlled environment (with
synthetic benchmark communities). According to our results, shared degree models have better performance in high
crossed networks in contrast independent degree models have better performance in low crossed networks. Exception
when intra-layer densities are high and inter-layer densities are low, single-layer algorithm (flattering network) has
better performance. On real datasets, DBLP and AMiner four-area datasets, proposed methods have good results.

Keywords: Heterogeneous Networks, Stochastic Block Models, Community Detection

1. Introduction

Network community detection has very useful application in different scientific fields, such as physics, biology,
statistics, information technology, social science and many others. Many real networks are heterogeneous that have
different types of nodes and edges.

Definition of is that heterogeneous networks have multiple types of nodes and edges. For example, in a healthcare
network, nodes can be patients, diseases, doctors and hospitals. The edges can be in the type of patient-disease (patient
treated for disease), patient-doctor (patient treated by doctor), doctor-hospital (doctor works at hospital). Figure 1
shows a heterogeneous network. It shows location based social network (say, Yelp) as heterogeneous network, there
are two types of nodes, users and locations. Furthermore, there are three types of interactions in this network. A
user is linked to another user through friendship and a location node is connected through proximity links to other
locations. Also location node represents the visit of a customer to a location.

We can interpret heterogeneous networks as multilayer networks that have some layers each one has one type of
nodes and edges connect them and some bipartite networks each one interconnects different types of nodes. Detecting
communities algorithms in heterogeneous networks have been introduced recently in (Sun and Han, 2021; X. Liu and
Wakita, 2014; Zhang and Chen, 2018; Sengupta and Chen, 2015; Li et al., 2016). Simple approach to community
detection in heterogeneous networks is applying standard community detection algorithms to a one layer (flattering)
network. But flattering approach causes we lose many useful information about heterogeneous networks and commu-
nity detection algorithms can not find best results. For solving this issue, heterogeneous version of Girvan-Newman
modularity have been proposed in (D. Liu and Ma, 2020; Song et al., 2015). But there is no extension of stochastic
block models (SBMs). We want to develop heterogeneous version of SBM.
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Figure 1: A sample multilayer (Yelp) network. (Pramanik et al., 2017)

Stochastic block models (SBMs) are graceful probabilistic models of community structure in networks that have
some different kind. Degree corrected SBM in (Karrer and Newman, 2011) introduced and in (Larremore et al., 2014)
introduced bipartite SBM and in (Valles-Catala et al., 2016; Han et al., 2015; Peixoto, 2015; Paul and Chen, 2015;
Taylor et al., 2016; Stanley et al., 2015) introduced multilayer SBMs.

In (Paul and Chen, 2016) developed several version of multilayer stochastic models. There models are for mul-
tilayer homogenous networks. We can categorize them to two: independent degree, shared degree. Also they used
restricted MLSBMs to develop more models. We use their categories and introduce new models for heterogeneous
network. Independent degree and shared degree and restricted version of them are proposed. For restricted version we
define three different versions because we have two different intra layers and inter layers that we can define restricted
version on them.

2. Definitions

First, we introduce a definition of heterogeneous multilayer networks because the new definition is more useful
for generating data in the future.

We define a heterogeneous network as G = (GU , GB) where GU = {Li : i ∈ {1, 2, . . . ,M}} is a set of M graphs
and GB = {Lij : i, j ∈ {1, 2, . . . ,M} , i ̸= j} is a set of bipartite graphs that contain of intra-layers and inter-layer
edges. Each layer Li = (Vi, Ei), with Viand Eirepresent the nodes and inner edges of each layer, respectively.
Similarly, we can have Lij = (Vi, Vi, Eij)where {Eij ⊆ Vi × Vj : i, j ∈ {1, 2, . . . ,M} , i ̸= j} a bipartite graph that
pairs between layers Liand Lj . Here we define community in heterogeneous multilayer networks.

The community C in a heterogeneous multilayer network G is defined as a crossed module (CU , CB)of G
containing a subset of single or multilayer nodes and all edges between them. Mathematically, CU and CBcan
be expressed as CU =

{
LC
i =

(
V C
i , EC

i

)
: V C

i ⊆ Vi, E
C
i =

{
Ei ∩

(
V C
i , V C

i

)}
, i ∈ {1, 2, . . . ,M}

}
and CB ={

LC
ij =

(
V C
i , V C

j , E
C

ij

)
: V C

i ⊆ Vi, V
C
j ⊆ Vj , E

C
ij =

{
Eij ∩

(
V C
i × V C

j

)}
, i, j ∈ {1, 2, . . . ,M} , i ̸= j

}
. Impor-

tantly, the communities of a multilayer network G can be divided into two types (see Figure 2). (a) cross-layer
communities (containing several types of nodes) that |CB | ≠ K (b) single-layer communities (containing only a sin-
gle type of nodes) that |CU | = K. In the following sections we formulate the heterogeneous stochastic block models
and describe an algorithm that searches for a maximum likelihood partition of a network into communities. We first
compare these models can on synthetic network partition. We then apply these models to several empirical networks,
showing that these models outperform their one layer SBM counterpart.
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Figure 2: Network configurations with different bilayers. (Pramanik et al., 2017)

3. Heterogeneous Multilayer Stochastic Block Model

Throughout the section, we assume that networks have N nodes and M different types, adjacency matrix A is
N × N and the edges Aml

ij are located between two nodes i of layer m and node j of layer l, formed independently
the Poisson distribution. Similarly, we express the matrix of group interrelationships πm,l as a K × K matrix .The
communities associated with nodes are ziand zjand the degree vectors of nodes are kml

i and klmj and let θm,l
i control

the expected degree of vertex i:

Aml
ij | (zi = q, zj = s) = Alm

ji | (zj = s, zi = q) ∼ Poisson(Pm,l
ij )

We will use the notations em,l
qs to denote the total number of edges between communities q in layer m and community

s in layer l. We will use the notations em,l
q to denote the total number of edges in communities q between layer m

and layer l , i.e., em,l
qs =

∑
i,j A

m,l
ij I (zi = q, zj = s) and em,l

q =
∑

i,j A
m,l
i,j I (zi = q) =

∑
i k

m,l
i I (zi = q) , where

I (.) Is the indicator function which is 1 if the condition inside is satisfied and 0 otherwise. Note that em,l
qs = em,l

sq ,
em,l
q =

∑
s e

m,l
qs and em,l

qq is twice the number of edges within the community q between layer m and l .
We model the Poisson mean parameter for multilayer random block model in five different ways with number of

different variables.
The first model is an independent degree model. We define:

Pm,l
ij = θm,l

i θm,l
j πm,l

qs , i, j ∈ {1, . . . N} , m, l ∈ {1, . . .M} q, s ∈ {1, . . . ,K}

With restrictions: ∑
i:zi=q

θm,l
i = 1, m, l ∈ {1, . . . ,M} , q ∈ {1, . . . ,K}

We call it degree corrected multilayer stochastic Block Model (DCMLSBM).
The next model is the modified version of the RMLSBM, which we call it DCRMLSBM-intra-layer. In this model

we have for intra layers:

Pm,l
ij = θm,l

i θm,l
j πqs , i, j ∈ {1, . . . N} , m, l ∈ {1, . . .M} , m = l q, s ∈ {1, . . . ,K}

With restrictions: ∑
i:zi=q

θm,l
i = 1, m, l ∈ {1, . . . ,M} , q ∈ {1, . . . ,K}

The next model is the modified version of the RMLSBM degree, which we call DCRMLSBM-inter-layer. In this
model we have for inter layers:

Pm,l
ij = θm,l

i θm,l
j πqs , i, j ∈ {1, . . . N} , m, l ∈ {1, . . .M} , m ̸= l q, s ∈ {1, . . . ,K}
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With restrictions: ∑
i:zi=q

θm,l
i = 1, m, l ∈ {1, . . . ,M} , q ∈ {1, . . . ,K}

The next model is the modified version of the RMLSBM degree, which we call DCRMLSBM. In this model we have
for all layers:

Pm,l
ij = θm,l

i θm,l
j πqs , i, j ∈ {1, . . . N} , m, l ∈ {1, . . .M} , q, s ∈ {1, . . . ,K}

With restrictions: ∑
i:zi=q

θm,l
i = 1, m, l ∈ {1, . . . ,M} , q ∈ {1, . . . ,K}

In the next model, the underlying model is shared degree, and hence the specific degree parameter of each node is
shared across the layers. We call this model the Block Shared Degree Restricted Multi-Layer Stochastic Block Model
(SDRMLSBM). The model can be written as:

Pm,l
ij = θmi θljβm,lπqs , i, j ∈ {1, . . . N} , m, l ∈ {1, . . .M} , q, s ∈ {1, . . . ,K}

With restrictions: ∑
m

∑
i:zi=q

θmi = 1 m ∈ {1, . . . ,M} , q ∈ {1, . . . ,K}

∑
m,l

βm,l = 1

We use the likelihood method, which is similarly used in 8 and 9, so We maximize log-likelihood, l(A|z;P ), that
obtained from the given communities and adjacent matrix. This is done by substituting in maximize likelihood esti-
mation from the conditional parameter set P on z. log-likelihood condition of DCMLSBM can be written as (excluding
sentences that have no role in the appointment of communities):

log − likelihood (A; z, π, θ) =

M∑
m,l=1

∑
i<j

{
Am,l

ij

{
log
(
πm,l
zizj

)
+ log

(
θm,l
i

)
+ log(θm,l

j )
}
− θm,l

i θm,l
j πm,l

zizj

}

=
∑
m,l

∑
i

km,l
i log

(
θm,l
i

)
+
∑
m,l

∑
q≤s

{
em,l
qs log

(
πm,l
qs

)
− πm,l

qs

}
Maximize likelihood estimation for π can be obtained directly from the log-likelihood function. But for obtaining
maximize likelihood estimation for θ under constraints we have to use Lagrange multiplications. As a result, we
optimize the following objective function:

(θ, µ) =
∑
i

∑
m,l

km,l
i log

(
θm,l
i

)
+
∑
m,l

∑
q

µm,l
q (

∑
i:zi=q

θm,l
i − 1)

Solving maximize likelihood estimation gives the following values for θ and µ:

θ̂m,l
i =

km,l
i∑

i:zi=q k
m,l
i

=
km,l
i

em,l
q

π̂m,l
qs =

∑
i,j:zi=q,zj=s

Am,l
ij = em,l

qs

Substituting these estimates into the log-likelihood function.

log − likelihood (A; z) =
∑
i

∑
m,l

km,l
i log

(
km,l
i

em,l
q

)
+
∑
m,l

∑
q≤s

{
em,l
qs log

(
em,l
qs

)
− em,l

qs

}
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=
∑
m,l

∑
q≤s

em,l
qs log

(
em,l
qs

)
−
∑
m,l

∑
q≤s

em,l
qs

+
∑
i

∑
m,l

km,l
i log

(
km,l
i

)
−
∑
q

∑
m,l

em,l
q log

(
em,l
q

)
Now we have ignoring the sentences that do not depend on the appointment of communities (sentences 2 and 3)

log − likelihood (A; z) =
∑
m,l

∑
q≤s

em,l
qs log

(
em,l
qs

)
−
∑
q

∑
m,l

em,l
q log

(
em,l
q

)
It is easy to understand that this maximum likelihood function can be written as follows

QDCMLSBM =
∑
m,l

∑
q≤s

{
em,l
qs log

(
em,l
qs

em,l
q em,l

s

) }

Its normalized version based on each layers

QDCMLSBM =
∑
m,l

∑
q≤s

{
(e

m,l
qs /Nm,l)log

(
(e

m,l
qs /Nm,l)

(e
m,l
q /Nm,l)(e

m,l
s /Nm,l)

) }

Similarly, for DCRMLSBM-Intra-layer the conditional probability with constraints can be simplified as (omitting
statements that are not parameter dependent).

log−likelihood (A; z, π, θ) =

M∑
m, l = 1
m ̸= l

∑
i<j

{
Am,l

ij

{
log
(
πm,l
zizj

)
+ log

(
θm,l
i

)
+ log

(
θm,l
j

) }
− θm,l

i θm,l
j πm,l

zizj

}

+

M∑
m=1

∑
i<j

{
Am,m

ij

{
log
(
πzizj

)
+ log (θm,m

i ) + log
(
θm,m
j

) }
− θm,m

i θm,m
j πzizj

}
=

∑
m, l
m ̸= l

∑
i

km,l
i log

(
θm,l
i

)
+

∑
m, l
m ̸= l

∑
q≤s

{
em,l
qs log

(
πm,l
qs

)
− πm,l

qs

}

+
∑
m

∑
i

km,m
i log (θm,m

i ) +
∑
m

∑
q≤s

{
em,m
qs log (πqs) − πqs

}
The θ and π in maximize likelihood estimation below and constraints are again obtained using the Lagrange method
as previously described:

θ̂m,l
i =

km,l
i∑

i:zi=q k
m,l
i

=
km,l
i

em,l
q

π̂m,l
qs =

∑
i,j:zi=q,zj=s

Am,l
ij = em,l

qs , m ̸= l

πqs =
∑
m

∑
i,j:zi=q,zj=s

Am,m
ij =

∑
m

em,m
qs

The Modularity function can be obtained by pasting in maximize likelihood estimation and then deleting sentences
that do not depend on community assignment:

log − likelihood (A; z) =
∑
m, l
m ̸= l

∑
q≤s

em,l
qs log

(
em,l
qs

)
−
∑
q

∑
m, l
m ̸= l

em,l
q log

(
em,l
q

)
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+
∑
m

∑
q≤s

em,m
qs log

(∑
m

em,m
qs

)
−
∑
q

∑
m

em,m
q log

(
em,l
q

)
It is easy to understand that this maximum likelihood function can be written as

QDCRMLSBM−Intra−layer =
∑
m, l
m ̸= l

∑
q≤s

{
em,l
qs log

(
em,l
qs

em,l
q em,l

s

)}
+
∑
m

∑
q≤s

{
em,m
qs log

(∑
m em,m

qs

em,l
q em,l

s

)}

Its normalized version based on each layers

QDCRMLSBM−Intra−layer =
∑
m, l
m ̸= l

∑
q≤s

{
(e

m,l
qs /Nm,l)log

(
(e

m,l
qs /Nm,l)

(e
m,l
q /Nm,l)(em,l

s /Nm,l)

)}

+
∑
m

∑
q≤s

{
(e

m,m
qs /Nm,m)log

( ∑
m (e

m,m
qs /Nm,m)

(e
m,m
q /Nm,m)(em,m

s /Nm,m)

)}
Similarly, for DCRMLSBM-Inter-layer the conditional probability with constraints can be simplified as (omitting
statements that are not parameter dependent)

log − likelihood (A; z, π, θ) =

M∑
m, l = 1
m ̸= l

∑
i<j

{
Am,l

ij

{
log
(
πzizj

)
+ log

(
θm,l
i

)
+ log(θm,l

j )
}
− θm,l

i θm,l
j πzizj

}

+

M∑
m=1

∑
i<j

{
Am,m

ij

{
log
(
πm,m
zizj

)
+ log (θm,m

i ) + log(θm,m
j )

}
− θm,m

i θm,m
j πm,m

zizj

}
=

∑
m, l
m ̸= l

∑
i

km,l
i log

(
θm,l
i

)
+

∑
m, l
m ̸= l

∑
q≤s

{
em,l
qs log (πqs) − πqs

}

+
∑
m

∑
i

km,m
i log (θm,m

i ) +
∑
m

∑
q≤s

{
em,m
qs log

(
πm,m
qs

)
− πm,m

qs

}
The θ and π in maximize likelihood estimation below and the constraints are again obtained using the Lagrange
method as previously described:

θ̂m,l
i =

km,l
i∑

i:zi=q k
m,l
i

=
km,l
i

em,l
q

π̂qs =
∑
m,l

∑
i,j:zi=q,zj=s

Am,l
ij =

∑
m, l
m ̸= l

em,l
qs , m ̸= l

πm,m
qs =

∑
i,j:zi=q,zj=s

Am,m
ij = em,m

qs
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The Modularity function can be obtained by pasting in maximize likelihood estimation and then deleting sentences
that do not depend on community assignment:

log − likelihood (A; z) =
∑
m, l
m ̸= l

∑
q≤s

em,l
qs log


∑
m, l
m ̸= l

em,l
qs

 −
∑
q

∑
m, l
m ̸= l

em,l
q log

(
em,l
q

)

+
∑
m

∑
q≤s

em,m
qs log

(
em,m
qs

)
−
∑
q

∑
m

em,m
q log

(
em,l
q

)
It is easy to understand that this maximum likelihood function can be written as

QDCRMLSBM−Inter−layer =
∑
m, l
m ̸= l

∑
q≤s

em,l
qs log


∑

m, l
m ̸= l

em,l
qs

em,l
q em,l

s


+

∑
m

∑
q≤s

{
em,m
qs log

(
em,m
qs

em,l
q em,l

s

)}

Its normalized version based on each layers

QDCRMLSBM−Inter−layer =
∑
m, l
m ̸= l

∑
q≤s

(e
m,l
qs /Nm,l)log


∑

m, l
m ̸= l

(e
m,l
qs /Nm,l)

(e
m,l
q /Nm,l)(em,l

s /Nm,l)




+
∑
m

∑
q≤s

{
(em,m

qs /Nm,m)log

(
(em,m

qs /Nm,m)

(e
m,m
q /Nm,m)(e

m,m
s /Nm,m)

)}
Similarly for DCRMLSBM the conditional probability with constraints can be simplified as (omitting statements that
are not parameter dependent)

log−likelihood (A; z, π, θ) =

M∑
m, l = 1

∑
i<j

{
Am,l

ij

{
log
(
πzizj

)
+ log

(
θm,l
i

)
+ log(θm,l

j )
}
− θm,l

i θm,l
j πzizj

}

The θ and π in maximize likelihood estimation below the constraints are again obtained using the Lagrange method
as previously described:

θ̂m,l
i =

km,l
i∑

i:zi=q k
m,l
i

=
km,l
i

em,l
q

π̂qs =
∑
m,l

∑
i,j:zi=q,zj=s

Am,l
ij =

∑
m, l

em,l
qs ,

The Modularity function can be obtained by pasting in maximize likelihood estimation and then deleting sentences
that do not depend on community assignment:

log − likelihood (A; z) =
∑
m, l

∑
q≤s

em,l
qs log

 ∑
m, l

em,l
qs

 −
∑
q

∑
m, l

em,l
q log

(
em,l
q

)
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It is easy to understand that this maximum likelihood function can be written as follows

QDCRMLSBM =
∑
m, l

∑
q≤s

em,l
qs log

∑ m, l em,l
qs

em,l
q em,l

s


Its normalized version based on each layers

QDCRMLSBM =
∑
m, l

∑
q≤s

(em,l
qs /Nm,l)log

 ∑
m, l (e

m,l
qs /Nm,l)

(e
m,l
q /Nm,l)(em,l

s /Nm,l)


For SDRMLSBM, the log-likelihood function becomes conditional without parameter-independent statements

log − likelihood (A; z, π, θ) =

M∑
m, l = 1

∑
i<j

Am,l
ij

{
log
(
πzizj

)
+ log (βm,l) + log (θmi ) + log(θlj)

}

−θmi θljβm,lπzizj =
∑
m,l

∑
i

km,l
i log (θmi ) +

∑
m,l

∑
q≤s

em,l
qs {log (πqs) + log (βm,l) } −

∑
q≤s

πqs

Maximizes likelihood estimates parameters

θ̂mi =

∑
m,l k

m,l
i∑

m,l

∑
i:zi=q k

m,l
i

=

∑
m,l k

m,l
i∑

m,l e
m,l
q

π̂qs =
∑
m,l

∑
i,j:zi=q,zj=s

Am,l
ij =

∑
m, l

em,l
qs ,

β̂m,l =

∑
q≤s e

m,l
qs∑

m,l

∑
q≤s e

m,l
qs

=
Lm,l

L

After ignoring sentences that are not related to tagging, the Modularity function as

QSDRMLSBM =
∑
m, l

∑
q≤s

em,l
qs log

 ∑
m, l em,l

qs(∑
m,l e

m,l
q

)(∑
m,l e

m,l
s

)


Its normalized version based on each layers

QSDRMLSBM =
∑
m, l

∑
q≤s

(e
m,l
qs /Nm,l)log

 ∑
m, l (e

m,l
qs /Nm,l)(∑

m,l (e
m,l
q /Nm,l)

)(∑
m,l (e

m,l
s /Nm,l)

)


4. Computations

We use the multilayer version of the algorithm used by [9]. The Kerninghan-Lin algorithm is a graph segmentation
algorithm and has a non-greedy approach that leads to more accurate results with given K number of communities.
But this algorithm requires start assignment and the final assignment depends on the quality of the initial assignment.
This algorithm often gets stuck in the local maximum, so we use several starting points to improve the quality and
reach the desired value with the average values of the results. Our algorithm gives the adjacency matrix A as the input,
and assigns values {1, . . . ,K}randomly to the vertices.
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The algorithm searches the probability level by moving a vertex from one group r to another group s. After
proposing all such moves, on all eligible vertices and communities, it chooses the move that most likely increases.
If no improvement is possible, the algorithm selects a motion that minimizes the probability function, as this motion
helps to escape the local optimum. We allow each node to move only once, and when all vertices have moved, the
states through which the previous system was evaluated and the status with the highest desired score are used as a
starting point for repeating the next search. When a complete iteration occurs without any improvement in target
amount, algorithm ends.

5. Synthetic Networks Results

In this section, we compare the performance of modularity values to identify communities through a simulation.
Because the real assignments of nodes on simulated data are known, we compare the assignment of communities in
different models. As a metric, we use Normalized Mutual Information (NMI), a measurement based on information
theory that measures similarity between two clusters. This metric shows values between 0 and 1, 0 indicates that the
assignment according to the real assignment is random, and 1 indicates a complete match with the real assignment and
algorithm assignment. Since the measurement is ”normalized”, clustering methods can also be compared to a large
number of clusters. Finally, assuming that the number of clusters is already known, we perform the clustering accuracy
by comparing the values of NMI. All results reported during the experiment are averaged over 100 simulations.

5.1. Data generation

In this section, we propose a methodology for generating heterogeneous multilayer networks. The α parameter
regulates the amount of crossing of communities between inter-layers. This network contains a number of different
M layers in which each Lilayer has Ninodes With density di = density(Li). The method consists of the following
three steps:

Step 1. Intra-layer Networks Block Matrix:. We generate data with a degree corrected multi-layered stochastic block
model. First label the Ni nodes with |Ci| communities. We consider the community. The size of network communities
can be balanced (of equal size) or unbalanced (of unequal size). Then we generate a different connection matrix for
each layer using a stochastic block model. In our stochastic block model, the connection matrix is considered more
probability values for intra-block edges than for inter-block edges. To control the strength signal of connection matrix
values of the random connection matrix in diameter adds amounts that subtracted from non-diameter values. ωrandom

rs

represents a completely random network whose values are the expected values in a random graph with constant
degrees, which we have ωrandom

rs = κrκs/2m . Where κr = nsdithat nsis the number of nodes in the community
s and diis the density of that layer. This means that by subtracting from the non-diameter elements of the matrix
ωrandom
rs and adding it to the elements of the diameter. For a strong signal, the diameter entries are 3 to 4 times more

than entries in that row or column. For a weak signal, the diameter entries are equal to entries in that row or column.

ωrandom =


n1n1d n1n2d · · ·

n1n2d
. . . . . .

...
...

. . .


By adding and subtracting, entries on the diameter and non-diameter can determine signal.

n1n1d+ x n1n2d− x · · ·

n1n2d− x
. . . . . .

...
...

. . .


The degree parameter is generated using the power law distribution. For each node of each layer in the power law
distribution, we consider an independent parameter.
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Figure 3: Simulation of strong intra layers and strong inter layers and the alpha parameter is variable (A) intra-layer-density =0.2 and inter-layer-
density = 0.2 (B) intra-layer-density =0.2 and inter-layer-density = 0.05 (C) intra-layer-density =0.05 and inter-layer-density = 0.2

Step 2. Inter Layer Communities:. We combine the community xi = Cifrom layer Liwith the community xj =
Cjfrom layer Lj to generate the community xij . Assuming |Ci| and |Cj | as the number of communities of layers
Liand Lj , therefore |Cc| = min {|Ci| , |Cj |} specifies the maximum possible number of communities in inter layers.
We construct|Cc|×α communities of inter-layers by crossing the inter layer communities of both Liand Lj randomly.

Step 3. Inter Network Block Matrix: . To build inter networks similar to intra networks, except that here the diameter
entry is considered only to the communities that were crossed in the previous step, and the communities that are not
crossed on the diameter are zero. For crossed communities, diameters entries must be determined similar first step.

For example, if only community 1 was crossed in the previous step, the matrix ωrandom as

ωrandom =

 n1n1d n1n2d n1n3d
n2n1d 0 n2n3d
n3n3d n3n2d 0


By adding and subtracting, entries on the diameter and non-diameter can determine signal. n1n1d+ x+ y n1n2d− x n1n3d− y

n2n1d− x 0 n2n3d
n3n1d− y n3n2d 0


5.2. Simulation Results

For this simulation, we consider the value of M to be 3 and Nito be equal to each other at 100, and the Cito be
equal to 5. We also consider the size of communities to be balanced. According to the strong signal and weak of the
layers, three modes can be considered for the signal of layers:

(1) Strong intra layers and strong inter layers
(2) Strong intra layers and weak inter layers
(3) Weak intra layers and strong inter layers

The NMI criterion must be examined according to the change in the density of the layers and the α parameter.

5.2.1. Strong intra layers and strong inter layers
To investigate the effect of density on the performance of our models, the α parameter must change and we

consider three different states: in fact, three different states of density of intra layers and inter layers, so that the intra
layers are high and the inter layers are high. Intra layers are high and inter layers are low. Intra layers are low and
inter layers are high. The results shows in Figure 3.
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Figure 4: Simulation of strong intra layers and weak inter layers and the alpha parameter is variable (A) intra-layer-density =0.2 and inter-layer-
density = 0.2 (B) intra-layer-density =0.2 and inter-layer-density = 0.05 (C) intra-layer-density =0.05 and inter-layer-density = 0.2

Figure 5: Simulation of weak intra layers and strong inter layers and the alpha parameter is variable (A) intra-layer-density =0.2 and inter-layer-
density = 0.2 (B) intra-layer-density =0.2 and inter-layer-density = 0.05 (C) intra-layer-density =0.05 and inter-layer-density = 0.2

5.2.2. Strong intra layers and weak inter layers
To investigate the effect of density on the performance of our models, the α parameter must change and we

consider three different states: in fact, three different states of density of intra layers and inter layers, so that the intra
layers are high and the inter layers are high. Intra layers are high and inter layers are low. Intra layers are low and
inter layers are high. The results shows in Figure 4.

5.2.3. Weak intra layers and strong inter layers
To investigate the effect of density on the performance of our models, the α parameter must change and we

consider three different states: in fact, three different states of density of intra layers and inter layers, so that the intra
layers are high and the inter layers are high. Intra layers are high and inter layers are low. Intra layers are low and
inter layers are high. The results shows in Figure 5. As seen in different simulations. The DCMLSBM performance is
better in the smaller amount of the alpha parameter, and The DCRMLSBM performance is better in the larger amount
of the alpha parameter. It seems that the reason is also in the crossing of communities between different layers.

However, in the states that intra-layer-density are high and inter-layer-density are low and the α parameter is low,
one layer model has better performance in comparison to DCMLSBM.

6. Real Networks Results

6.1. DBLP Dataset

A subset of the DBLP dataset which is a computer science bibliography website was extracted in (Gao et al., 2009).
DBLP has more than 3.4 million journal articles, conference papers, and other publications in computer science.
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Table 1: The NMI of clustering from different community detection methods for DBLP and AMiner datasets
DCMLSBM DCRMLSBM-

Intra-Layer
DCRMLSBM-
Inter-Layer

DCRMLSBM SDRMLSBM DCSBM

DBLP 0.920014 0.920014 0.882668 0.882668 0.885119 0.85599
AMiner 0.901216 0.901216 0.872698 0.872698 0.875139 0.84691

This subset has bibliographical records from four research areas: database, data mining, information retrieval, and
artificial intelligence that are its labels for detecting. This network contains three types of nodes: paper, conference,
and author and two types of edges: paper-conference (paper published at conference), paper-author (paper written by
author). This dataset has 14,376 papers written by 14,475 authors, and published at 20 conferences that are labeled
with the research areas. Just only 4,057 authors have true research area that are connected to a subset of 14,328 papers,
covering all 20 conferences. Finding the true research areas of the authors is our problem. We apply our data analysis
algorithms on this labeled subset of the data because error rates can be computed on labeled data.

Applying our five different proposed methods and one layer DCSBM for 100 reputations. The results shows in
Table 1.

6.2. AMiner Dataset

AMiner uses social network analysis to search and perform data mining operations against academic publica-
tions on the Internet and identifying connections between researchers, conferences, and publications. It has indexed
130,000,000 researchers and more than 265 million publications.

A subset of the AMiner was extracted that contains three types of nodes: paper, conference, and author and two
types of edges: paper-conference (paper published at conference), paper-author (paper written by author). This dataset
has 127,623 papers written by 164,472 authors, and published at 101 conferences that are labeled with 10 research
areas. . Just only 127,202 papers have true research area. Finding the true research areas of the authors is our problem.
We apply our data analysis algorithms on this labeled subset of the data because error rates can be computed on labeled
data.

Applying our five different proposed methods and one layer DCSBM for 100 reputations. The results shows in
Table 1.

7. Conclusions

In this paper, we have described stochastic block models for heterogeneous networks. These models can be divided
into two broad categories, based on independent degree and those based on common degree. While independent
degree models have a separate degree parameter in each layer for each node, shared degree base models share degree
information in layers. Independent degree model has better performance at more local communities networks (lower
alpha parameter) in contrast shared degree model has better performance at more global communities networks (higher
alpha parameter). But there is exception in low inter layers density networks that one layer degree corrected stochastic
block model has better performance.
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