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1. Introduction

In this paper, we only consider simple and finite connected graphs, we refer to [2] and the references cited

therein. Chemistry has been widely studied and applied in graph theory. The chemical compounds can be

described in chemical graph theory, vertices represent the atoms and edges stand for the covalent bonds between

atoms.

Predicting the physicochemical properties of compounds is considered to be an attractive problem in theoretical

chemistry. Many predictive methods are being and have been developed to connect molecular structures and

their physicochemical properties. One of the most important methods in chemical graph theory are usually called

topological indices. According to the different parameters such as point degree, adjacent point degree and distance

between two points, topological indices can be divided into many categories.

Hydrocarbons are a kind of very important substances, and their derivatives has always been an important

research topic in the field of organic chemistry. Cyclooctatetraene is a typical unsaturated hydrocarbon, so more

and more people study its structure and properties, and the research in chemical graph theory is more and more

in-depth. In this article, we consider four kinds indices of cyclooctatetraene chains with n octagons. For more

information, we can refer to [11, 27, 30, 34].

Let G = (VG, EG) be a graph with vertex set VG and the edge set EG. The distance, dG(u, v) (or d(u, v) for

short), between vertices u and v of G is the length of a shortest u, v − path in G. The famous Wiener index (or

transmission) ω(G) of EG is the sum of distances between all pairs of vertices of G. It was created by Harry

Wiener in 1947 [37], that is,

W (G) =
∑

{u,v}⊆VG

dG(u, v).

The Wiener index is calculated in several survey papers (see [4, 9, 22, 38]) and is more and more widely used and

studied, see [21, 26, 45].
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A weighted graph [44] (G,ω) is a graph G = (VG, EG) together with the weight function ω: VG → N
+. Let ⊕

denote one of the four operations +,−,×,÷. The weighted Wiener index W (G,ω) is defined as

W (G,ω) =
1

2

∑

u∈VG

∑

v∈VG

(ω(u)⊕ ω(v))dG(u, v). (1.1)

Clearly, if ω ≡ 1 and ⊕ denotes the operation ×, then W (G,ω) = W (G).
If ⊕ denotes the operation × and ω(·) ≡ dG(·), the corresponding vertex degree, then (1.1) is equivalent to

Gut(G) =
1

2

∑

u∈VG

∑

v∈VG

(dG(u)dG(v))dG(u, v) =
∑

{u.v}⊆VG

(dG(u)dG(v))dG(u, v), (1.2)

which is just the Gutman index. For the study of the possible chemical applications of Gutman index, and similar
quantities, as well as their theoretical studies, polycyclic molecules are more difficult cases, see [3, 39].

If ⊕ denotes the operation + and ω(·) ≡ dG(·), then (1.1) is equivalent to

S(G) =
1

2

∑

u∈VG

∑

v∈VG

(dG(u) + dG(v))dG(u, v) =
∑

{u.v}⊆VG

(dG(u) + dG(v))dG(u, v), (1.3)

which is just the Schultz index. More articles on developing such a topology indexes of the [10, 16].
The resistance distance r(x, y) is the potential difference between x and y of G induced by the unique x − y

flow intensity 1 satisfying Kirchhoffs cycle law [12], for more detailed information in [7, 13, 18]. The Wiener index
for non-trees is the Kirchhoff index, this distance funtion proposed by Klein and Randić [20], defined as

Kf(G) =
∑

{x,y}⊆VG

r(x, y),

there are introduced the eccentric distance sum and the eccentricity resistance-distance sum, refer to [15, 19, 24].
In 2007, The multiplicative degree-Kirchhoff index was proposed by Chen and Zhang in [5], which was defined

as

Kf∗(G) =
∑

{x,y}⊆VG

d(x)d(y)r(x, y) = 2|EG|

n∑

i=2

1

λi

, (1.4)

where 0 = λ1 < λ2 ≤ · · · ≤ λn are the eigenvalues of ℓ(G). Here, ℓ(G) is the normalized Laplacian matrix of the
graph G, which was proposed by Chung [6]. The normalized Laplacian index and multiplicative degree-Kirchhoff
index have important applications in mathematical chemistry and statistics. Their research has attracted more
and more researchers’ attention, which can be seen in [1, 25, 31].

In 2012, Gutman, Feng and Yu [14] introduced the additive degree-Kirchhoff index, which was defined as

Kf+(G) =
∑

{x,y}⊆VG

(d(x) + d(y))r(x, y). (1.5)

For the results on the additive degree-Kirchhoff index, one may be referred to Refs.[32, 41, 42].
A random cyclooctatetraene chain Gn with n octagons can be considered as a cyclooctatetraene chain Gn−1

with n − 1 octagons to which a new terminal octagon Hn has been adjoined by a cut edge, see Figure1. For
n ≥ 3, the terminal octagon Hn can be attached in four ways, which results in the local arrangements we describe
as G1

n, G2
n, G3

n, G4
n, see Figure 2. A random cyclooctatetraene chain Gn(p1, p2, p3) with n octagons is

a cyclooctatetraene chain obtained by stepwise addition of terminal octagons. At each step k(= 3, 4, . . . , n) a
random selection is made from one of the four possible constructions:

• Gk−1 → G1
k with probability p1,

• Gk−1 → G2
k with probability p2,

• Gk−1 → G3
k with probability p3,

• Gk−1 → G4
k with probability p4 = 1− p1 − p2 − p3,
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Figure 1: A cyclooctatetraene chain Gn with n octagons.

Figure 2: The four types of local arrangements in cyclooctatetraene chains.

where the probabilities p1, p2 and p3 are constants, irrelative to the step parameter k.
Let Gn be a cyclooctatetraene chain with n octagons H1, H2, . . . , Hn. Set ukωk be the cut edge of Gn

connecting Hk and Hk+1 with uk ∈ VHk
, ωk ∈ VHk+1

for k = 1, 2, . . . , n− 1. Clearly, both ωk and uk+1 are the
vertices in Hk+1 and d(ωk, uk+1) ∈ {1, 2, 3, 4}. Specially, Gn is the meta-chain Mn, the ortho-chain O1

n, O
2
n and

the para-chain Ln if d(ωk, uk+1) = 1 (i.e., p1 = 1), d(ωk, uk+1) = 2 (i.e., p2 = 1), d(ωk, uk+1) = 3 (i.e., p3 = 1)
and d(ωk, uk+1) = 4 (i.e., p4 = 1) for all k ∈ {1, 2, . . . , n− 2}, respectively.

Yang and Zhang [40] and Ma et al. [29], independently, obtained a simple exact formula for the expected
value of the Wiener index of a random polyphenylene chain. Huang, Kuang and Deng [17] obtained the expected
values of the Kirchhoff index of random polyphenyl and spiro chains. Wei and Shiu [36] gave the simple formulas
of the expected value of the Wiener index of random polygonal chain. Very recently, Zhang, Li, Li and one
of the authors of this paper obtained the expected values of the expected values for the Schultz index, Gutman
index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain,
see in [44]. Zhang, Peng and Chen [43] established the explicit analytical expressions for the variance of the
Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degreeKirchhoff index of a
random polyphenylene chain. In [23], the explicit analytical expressions for the expected values of the Kirchhoff
index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index in random polygonal chains were
established by solving a difference equation.

Motivated by these results, in this paper, we calculate the explicit analytical expressions for the expected
values of the Gutman index, the Schultz index, the multiplicative degree-Kirchhoff index and the additive degree-
Kirchhoff index of a random cyclooctatetraene chain. We also obtain the average values of these four indices with
respect to the set of all cyclooctatetraene chains with n octagons. The following are our main results:

Theorem 1.1. For n ≥ 1, the expected value of the Gutman index, the Schultz index, the multiplicative degree-

Kirchhoff index and the additive degree-Kirchhoff indexof random cyclooctatetraene chain Gn, respectively, are

E(Gut(Gn)) = (270− 162p1 − 108p2 − 54p3)n
3 + (486p1 + 324p2 + 162p3 − 90)n2

+(77− 324p1 − 216p2 − 108p3)n− 1; (1.6)

E(S(Gn)) = (240− 144p1 − 96p2 − 48p3)n
3 + (432p1 + 288p2 + 144p3 − 40)n2

+(56− 288p1 − 192p2 − 96p3)n; (1.7)

3



E(Kf∗(Gn)) = (162−
243

4
p1 − 27p2 −

27

4
p3)n

3 + (36 +
729

4
p1 + 81p2 +

81

4
p3)n

2

−(29 +
243

2
p1 + 54p2 +

27

2
p3)n− 1; (1.8)

E(Kf∗(Gn)) = (−
243

4
n3 +

729

4
n2 −

243

2
n)(1− p2) + (−27n3 + 81n2 − 54n)p2

+162n3 + 36n2 − 29n− 1. (1.9)

Corollary 1.2. For a random cyclooctatetraene chain Gn (n ≥ 3), the para-chain Ln realizes the maximum of

E(Gut(Gn)), E(S(Gn)), E(Kf∗(Gn)) and E(Kf∗(Gn)), respectively, while the meta-chain Mn realizes these of

minimum.

For convenience, let Θn be the set of all cyclooctatetraene chains with n octagons. We give the average values
of the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index
with respect to Θn.

Gutavr(Θn) =
1

|Θn|

∑

G∈Θn

Gut(G), Savr(Θn) =
1

|Θn|

∑

G∈Θn

S(G),

Kf∗
avr(Θn) =

1

|Θn|

∑

G∈Θn

Kf∗(G), Kf+
avr(Θn) =

1

|Θn|

∑

G∈Θn

Kf+(G).

For achieving the average value Gutavr(Θn) (resp. Savr(Θn), Kf∗
avr(Θn), Kf+

avr(Θn)), It takes p1 = p2 = p3 =
p4 = 1

4
in the expected value E(Gut(Gn)) (resp. E(S(Gn)), E(Kf∗(Gn)), E(Kf+(Gn))). According to Theorem

1.1, we have

Theorem 1.3. For n ≥ 1, the average values of the Gutman index, Schultz index, multiplicative degree-Kirchhoff

index and additive degree-Kirchhoff index with respect to Θn are

Gutavr(Θn) = 189n3 + 153n2 − 85n− 1, Savr(Θn) = 168n3 + 176n2 − 88n,

Kf∗
avr(Θn) =

1107

8
n3 +

855

8
n2 −

305

4
n− 1, Kf+

avr(Θn) = 123n3 + 124n2 − 79n.

After validation, the following equations are established,

Gutavr(Θn) =
1

4
Gut(Mn) +

1

4
Gut(O1

n) +
1

4
Gut(O2

n) +
1

4
Gut(Ln),

Savr(Θn) =
1

4
S(Mn) +

1

4
S(O1

n) +
1

4
S(O2

n) +
1

4
S(Ln),

Kf∗
avr(Θn) =

1

4
Kf∗(Mn) +

1

4
Kf∗(O1

n) +
1

4
Kf∗(O2

n) +
1

4
Kf∗(Ln),

Kf+
avr(Θn) =

1

4
Kf+(Mn) +

1

4
Kf+(O1

n) +
1

4
Kf+(O2

n) +
1

4
Kf+(Ln).

2. Proofs of (1.6) and (1.7) in Theorem 1.1

In this section, we give the proofs of (1.6) and (1.7) in Theorem 1.1. Note that Gn+1 is obtained from Gn by
attaching a new terminal octagon Hn+1 through an edge, where Hn+1 is spanned by vertices x1, x2, x3, x4, x5,
x6, x7, x8, and the new edge is unx1; see Figure 1.

Consider the distance between a vertex in VGn
and a vertex in VHn+1

, for any v ∈ VGn
, one has

d(x1, v) = d(un, v) + 1, d(x2, v) = d(un, v) + 2, d(x3, v) = d(un, v) + 3, d(x4, v) = d(un, v) + 4, (2.1)

d(x5, v) = d(un, v) + 5, d(x6, v) = d(un, v) + 4, d(x7, v) = d(un, v) + 3, d(x8, v) = d(un, v) + 2, (2.2)
∑

v∈VGn

dGn+1
(v) = 18n− 1. (2.3)
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Consider the distance between two vertices in VHn+1
, one has

8∑

i=1

d(xi)d(x1, xi) = 32,

8∑

i=1

d(xi)d(x2, xi) = 33,

8∑

i=1

d(xi)d(x3, xi) = 34,

8∑

i=1

d(xi)d(x4, xi) = 35, (2.4)

8∑

i=1

d(xi)d(x5, xi) = 36,
8∑

i=1

d(xi)d(x6, xi) = 35,
8∑

i=1

d(xi)d(x7, xi) = 34,
8∑

i=1

d(xi)d(x8, xi) = 33. (2.5)

Firstly, we prove that (1.6) holds. By (1.2) one has

Gut(Gn+1) =
∑

{u,v}⊆VGn

d(u)d(v)d(u, v) +
∑

v∈VGn

∑

xi∈VHn+1

d(v)d(xi)d(v, xi) +
∑

{xi,xj}⊆VHn+1

d(xi)d(xj)d(xi, xj).

Note that

∑

{u,v}⊆VGn

d(u)d(v)d(u, v) =
∑

{u,v}⊆VGn\{un}

d(u)d(v)d(u, v) +
∑

v∈VGn\{un}

dGn+1
(un)d(v)d(un, v)

=
∑

{u,v}⊆VGn\{un}

d(u)d(v)d(u, v) +
∑

v∈VGn\{un}

(dGn
(un) + 1)d(v)d(un, v)

= Gut(Gn) +
∑

v∈VGn

d(v)d(un, v).

Recall that d(x1) = 3 and d(xi) = 2 for i ∈ {2, 3, 4, 5, 6, 7, 8}. From (2.1)-(2.3), we have

∑

v∈VGn

∑

xi∈VHn+1

d(v)d(xi)d(v, xi)

=
∑

v∈VGn

d(v)[3(d(un, v) + 1) + 2(d(un, v) + 2) + 2(d(un, v) + 3) + 2(d(un, v) + 4)

+ 2(d(un, v) + 5) + 2(d(un, v) + 4) + 2(d(un, v) + 3) + 2(d(un, v) + 2)]

=
∑

v∈VGn

d(v)(17d(un, v) + 49)

=17
∑

v∈VGn

d(v)d(un, v) + 49
∑

v∈VGn

d(v)

=17
∑

v∈VGn

d(v)d(un, v) + 49(18n− 1).

From (2.4)-(2.5), one has

∑

{xi,xj}⊆VHn+1

d(xi)d(xj)d(xi, xj) =
1

2

8∑

i=1

d(xi)(

8∑

j=1

d(xj)d(xi, xj))

=
1

2
[3× 32 + 2× 33 + 2× 34 + 2× 35 + 2× 36 + 2× 35 + 2× 34 + 2× 33]

=288.

Thus,

Gut(Gn+1) = Gut(Gn) + 18
∑

v∈VGn

d(v)d(un, v) + 882n+ 239. (2.6)

For a random cyclooctatetraene chain Gn, the number
∑

v∈VGn
d(v)d(un, v) is a random variable. We may denote

its expected value by

An := E(
∑

v∈VGn

d(v)d(un, v)).
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By a direct calculation and (2.6), we can obtain a recurrence relation for the expected values of the Gutman index
of a random cyclooctatetraene chain Gn as follows,

E(Gut(Gn+1)) = E(Gut(Gn)) + 18An + 882n+ 239.

Considering the following four possible cases.
Case1. Gn −→ G1

n+1. In this case, un(ofGn) considers the vertex x2 or x8. Consequently,
∑

v∈VGn
d(v)d(un, v)

is given by
∑

v∈VGn
d(v)d(x2 , v) or

∑
v∈VGn

d(v)d(x8, v) with probability p1.

Case2. Gn −→ G2
n+1. In this case, un(ofGn) considers the vertex x3 or x7. Consequently,

∑
v∈VGn

d(v)d(un, v)

is given by
∑

v∈VGn
d(v)d(x3 , v) or

∑
v∈VGn

d(v)d(x7, v) with probability p2.

Case3. Gn −→ G3
n+1. In this case, un(ofGn) considers the vertex x4 or x6. Consequently,

∑
v∈VGn

d(v)d(un, v)

is given by
∑

v∈VGn
d(v)d(x4 , v) or

∑
v∈VGn

d(v)d(x6, v) with probability p3.

Case4. Gn −→ G4
n+1. In this case, un(ofGn) considers the vertex x5. Consequently,

∑
v∈VGn

d(v)d(un, v) is

given by
∑

v∈VGn
d(v)d(x5, v) with probability 1− p1 − p2 − p3.

According to the above four cases, we may obtain the expected value An as

An =p1
∑

v∈VGn

d(v)d(x2, v) + p2
∑

v∈VGn

d(v)d(x3, v) + p3
∑

v∈VGn

d(v)d(x4, v) + (1− p1 − p2 − p3)
∑

v∈VGn

d(v)d(x5, v)

=p1[
∑

v∈VGn−1

d(v)d(un−1, v) + 2
∑

v∈VGn−1

d(v) + 33]

+ p2[
∑

v∈VGn−1

d(v)d(un−1, v) + 3
∑

v∈VGn−1

d(v) + 34]

+ p3[
∑

v∈VGn−1

d(v)d(un−1, v) + 4
∑

v∈VGn−1

d(v) + 35]

+ (1− p1 − p2 − p3)[
∑

v∈VGn−1

d(v)d(un−1, v) + 5
∑

v∈VGn−1

d(v) + 36].

By applying the expected operator to the above equation, and noting that E(An) = An, we obtain

An =p1(An−1 + 36n− 5) + p2(An−1 + 54n− 23) + p3(An−1 + 72n− 41) + (1− p1 − p2 − p3)(An−1 + 90n− 59)

=An−1 + (90− 54p1 − 36p2 − 18p3)n+ 54p1 + 36p2 + 18p3 − 59.

The boundary condition is

A1 = E(
∑

v∈VG1

d(v)d(u1, v)) = 32.

According to the above recurrence relation and the boundary condition, we have

An = (45− 27p1 − 18p2 − 9p3)n
2 + (27p1 + 18p2 + 9p3 − 14)n+ 1.

Therefore,

E(Gut(Gn+1)) = E(Gut(Gn)) + 18An + 882n+ 239

= E(Gut(Gn)) + 18[(45− 27p1 − 18p2 − 9p3)n
2 + (27p1 + 18p2 + 9p3 − 14)n+ 1] + 882n+ 239,

and the boundary condition is E(Gut(G1)) = 256.
According to the above recurrence relation and the boundary condition, we have

E(Gut(Gn)) =(270− 162p1 − 108p2 − 54p3)n
3 + (486p1 + 324p2 + 162p3 − 90)n2

+ (77− 324p1 − 216p2 − 108p3)n− 1,

(1.6) holds.
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Then, we prove that (1.7) holds. By (1.3), one has

S(Gn+1) =
∑

{u,v}⊆VGn

(d(u) + d(v))d(u, v) +
∑

v∈VGn

∑

xi∈VHn+1

(d(v) + d(xi))d(v, xi)

+
∑

{xi,xj}⊆VHn+1

(d(xi) + d(xj))d(xi, xj).

By a similar discussion as the proof of (1.6), one has

∑

{u,v}⊆VGn

(d(u) + d(v))d(u, v) =
∑

{u,v}⊆VGn\{un}

(d(u) + d(v))d(u, v) +
∑

v∈VGn\{un}

(dGn+1
(un) + d(v))d(un, v)

=
∑

{u,v}⊆VGn\{un}

(d(u) + d(v))d(u, v) +
∑

v∈VGn\{un}

(dGn
(un) + 1 + d(v))d(un, v)

= S(Gn) +
∑

v∈VGn

d(un, v).

Recall that d(x1) = 3 and d(xi) = 2 for i ∈ {2, 3, 4, 5, 6, 7, 8}. From (2.1)-(2.3), we have

∑

v∈VGn

∑

xi∈VHn+1

(d(v) + d(xi))d(v, xi)

=
∑

v∈VGn

∑

xi∈VHn+1

d(v)d(v, xi) +
∑

v∈VGn

∑

xi∈VHn+1

d(xi)d(v, xi)

=
∑

v∈VGn

d(v)[(d(un, v) + 1) + (d(un, v) + 2) + (d(un, v) + 3) + (d(un, v) + 4)

+ (d(un, v) + 5) + (d(un, v) + 4) + (d(un, v) + 3) + (d(un, v) + 2)]

+
∑

v∈VGn

[3(d(un, v) + 1) + 2(d(un, v) + 2) + 2(d(un, v) + 3) + 2(d(un, v) + 4)

+ 2(d(un, v) + 5) + 2(d(un, v) + 4) + 2(d(un, v) + 3) + 2(d(un, v) + 2)]

=
∑

v∈VGn

d(v)(8d(un, v) + 24) +
∑

v∈VGn

(17d(un, v) + 49)

=8
∑

v∈VGn

d(v)d(un, v) + 24(18n− 1) + 17
∑

v∈VGn

d(un, v) + 49× 8n.

Note that
∑8

i=1
d(xk, xi) = 16 for k = 1, 2, 3, 4, 5, 6, 7, 8. From (2.4)-(2.5), one has

∑

{xi,xj}⊆VHn+1

(d(xi) + d(xj))d(xi, xj) =
1

2

8∑

i=1

8∑

j=1

(d(xi) + d(xj))d(xi, xj)

=

8∑

i=1

8∑

j=1

d(xi)d(xi, xj) = 16× (3 + 2× 7)

=272.

Then
S(Gn+1) = S(Gn) + 18

∑

v∈VGn

d(un, v) + 8
∑

v∈VGn

d(v)d(un, v) + 824n+ 248. (2.7)

For a random cyclooctatetraene chain Gn, the number
∑

v∈VGn
d(un, v) is a random variable. We may denote its

expected value by

Bn := E(
∑

v∈VGn

d(un, v)).
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By a direct calculation and (2.7), we can obtain a recurrence relation for the expected values of the Schuitz index
of a random cyclooctatetraene chain Gn as follows,

E(S(Gn+1)) = E(S(Gn)) + 18Bn + 8An + 824n+ 248.

Considering the following four possible cases.
Case1. Gn −→ G1

n+1. In this case, un is the vertex x2 or x8. Consequently,
∑

v∈VGn
d(un, v) is given by∑

v∈VGn
d(x2, v) or

∑
v∈VGn

d(x8, v) with probability p1.

Case2. Gn −→ G2
n+1. In this case, un is the vertex x3 or x7. Consequently,

∑
v∈VGn

d(un, v) is given by∑
v∈VGn

d(x3, v) or
∑

v∈VGn
d(x7, v) with probability p2.

Case3. Gn −→ G3
n+1. In this case, un is the vertex x4 or x6. Consequently,

∑
v∈VGn

d(un, v) is given by∑
v∈VGn

d(x4, v) or
∑

v∈VGn
d(x6, v) with probability p3.

Case4. Gn −→ G4
n+1. In this case, un is the vertex x5. Consequently,

∑
v∈VGn

d(un, v) is given by
∑

v∈VGn
d(x5, v)

with probability 1− p1 − p2 − p3.
According to the above four cases, we may obtain the expected value Bn as

Bn =p1
∑

v∈VGn

d(x2, v) + p2
∑

v∈VGn

d(x3, v) + p3
∑

v∈VGn

d(x4, v) + (1− p1 − p2 − p3)
∑

v∈VGn

d(x5, v)

=p1[
∑

v∈VGn−1

d(un−1, v) + 2× 8(n− 1) + 16]

+ p2[
∑

v∈VGn−1

d(un−1, v) + 3× 8(n− 1) + 16]

+ p3[
∑

v∈VGn−1

d(un−1, v) + 4× 8(n− 1) + 16]

+ (1− p1 − p2 − p3)[
∑

v∈VGn−1

d(un−1, v) + 5× 8(n− 1) + 16].

By applying the expected operator to the above equation, and noting that E(Bn) = Bn, we obtain

Bn =p1(Bn−1 + 16n) + p2(Bn−1 + 24n− 8) + p3(Bn−1 + 32n− 16) + (1− p1 − p2 − p3)(Bn−1 + 40n− 24)

=Bn−1 + (40− 24p1 − 16p2 − 8p3)n+ 24p1 + 16p2 + 8p3 − 24.

The boundary condition is

B1 = E(
∑

v∈VG1

d(u1, v)) = 16.

According to the above recurrence relation and the boundary condition, we have

Bn = (20− 12p1 − 8p2 − 4p3)n
2 + (12p1 + 8p2 + 4p3 − 4)n.

Recall that
An = (45− 27p1 − 18p2 − 9p3)n

2 + (27p1 + 18p2 + 9p3 − 14)n+ 1.

Therefore,

E(S(Gn+1)) =E(S(Gn)) + 18Bn + 8An + 824n+ 248

=E(S(Gn)) + 18[(20− 12p1 − 8p2 − 4p3)n
2 + (12p1 + 8p2 + 4p3 − 4)n]

+ 8[(45− 27p1 − 18p2 − 9p3)n
2 + (27p1 + 18p2 + 9p3 − 14)n+ 1] + 824n+ 248,

and the boundary condition is E(S(G1)) = 256.
According to the above recurrence relation and the boundary condition, we have

E(S(Gn)) =(240− 144p1 − 96p2 − 48p3)n
3 + (432p1 + 288p2 + 144p3 − 40)n2

+ (56− 288p1 − 192p2 − 96p3)n,
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(1.7) holds. This completes the proof.
Specially, if p1 = 1, which implies p2 = p3 = p4 = 0, that is, (p1, p2, p3, p4) = (1, 0, 0, 0), then Gn

∼= Mn.
Similarly, if we take (p1, p2, p3, p4) = (0, 1, 0, 0) (resp. (0, 0, 1, 0), (0, 0, 0, 1)), then Gn

∼= O1
n (resp. Gn

∼=
O2

n, Gn
∼= Ln). By (1.6) and (1.7) in Theorem 1.1 we can receive the Gutman indices and the Schultz indices of

the meta-chain Mn, the ortho-chain O1
n, O

2
n, the para-chain Ln, as

Gut(Mn) = 108n3 + 396n2 − 247n− 1, Gut(O1
n) = 162n3 + 234n2 − 139n− 1,

Gut(O2
n) = 216n3 + 72n2 − 31n− 1, Gut(Ln) = 270n3 − 90n2 + 77n− 1

and
S(Mn) = 96n3 + 392n2 − 232n, S(O1

n) = 144n3 + 248n2 − 136n,

S(O2
n) = 192n3 + 104n2 − 40n, S(Ln) = 240n3 − 40n2 + 56n,

respectively. Furthermore, by direct calculation one has

Gut(Mn) +Gut(Ln) = Gut(O1
n) +Gut(O2

n), S(Mn) + S(Ln) = S(O1
n) + S(O2

n).

3. Proofs of (1.8) and (1.9) in Theorem 1.1

In order to prove Theorem 1.1, it suffices to prove that (1.8) and (1.9) hold. In this section, we give the proofs
of them. Consider the resistance distance between a vertex in VGn

and a vertex in VHn+1
, for any v ∈ VGn

, one
has

r(x1, v) = r(un, v)+1, r(x2, v) = r(un, v)+1+
7

8
, r(x3, v) = r(un, v)+1+

12

8
, r(x4, v) = r(un, v)+1+

15

8
, (3.1)

r(x5, v) = r(un, v)+1+
16

8
, r(x6, v) = r(un, v)+1+

15

8
, r(x7, v) = r(un, v)+1+

12

8
, r(x8, v) = r(un, v)+1+

7

8
. (3.2)

∑

v∈VGn

dGn+1
(v) = 18n− 1. (3.3)

Consider the resistance distance between two vertices in VHn+1
, one has

8∑

i=1

d(xi)r(x1, xi) = 21,

8∑

i=1

d(xi)r(x2, xi) =
175

8
,

8∑

i=1

d(xi)r(x3, xi) =
45

2
,

8∑

i=1

d(xi)r(x4, xi) =
183

8
, (3.4)

8∑

i=1

d(xi)r(x5, xi) = 23,

8∑

i=1

d(xi)r(x6, xi) =
183

8
,

8∑

i=1

d(xi)r(x7, xi) =
45

2
,

8∑

i=1

d(xi)r(x8, xi) =
175

8
. (3.5)

Firstly, we prove that (1.8) holds. By (1.4), one has

Kf∗(Gn+1) =
∑

{u,v}⊆VGn

d(u)d(v)r(u, v) +
∑

v∈VGn

∑

xi∈VHn+1

d(v)d(xi)r(v, xi) +
∑

{xi,xj}⊆VHn+1

d(xi)d(xj)r(xi, xj).

By a similar discussion as the proof of (1.6) and (1.7), one has

∑

{u,v}⊆VGn

d(u)d(v)r(u, v) =
∑

{u,v}⊆VGn\{un}

d(u)d(v)r(u, v) +
∑

v∈VGn\{un}

dGn+1
(un)d(v)r(un, v)

=
∑

{u,v}⊆VGn\{un}

d(u)d(v)r(u, v) +
∑

v∈VGn\{un}

(dGn
(un) + 1)d(v)r(un, v)

= Kf∗(Gn) +
∑

v∈VGn

d(v)r(un, v).
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Recall that d(x1) = 3 and d(xi) = 2 for i ∈ {2, 3, 4, 5, 6, 7, 8}. From(3.1)-(3.3), we have

∑

v∈VGn

∑

xi∈VHn+1

d(v)d(xi)r(v, xi)

=
∑

v∈VGn

d(v)[3(r(un, v) + 1) + 2(r(un, v) + 1 +
7

8
) + 2(r(un, v) + 1 +

12

8
) + 2(r(un, v) + 1 +

15

8
)

+ 2(r(un, v) + 1 +
16

8
) + 2(r(un, v) + 1 +

15

8
) + 2(r(un, v) + 1 +

12

8
) + 2(r(un, v) + 1 +

7

8
)]

=
∑

v∈VGn

d(v)(17r(un, v) + 38)

=17
∑

v∈VGn

d(v)r(un, v) + 38(18n− 1).

From(3.4)-(3.5), one has

∑

{xi,xj}⊆VHn+1

d(xi)d(xj)r(xi, xj)

=
1

2

8∑

i=1

d(xi)(

8∑

j=1

d(xj)r(xi, xj))

=
1

2
[3× 21 + 2×

175

8
+ 2×

45

2
+ 2×

183

8
+ 2× 23 + 2× 3

183

8
+ 2×

45

2
+ 2×

175

8
]

=189.

Then
Kf∗(Gn+1) = Kf∗(Gn) + 18

∑

v∈VGn

d(v)r(un, v) + 684n+ 151. (3.6)

For a random cyclooctatetraene chain Gn, the number
∑

v∈VGn
d(v)r(un, v) is a random variable. We may denote

its expected value by

Rn := E(
∑

v∈VGn

d(v)r(un, v)).

By direct calculation and (3.6), we can obtain a recurrence relation for the expected values of the multiplicative
degree-Kirchhoff index of a random cyclooctatetraene chain Gn as follows,

E(Kf∗(Gn+1)) = E(Kf∗(Gn)) + 18Rn + 684n+ 151.

Considering the following four possible cases.
Case1. Gn −→ G1

n+1. In this case, un is the vertex x2 or x8. Consequently,
∑

v∈VGn
d(v)r(un, v) is given by∑

v∈VGn
d(v)r(x2 , v) or

∑
v∈VGn

d(v)r(x8 , v) with probability p1.

Case2. Gn −→ G2
n+1. In this case, un is the vertex x3 or x7. Consequently,

∑
v∈VGn

d(v)r(un, v) is given by∑
v∈VGn

d(v)r(x3 , v) or
∑

v∈VGn
d(v)r(x7 , v) with probability p2.

Case3. Gn −→ G3
n+1. In this case, un is the vertex x4 or x6. Consequently,

∑
v∈VGn

d(v)r(un, v) is given by∑
v∈VGn

d(v)r(x4 , v) or
∑

v∈VGn
d(v)r(x6 , v) with probability p3.

Case4. Gn −→ G4
n+1. In this case, un is the vertex x5. Consequently,

∑
v∈VGn

d(v)r(un, v) is given by∑
v∈VGn

d(v)r(x5 , v) with probability 1− p1 − p2 − p3.
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According to the above four cases, we may obtain the expected value Rn as

Rn =p1
∑

v∈VGn

d(v)r(x2 , v) + p2
∑

v∈VGn

d(v)r(x3 , v) + p3
∑

v∈VGn

d(v)r(x4, v) + (1− p1 − p2 − p3)
∑

v∈VGn

d(v)r(x5, v)

=p1[
∑

v∈VGn−1

d(v)r(un−1, v) + (1 +
7

8
)(18n− 19) +

175

8
]

+ p2[
∑

v∈VGn−1

d(v)d(un−1, v) + (1 +
12

8
)(18n− 19) +

45

2
]

+ p3[
∑

v∈VGn−1

d(v)d(un−1, v) + (1 +
15

8
)(18n− 19) +

183

8
]

+ (1− p1 − p2 − p3)[
∑

v∈VGn−1

d(v)r(un−1, v) + (1 +
16

8
)(18n− 19) + 23].

By applying the expected operator to the above equation, and noting that E(Rn) = Rn, we obtain

Rn = Rn−1 + (54−
81

4
p1 − 9p2 −

9

4
p3)n+

81

4
p1 + 9p2 +

9

4
p3 − 34.

The boundary condition is

R1 = E(
∑

v∈VG1

d(v)r(u1, v)) = 21.

According to the above recurrence relation and the boundary condition, we have

Rn = (27−
81

8
p1 −

9

2
p2 −

9

8
p3)n

2 + (
81

8
p1 +

9

2
p2 +

9

8
p3 − 7)n+ 1.

Therefore,

E(Kf∗(Gn+1)) = E(Kf∗(Gn)) + 18Rn + 684n+ 151

= E(Kf∗(Gn)) + 18[(27−
81

8
p1 −

9

2
p2 −

9

8
p3)n

2 + (
81

8
p1 +

9

2
p2 +

9

8
p3 − 7)n+ 1] + 684n+ 151,

and the boundary condition is E(Kf∗(G1)) = 168.
According to the above recurrence relation and the boundary condition, we have

E(Kf∗(Gn)) =(162−
243

4
p1 − 27p2 −

27

4
p3)n

3 + (36 +
729

4
p1 + 81p2 +

81

4
p3)n

2

− (29 +
243

2
p1 + 54p2 +

27

2
p3)n− 1,

(1.8) holds.
Now, we prove that (1.9) holds. By (1.5), one has

Kf+(Gn+1) =
∑

{u,v}⊆VGn

(d(u) + d(v))r(u, v) +
∑

v∈VGn

∑

xi∈VHn+1

(d(v) + d(xi))r(v, xi)

+
∑

{xi,xj}⊆VHn+1

(d(xi) + d(xj))r(xi, xj).

By a similar discussion as above, one has
∑

{u,v}⊆VGn

(d(u) + d(v))r(u, v) =
∑

{u,v}⊆VGn\{un}

(d(u) + d(v))r(u, v) +
∑

v∈VGn\{un}

(dGn+1
(un) + d(v))r(un, v)

=
∑

{u,v}⊆VGn\{un}

(d(u) + d(v))r(u, v) +
∑

v∈VGn\{un}

(dGn
(un) + 1 + d(v))r(un, v)

= Kf+(Gn) +
∑

v∈VGn

r(un, v).
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Recall that d(x1) = 3 and d(xi) = 2 for i ∈ {2, 3, 4, 5, 6, 7, 8}. From(3.1)-(3.3), we have

∑

v∈VGn

∑

xi∈VHn+1

(d(v) + d(xi))r(v, xi)

=
∑

v∈VGn

∑

xi∈VHn+1

d(v)r(v, xi) +
∑

v∈VGn

∑

xi∈VHn+1

d(xi)r(v, xi)

=
∑

v∈VGn

d(v)[(r(un , v) + 1) + (r(un, v) + 1 +
7

8
) + (r(un, v) + 1 +

12

8
) + (r(un, v) + 1 +

15

8
)

+ (r(un, v) + 1 +
16

8
) + (r(un, v) + 1 +

15

8
) + (r(un, v) + 1 +

12

8
) + (r(un, v) + 1 +

7

8
)]

+
∑

v∈VGn

[3(r(un, v) + 1) + 2(r(un, v) + 1 +
7

8
) + 2(r(un, v) + 1 +

12

8
) + 2(r(un, v) + 1 +

15

8
)

+ 2(r(un, v) + 1 +
16

8
) + 2(r(un, v) + 1 +

15

8
) + 2(r(un, v) + 1 +

12

8
) + 2(r(un, v) + 1 +

7

8
)]

=8
∑

v∈VGn

d(v)r(un, v) +
37

2
(18n− 1) + 17

∑

v∈VGn

r(un, v) + 38× 8n.

Note that
∑8

i=1
r(xk, xi) =

21

2
for k = 1, 2, 3, 4, 5, 6, 7, 8. From(3.4)-(3.5), one has

∑

{xi,xj}⊆VHn+1

(d(xi) + d(xj))r(xi, xj) =
1

2

8∑

i=1

8∑

j=1

(d(xi) + d(xj))r(xi, xj)

=

8∑

i=1

8∑

j=1

d(xi)r(xi, xj) =
21

2
× (3 + 2× 7)

=
357

2
.

Then
Kf+(Gn+1) = Kf+(Gn) + 18

∑

v∈VGn

r(un, v) + 8
∑

v∈VGn

d(v)r(un, v) + 637n+ 160. (3.7)

For a random cyclooctatetraene chain Gn, the number
∑

v∈VGn
r(un, v) is a random variable. We may denote its

expected value by

Dn := E(
∑

v∈VGn

r(un, v)).

By a direct calculation and (3.7), we can obtain a recurrence relation for the expected values of the additive
degree-Kirchhoff index index of a random cyclooctatetraene chain Gn as follows,

E(Kf+(Gn+1)) = E(Kf+(Gn)) + 18Dn + 8Rn + 637n+ 160.

Considering the following four possible cases.
Case1. Gn −→ G1

n+1. In this case, un is the vertex x2 or x8. Consequently,
∑

v∈VGn
r(un, v) is given by∑

v∈VGn
r(x2, v) or

∑
v∈VGn

r(x8, v) with probability p1.

Case2. Gn −→ G2
n+1. In this case, un is the vertex x3 or x7. Consequently,

∑
v∈VGn

r(un, v) is given by∑
v∈VGn

r(x3, v) or
∑

v∈VGn
r(x7, v) with probability p2.

Case3. Gn −→ G3
n+1. In this case, un is the vertex x4 or x6. Consequently,

∑
v∈VGn

r(un, v) is given by∑
v∈VGn

r(x4, v) or
∑

v∈VGn
r(x6, v) with probability p3.

Case4. Gn −→ G4
n+1. In this case, un is the vertex x5. Consequently,

∑
v∈VGn

r(un, v) is given by
∑

v∈VGn
r(x5, v)

with probability 1− p1 − p2 − p3.
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According to the above four cases, we may obtain the expected value Dn as

Dn =p1
∑

v∈VGn

r(x2, v) + p2
∑

v∈VGn

r(x3, v) + p3
∑

v∈VGn

r(x4, v) + (1− p1 − p2 − p3)
∑

v∈VGn

r(x5, v)

=p1[
∑

v∈VGn−1

r(un−1, v) + (1 +
7

8
)× 8(n− 1) +

21

2
]

+ p2[
∑

v∈VGn−1

r(un−1, v) + (1 +
12

8
)× 8(n− 1) +

21

2
]

+ p3[
∑

v∈VGn−1

r(un−1, v) + (1 +
15

8
)× 8(n− 1) +

21

2
]

+ (1− p1 − p2 − p3)[
∑

v∈VGn−1

r(un−1, v) + (1 +
16

8
)× 8(n− 1) +

21

2
]

By applying the expected operator to the above equation, and noting that E(Dn) = Dn, we obtain

Dn = Dn−1 + (24− 9p1 − 4p2 − p3)n+ 9p1 + 4p2 + p3 −
27

2
.

The boundary condition is

D1 = E(
∑

v∈VG1

r(u1, v)) =
21

2
.

According to the above recurrence relation and the boundary condition, we have

Dn = (12−
9

2
p1 − 2p2 −

1

2
p3)n

2 + (
9

2
p1 + 2p2 +

1

2
p3 −

3

2
)n,

and

Rn = (27−
81

8
p1 −

9

2
p2 −

9

8
p3)n

2 + (
81

8
p1 +

9

2
p2 +

9

8
p3 − 7)n+ 1.

Therefore,

E(Kf+(Gn+1)) =E(Kf+(Gn)) + 18Dn + 8Rn + 637n+ 160

=E(Kf+(Gn)) + 18[(12−
9

2
p1 − 2p2 −

1

2
p3)n

2 + (
9

2
p1 + 2p2 +

1

2
p3 −

3

2
)n]

+ 8[(27−
81

8
p1 −

9

2
p2 −

9

8
p3)n

2 + (
81

8
p1 +

9

2
p2 +

9

8
p3 − 7)n+ 1] + 637n+ 160,

and the boundary condition is E(Kf+(G1)) = 168.
According to the above recurrence relation and the boundary condition, we have

E(Kf+(Gn)) =(144− 54p1 − 24p2 − 6p3)n
3 + (61 + 162p1 + 72p2 + 18p3)n

2

− (37 + 108p1 + 48p2 + 12p3)n,

as desired. This completes the proof.
Specially, if (p1, p2, p3, p4) = (1, 0, 0, 0)(resp. (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)), then Gn

∼= Mn (resp.
Gn

∼= O1
n, Gn

∼= O2
n, Gn

∼= Ln). By (1.8) and (1.9) in Theorem 1.1 we can receive the multiplicative degree-
Kirchhoff indices and the additive degree-Kirchhoff indices of the meta-chain Mn, the ortho-chain O1

n, O
2
n, the

para-chain Ln, as

Kf∗(Mn) =
405

4
n3 +

873

4
n2 −

301

2
n− 1, Kf∗(O1

n) = 135n3 + 117n2 − 83n− 1,

Kf∗(O2
n) =

621

4
n3 +

225

4
n2 −

85

2
n− 1, Kf∗(Ln) = 162n3 + 36n2 − 29n− 1.

and
Kf+(Mn) = 90n3 + 223n2 − 145n, Kf+(O1

n) = 120n3 + 133n2 − 85n,

Kf+(O2
n) = 138n3 + 79n2 − 49n, Kf+(Ln) = 144n3 + 61n2 − 37n.

respectively.
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4. Proof of Corollary 1.2

In this following, we prove that Corollary 1.2 holds. By Theorem 1.1, we have

E(Gut(Gn)) = (−162n3 + 486n2 − 324n)p1 + (−108n3 + 324n2 − 216n)p2 + (−54n3 + 162n2 − 108n)p3

+270n3 − 90n2 + 77n− 1; (4.1)

E(S(Gn)) = (−144n3 + 432n2 − 288n)p1 + (−96n3 + 288n2 − 192n)p2 + (−48n3 + 144n2 − 96n)p3

+240n3 − 40n2 + 56n.; (4.2)

E(Kf∗(Gn)) = (−
243

4
n3 +

729

4
n2 −

243

2
n)p1 + (−27n3 + 81n2 − 54n)p2 + (−

27

4
n3 +

81

4
n2 −

27

2
n)p3

+162n3 + 36n2 − 29n− 1; (4.3)

E(Kf+(Gn)) = (−54n3 + 162n2 − 108n)p1 + (−24n3 + 72n2 − 48n)p2 + (−6n3 + 18n2 − 12n)p3

+144n3 + 61n2 − 37n. (4.4)

In order to prove Corollary 1.2, it suffices to prove the following four claims.

Claim 1. For a random cyclooctatetraene chain Gn (n ≥ 3), the para-chain Ln realizes the maximum of

E(Gut(Gn)) and the meta-chain Mn realizes that of minimum.

Proof. By (4.1), E(Gut(Gn)) may be seen as a function on p1, p2 and p3 with 0 ≤ pi ≤ 1 for i = 1, 2, 3 and
p1 + p2 + p3 ≤ 1. Note that n ≥ 3, by taking the partial derivative, one has

∂E(Gut(Gn))

∂p1
= −162n3 + 486n2 − 324n < 0,

∂E(Gut(Gn))

∂p2
= −108n3 + 324n2 − 216n < 0,

∂E(Gut(Gn))

∂p3
= −54n3 + 162n2 − 108n < 0.

If p1 = p2 = p3 = 0 (i.e. p4 = 1), the para-chain Ln realizes the maximum of E(Gut(Gn)), that is Gn
∼= Ln.

If p1 + p2 + p3 = 1, then E(Gut(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2, 3. Let
p3 = 1− p1 − p2, we have

E(Gut(Gn)) =(−162n3 + 486n2 − 324n)p1 + (−108n3 + 324n2 − 216n)p2

+ (−54n3 + 162n2 − 108n)(1− p1 − p2) + 270n3 − 90n2 + 77n− 1.

Therefore,

∂E(Gut(Gn))

∂p1
= −108n3 + 324n2 − 216n < 0,

∂E(Gut(Gn))

∂p2
= −54n3 + 162n2 − 108n < 0.

Recall that p1 + p2 + p3 = 1 and 0 ≤ pi ≤ 1 for i = 1, 2, 3. One has 0 ≤ p1 + p2 ≤ 1. Clearly, if p1 + p2 = 1, then
E(Gut(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2. Let p1 = 1− p2, we have

E(Gut(Gn)) =(−162n3 + 486n2 − 324n)(1− p2) + (−108n3 + 324n2 − 216n)p2 + 270n3 − 90n2 + 77n− 1.

Thus,
∂E(Gut(Gn))

∂p2
= 54n3 − 162n2 + 108n > 0.

When p2 = 0 (i.e. p1 = 1), E(Gut(Gn)) achieves the minimum value, that is, Gn
∼= Mn.

This completes the proof of Claim 1.

Claim 2. For a random cyclooctatetraene chain Gn (n ≥ 3), the para-chain Ln realizes the maximum of E(S(Gn))
and the meta-chain Mn realizes that of minimum.
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Proof. By (4.2), E(S(Gn)) may be seen as a function on p1, p2 and p3 with 0 ≤ pi ≤ 1 for i = 1, 2, 3 and
p1 + p2 + p3 ≤ 1. Note that n ≥ 3, by direct calculation, one has

∂E(S(Gn))

∂p1
= −144n3 + 432n2 − 288n < 0,

∂E(S(Gn))

∂p2
= −96n3 + 288n2 − 192n < 0,

∂E(S(Gn))

∂p3
= −48n3 + 144n2 − 96n < 0.

If p1 = p2 = p3 = 0 (i.e. p4 = 1), the para-chain Ln realizes the maximum of E(S(Gn)), that is Gn
∼= Ln.

If p1 + p2 + p3 = 1, then E(S(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2, 3. Let
p3 = 1− p1 − p2, we have

E(S(Gn)) =(−144n3 + 432n2 − 288n)p1 + (−96n3 + 288n2 − 192n)p2

+ (−48n3 + 144n2 − 96n)(1− p1 − p2) + 240n3 − 40n2 + 56n.

Therefore,

∂E(S(Gn))

∂p1
= −96n3 + 288n2 − 192n < 0,

∂E(S(Gn))

∂p2
= −48n3 + 144n2 − 96n < 0.

Recall that p1 + p2 + p3 = 1 and 0 ≤ pi ≤ 1 for i = 1, 2, 3. One has 0 ≤ p1 + p2 ≤ 1. Clearly, if p1 + p2 = 1, then
E(S(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2. Let p1 = 1− p2, we have

Thus,
∂E(S(Gn))

∂p2
= 48n3 − 144n2 + 96n > 0.

When p2 = 0 (i.e. p1 = 1), E(S(Gn)) attains the minimum value, that is, Gn
∼= Mn.

This completes the proof of Claim 2.

Claim 3. For a random cyclooctatetraene chain Gn (n ≥ 3), the para-chain Ln realizes the maximum of

E(Kf∗(Gn)) and the meta-chain Mn realizes that of minimum.

Proof. By (4.3), E(Kf∗(Gn)) may be seen as a function on p1, p2 and p3 with 0 ≤ pi ≤ 1 for i = 1, 2, 3 and
p1 + p2 + p3 ≤ 1. Note that n ≥ 3, by taking the partial derivative, one has

∂E(Kf∗(Gn))

∂p1
= −

243

4
n3 +

729

4
n2 −

243

2
n < 0,

∂E(Kf∗(Gn))

∂p2
= −27n3 + 81n2 − 54n < 0,

∂E(Kf∗(Gn))

∂p3
= −

27

4
n3 +

81

4
n2 −

27

2
n < 0.

If p1 = p2 = p3 = 0 (i.e. p4 = 1), the para-chain Ln realizes the maximum of E(Kf∗(Gn)), that is Gn
∼= Ln.

If p1 + p2 + p3 = 1, then E(Kf∗(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2, 3. Let
p3 = 1− p1 − p2, we have

E(Kf∗(Gn)) =(−
243

4
n3 +

729

4
n2 −

243

2
n)p1 + (−27n3 + 81n2 − 54n)p2

+ (−
27

4
n3 +

81

4
n2 −

27

2
n)(1− p1 − p2) + 162n3 + 36n2 − 29n− 1.

Hence,

∂E(Kf∗(Gn))

∂p1
= −54n3 + 162n2 − 108n < 0,

∂E(Kf∗(Gn))

∂p2
= −

81

4
n3 +

243

4
n2 −

81

2
n < 0.
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Recall that p1 + p2 + p3 = 1 and 0 ≤ pi ≤ 1 for i = 1, 2, 3. One has 0 ≤ p1 + p2 ≤ 1. Clearly, if p1 + p2 = 1, then
E(Kf∗(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2. Let p1 = 1− p2, we have

E(Kf∗(Gn)) =(−
243

4
n3 +

729

4
n2 −

243

2
n)(1− p2) + (−27n3 + 81n2 − 54n)p2 + 162n3 + 36n2 − 29n− 1.

Thus,
∂E(Kf∗(Gn))

∂p2
=

135

4
n3 −

405

4
n2 +

135

2
n > 0.

When p2 = 0 (i.e. p1 = 1), E(Kf∗(Gn)) achieves the minimum value, that is Gn
∼= Mn.

This completes the proof of Claim 3.

Claim 4. For a random cyclooctatetraene chain Gn (n ≥ 3), the para-chain Ln realizes the maximum of

E(Kf+(Gn)) and the meta-chain Mn realizes that of minimum.

Proof. By (4.4), E(Kf+(Gn)) may be seen as a function on p1, p2 and p3 with 0 ≤ pi ≤ 1 for i = 1, 2, 3 and
p1 + p2 + p3 ≤ 1. Note that n ≥ 3, by a direct calculation, one has

∂E(Kf+(Gn))

∂p1
= −54n3 + 162n2 − 108n < 0,

∂E(Kf+(Gn))

∂p2
= −24n3 + 72n2 − 48n < 0,

∂E(Kf+(Gn))

∂p3
= −6n3 + 18n2 − 12n < 0.

If p1 = p2 = p3 = 0 (i.e. p4 = 1), the para-chain Ln realizes the maximum of E(Kf+(Gn)), that is Gn
∼= Ln.

If p1 + p2 + p3 = 1, then E(Kf+(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2, 3. Let
p3 = 1− p1 − p2, we have

E(Kf+(Gn)) =(−54n3 + 162n2 − 108n)p1 + (−24n3 + 72n2 − 48n)p2

+ (−6n3 + 18n2 − 12n)(1− p1 − p2) + 144n3 + 61n2 − 37n.

Hence,

∂E(Kf+(Gn))

∂p1
= −48n3 + 144n2 − 96n < 0,

∂E(Kf+(Gn))

∂p2
= −18n3 + 54n2 − 36n < 0.

Recall that p1 + p2 + p3 = 1 and 0 ≤ pi ≤ 1 for i = 1, 2, 3. One has 0 ≤ p1 + p2 ≤ 1. Clearly, if p1 + p2 = 1, then
E(Kf+(Gn)) attains the minimum value, where 0 ≤ pi ≤ 1 for i = 1, 2. Let p1 = 1− p2, we have

E(Kf+(Gn)) =(−54n3 + 162n2 − 108n)(1− p2) + (−24n3 + 72n2 − 48n)p2 + 144n3 + 61n2 − 37n.

Thus,
∂E(Kf+(Gn))

∂p2
= 30n3 − 90n2 + 60n > 0.

When p2 = 0 (i.e. p1 = 1), E(Kf+(Gn)) attains the minimum value, that is Gn
∼= Mn. This completes the proof

of Claim 3.
By Claims 1-4, this corollary holds.

5. Concluding remarks

In this paper, we obtain the explicit analytical expressions for the expected values of the Gutman index, Schultz
index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random cyclooctatetraene
chain with n octagons. We also get the average values of these four indices. All these results will contribute to the
study of the Gutman index, Schultz index, multiplicative degree-Kirchhoff index and additive degree-Kirchhoff
index of graphs.

In chemical graph theory, the matter of polygonal chain is being widely studied by researchers. The molecular
structures of polygonal chemicals are various and its physicochemical properties also become more and more
important, and refer to [8, 28, 33, 35]. It is possible to establish exact formulas for the expected values of some
indices of a random polygon chain with n regular polygons.

16



References

[1] U. Ali, Y. Ahmad, S.A. Xu, X.F. Pan, On Normalized Laplacian, Degree-Kirchhoff Index of the Strong Prism of
Generalized Phenylenes, Polycyclic aromatic compounds, doi: 10.1080/10406638.2021.1977351.

[2] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, New York, 2008.

[3] S. Brezovnik, N. Tratnik, New Methods for Calculating the Degree Distance and the Gutman Index, MATCH Com-
mun. Math. Comput. Chem. 82 (1) (2019) 111-132.

[4] Q. Cai, T. Li, Y. Shi, H. Wang, Sum of weighted distances in trees, Discrete Appl. Math. 257 (2019) 67-84.

[5] H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum, Discrete Appl. Math. 155 (5) (2007)
654-661.

[6] F.R.K. Chung, Spectral Graph Theory, American Mathematical Society Providence, RI, 1997.

[7] Z. Cinkir, Deletion and contraction identities for the resistance calues and the Kirchhoff index, Int. J. Quantum Chem.
111 (2011) 4030-4041.

[8] Arthur C. Cope, Ronald M. Pike, Cyclic Polyolefins. Cyclooctatetraene Derivatives from Copolymerization and Side
Chain Modification, J. Am. Chem. Soc. 75 (13) (1953) 3220-3223.

[9] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (1976) 283-296.

[10] M.R. Farahani, Hosoya, Schultz, modified Schultz polynomials and their topological indices of benzene molecules:
first members of polycyclic aromatic hydrocarbons (PAHs), Int. J. Theor. Chem. 1 (2) (2013) 9-16.

[11] Marco Garavelli, Fernando Bernardi, Alessandro Cembran, Cyclooctatetraene Computational Photo- and Thermal
Chemistry: A Reactivity Model for Conjugated Hydrocarbons, J. Am. Chem. Soc. 124 (46) (2002) 13770-13789.

[12] A. Georgakopoulos, Uniqueness of electrical currents in a network of finite total resistance, J. Lond. Math. Soc. 82
(1) (2010) 256-272.

[13] S. Gupta, M. Singh, A.K. Madan, Eccentric distance sum: A novel graph invariant for predicting biological and
physical properties, J. Math. Anal. Appl. 275 (2002) 386-401.

[14] I. Gutman, L. Feng, G. Yu, Degree resistance distance of unicyclic graphs, Trans. Comb. 1 (2) (2012) 27-40.

[15] F.G. He, Z.X. Zhu, Cacti with maximum eccentricity resistance-distance sum, Discrete Appl. Math. 219 (2017) 117-
125.

[16] A. Heydari, On the modified Schultz index of C4C8(S) nanotubes and nanotorus, Digest. J. Nanomater. Biostruct. 5
(1) (2010) 51-56.

[17] G.H. Huang, M.J. Kuang, H.Y. Deng, The expected values of Kirchhoff indices in the random polyphenyl and spiro
chains, Ars Math. Contemp. 9 (2) (2015) 197-207.

[18] S.B. Huang, J. Zhou, C.J. Bu, Some results on Kirchhoff index and degree-Kirchhoff index, MATCH Commun. Math.
Comput. Chem. 75 (1) (2016) 207-222.

[19] Z.W. Huang, X.Z. Xi, S.L. Yuan, Some further results on the eccentric distance sum, J. Math. Anal. Appl. 470 (1)
(2019) 145-158.
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