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Covariance-Invariant Mapping of Data Points to Nonlinear Models 

Abstract. A centroid- and covariance-invariant deterministic mapping of sets of 

discrete data points to nonlinear models is introduced. Conditions for bijectivity of 

this mapping are developed. Since the mapping can be accomplished by look-up 

tables for the special case of equally-spaced data, the resulting mapping algorithm 

is considered computationally fast. This could be attractive for real-time operations. 

Keywords. Data analysis, bijectivity, fast algorithm, approximation, nonlinear 

regression, cross-central moments. 

1. INTRODUCTION.  

Mean values such as the centroid of data and their covariance are widely used for mapping 

of data. In statistics, a mean-value mapping defines the variance functions of Tweedie 

distributions [1] applied to exponential dispersion models [2]. A covariance mapping is 

used to generalize the one-dimensional measure of the statistical relation between two 

random variables in [3]. In computer science, mean-value mappings are defined for digital 

imaging and computer graphics to accomplish image space rendering and texturing [4]. 

Mean transformations are defined in matrix analysis [5], or in standardizing statistical 

distributions [6]. - In contrast, the objective of the mean-value mapping proposed here is 

the development of an easy-to-apply, reliable and computationally fast mapping of data 

points to a nonlinear model. For this purpose, a mapping is investigated, which preserves 

mean values, namely, the centroid and covariance of data points, which are directly 

related to two model parameters. The approach should be extendable to models with 𝑚 

parameters by taking 𝑚-th-order cross-central moments into account. The suggested 

mapping should have potential applications in various fields ranging from econometrics 

and technometrics to pattern recognition and computer graphics, which increasingly 

focuses on real-time construction of models from real-world data [7]. 

2. MEAN-VALUE MAPPING OF DATA  

The following considerations are based on a discrete representation of any straight line 

by four mean values, which are the arithmetic means of the independent and dependent 

data �̅� = ∑ 𝑥 /𝑛 and 𝑦 = ∑ 𝑦 /𝑛 , respectively, where 𝑥 , 𝑦  ℝ, and the means 

of products of their deviations from the means, i.e., the covariance 𝐶𝑜𝑣(𝑥, 𝑦) =

∑ (𝑥 − �̅�)(𝑦 − 𝑦) /𝑛 and the variance 𝑉𝑎𝑟(𝑥) = 𝐶𝑜𝑣(𝑥, 𝑥) = ∑ (𝑥 − �̅�) /𝑛. 
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The point (�̅�, 𝑦 ) defines the centroid or “center of mass” [8] of the data points. 

Definition 1 (Mean-value form of a straight line). Any straight line in a two-

dimensional Cartesian coordinate system can be represented by the mean-value form 

𝑦 =
( , )

( )
(𝑥 − �̅�) + 𝑦     (1) 

connecting a set of points (𝑥 , 𝑦 ), 𝑖 = 1, … , 𝑛, with 𝑥 , 𝑦  ℝ and 𝑖 ℕ.    

The derivation of (1) is straightforward using the normal equations of ordinary least-

squares regression such as in [9] implying the following lemma. 

Lemma 1. Any set of points (𝑥 , 𝑦 ), 𝑖 = 1, … , 𝑛, 𝑥 , 𝑦  ℝ, with the observations 𝑦  

scattered around a straight line segment in a two-dimensional Cartesian coordinate 

system, fits equation (1) in a least-squares sense by preserving their arithmetic mean and 

covariance, i.e.,  𝑦 = 𝑦 = ∑ 𝑦 /𝑛 and 𝐶𝑜𝑣(𝑥, 𝑦) = 𝐶𝑜𝑣(𝑥, 𝑦 ).   

To derive a mapping between a set of data points (𝑥 , 𝑦 ) located on a straight-line 

segment and a corresponding set of data (𝑥 , 𝑦∗) on a nonlinear function, the idea is to 

define a mapping which preserves the centroid of the data and their covariance, such as 

the linear regression does according to Lemma 1. Since a set of data points on a 

nonlinear function (𝑥 , 𝑦∗) can be viewed observations and interpreted as a set of data 

points scattered around a straight-line segment(𝑥 , 𝑦 ), the mapping can be defined in 

view of Lemma 1 as follows. 

Definition 2 (Mean-value mapping). The mean-value mapping between a set of data 

points (𝑥 , 𝑦 ), 𝑖 = 1, … , 𝑛, of a straight-line segment and a set of data points (𝑥 , 𝑦∗), 

𝑖 = 1, … , 𝑛, on a nonlinear function 𝑦∗ = 𝑓(𝛼, 𝛽, 𝑥 ) with the model parameters 𝛼 and 

𝛽 is achieved by preserving the centroid (�̅�, 𝑦 ) and the covariance of the data, i.e., 

𝑦 = 𝑦∗        (2) 

𝐶𝑜𝑣(𝑥, 𝑦) = 𝐶𝑜𝑣(𝑥, 𝑦∗).     (3)

          

Since 𝐶𝑜𝑣(𝑥, 𝑦) = ∑ 𝑥 𝑦 /𝑛 − �̅� 𝑦, the mapping by (2) and (3) is equivalent to 

∑ 𝑦 = ∑ 𝑓(𝛼, 𝛽, 𝑥 ),    (4) 

∑ 𝑥 𝑦  = ∑ 𝑥 𝑓(𝛼, 𝛽, 𝑥 ).    (5) 
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If the parameters 𝛼 and 𝛽 of the nonlinear function are known, equations (2) and (3) can 

be substituted into (1) to obtain a set of data points 𝑦  on a straight-line segment, which 

can be viewed a mapping from nonlinear to linear.  

 

Remark 1 (Generalization to 𝒎--parameter nonlinear models). 

Definition 1 is formulated for two parameters 𝛼, 𝛽 ℝ. However, an extension of the 

approach to nonlinear models with 𝑗 = 1, … , 𝑚 parameters is feasible using 𝑚-th-order 

cross-central moments  (𝑥, 𝑦) = ∑ (𝑥 − �̅�) (𝑦 − 𝑦) /𝑛 with 𝑗 = 2, … , 𝑚, where 

 is the covariance and   and   are directly related to the coskewness and cokurtosis 

[10]. Then, Definition 1 can be replaced by a mean-value form of a higher-order 

polynomial such as a parabola for 𝑚 = 3, and Definition 2 can be generalized by 

replacing equation (3) by  

 (𝑥, 𝑦) =  (𝑥, 𝑦∗) 

for a nonlinear function 𝑦∗ = 𝑓(𝑝, 𝑥 ),where 𝑝 is a vector of (𝑚 − 1) real values.  

 

The reverse mapping from linear to nonlinear means to determine the unknown 

parameters, such as  𝛼 and 𝛽 from (4) and (5) for the two-parameter case. This could be 

accomplished using root finding methods, where caution is needed since there might be 

more than a single root. Thus, a bijective mapping is looked for, which exactly pairs 

each point of one set of the data with one point of the other set and vice versa. In the 

next section conditions for bijectivity are derived.  

 

3. BIJECTIVITY OF THE MEAN-VALUE MAPPING FOR THE TWO-

PARAMETER CASE 

For two parameters, dividing equation (3) by (2) leads to 

    ∑ ((𝑥 − �̅�) − 𝐶𝑜𝑣(𝑥, 𝑦)/𝑦) 𝑓(𝛼, 𝛽, 𝑥 ) = 0, 𝑖 = 1, … , 𝑛, or 

    ∑ 𝐴  𝑓(𝛼, 𝛽, 𝑥 ) = 0     (6) 

using the abbreviation  

𝐴 = (𝑥 − �̅�) −
( , )

.     (7) 

The sum of equation (6) is used together with equation (4) for determining the unknown 

parameters 𝛼 and 𝛽 of the nonlinear model. If the sum would have a single positive real 

root, the mapping from linear to nonlinear and vice versa would be bijective. 
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Definition 3 (Bijective-mapping function). Let 𝑥  ℝ, 𝐴  ℝ. A function 𝑓 (𝛼, 𝛽, 𝑥 ) 

with two parameters 𝛼, 𝛽  ℝ, 𝑖 = 1, … , 𝑛 , is a bijective-mapping function if the sum 

𝐹(𝛽) = ∑ 𝐴 𝑓 (𝛼, 𝛽, 𝑥 ) has exactly one positive real root for a some sequence 𝐴  . 

Applying the rule of signs by Descartes, a bijective-mapping function is obviously the 

polynomial 𝑓 (𝛼, 𝛽, 𝑥 ) = 𝛼 𝛽 , where 𝑥 = 𝑖 = 1, … , 𝑛 are integer powers. The rule 

states that the number of positive real roots of the polynomial 

𝐹 (𝛽) =  ∑ 𝐴  𝛽       (8) 

is at most equal to the number of variations in consecutive coefficients 𝐴 , and the 

difference of both numbers is an even integer [11]. This means that a single sign change 

in the sequence of the coefficients  𝐴  leads to exactly one positive real root.  

Several bijective-mapping functions exists besides the polynomial (8): In [12], Laguerre 

generalized the rule of signs by Descartes proposing functions of the form  

𝐹 (𝛽) =  ∑ 𝐴  𝑓(𝛽𝑥 ).     (9) 

In task # 77 in [13], a generalization is the exponential sum 

𝐹 () = ∑ 𝐴  𝑒  ,     (10) 

which is ordered such that 0 < 𝑥 < 𝑥 < ⋯ 𝑥 . In [14] the generalization of (10) is 

proved for 𝑥  ℝ and 𝐴  ℂ (𝑖 = 1, … , 𝑛). The representation (10) is a Dirichlet 

polynomial [15], which can be transformed to the generalized polynomial  

𝐹 (𝛽) = ∑ 𝐴  𝛽  ,      (11) 

by substituting 𝑒 = 𝛽 into (10), where 𝛽 is positive real to ensure that the function is 

defined in real numbers. Thus, 𝐹 (𝛼, 𝛽) turns out a special case of 𝐹 (𝛼, 𝛽) for 𝑥 = 𝑖. 

According to [15], the alternative substitution of 𝑒 =  𝑏  into (10) leads to the 

alternative representation of the Dirichlet polynomial 

𝐹 (𝑏 ,) = ∑ 𝐴  𝑏 ,     (12) 

for 0 < 𝑏 < 𝑏 < ⋯ 𝑏 .  

Since both transformations do not alter the number of roots, equations (10) to (12) are 

equivalent. In [15] it is proved that Descartes’ rule of signs holds for all generalizations 

of (10) to (12). In [16] an axiom systems is given for determining function families 

which generalize the rule of Descartes, and in [17] a summary and a historical view on 

the generalization efforts is presented. 

Theorem 1. Any bijective-mapping function 𝑓 (𝛼, 𝛽, 𝑥 ) with {𝛼, 𝛽, 𝑥 }  ℝ, 𝑖 =

1, … , 𝑛, ensures bijectivity of the mean-value mapping if  

𝑥 − �̅� <
( , )

< 𝑥 − �̅�      (13) 
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is fulfilled, where 𝑥 < 𝑥 < ⋯ 𝑥 , and 𝑦 > 0  is fulfilled as a necessary condition.      

Proof. The zero of the straight line 𝐴 (𝑥 ) of equation (7) is 𝑥 = 𝐶𝑜𝑣(𝑥, 𝑦)/𝑦 + �̅�, and 

it must lie in between the interval [𝑥 , 𝑥 ] to ensure a sign change of the values of the 

series 𝐴  once the index 𝑖 is increased from 1 𝑡𝑜 𝑛, resulting in (13), which can 

alternatively be expressed by 

    ∑ 𝑦 < ∑ 𝑦 < ∑ 𝑦 , 

which is identical to the two inequalities 

 ∑ (𝑥 − 𝑥 )𝑦 > 0,   

 ∑ (𝑥 − 𝑥 )𝑦 > 0.    

Since both must be fulfilled at the same time, their sum must be positive as well, 

leading to the necessary condition for (13), which becomes ∑ (𝑥 − 𝑥 ) 𝑦 > 0 or 

𝑦 > 0.             

In summary, bijectivity of the mean-value mapping is achieved if both is fulfilled: The 

inequality (13) holds, and 𝑓(𝛼, 𝛽, 𝑥 ) = 𝑓 (𝛼, 𝛽, 𝑥 ) is a bijective-mapping function. 

Remark 2. The mean-value ratio 

𝜙 =  �̅� +
( , )

      (14) 

can be defined to abbreviate a scaling of the covariance. Dividing (5) by (4) yields 

𝜙 =  
∑  

∑  
       (15a) 

𝜙 =  
∑  ( , , )

∑ ( , , ) 
,      (15b) 

To express the link for the mean-value mapping. Thus, condition (13) becomes 

𝑥 < 𝜙 < 𝑥 .        (16) 

It should be noted that positive 𝑦  always fulfill the range of (16), which is due to (15a) 

resulting in  

 𝑥 ∑ 𝑦 <  ∑ 𝑥 𝑦 < 𝑥 ∑ 𝑦 , 𝑖 = 1, … , 𝑛  

holding for any 𝑦 > 0. Conditions for negative values of 𝑦  can be obtained as well.  

Remark 3. The introduction of the mean-value ratio 𝜙 leads to the alternative mean-

value representation of any straight line segment  

=
( )

(𝜙 − �̅�)(𝑥 − �̅�) + 1,     (17) 

by substituting (14) into (1), where 𝜙 > �̅� means a positive slope of the line segment.  
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4. SPECIAL CLASS OF TWO-PARAMETER NONLINEAR MODELS LINEAR 

IN ONE OF THEIR PARAMETERS.  

A two-parameter nonlinear model 𝑦∗ = 𝑓(𝛼, 𝛽, 𝑥 ) linear in one of its parameters is  

𝑦∗ = 𝛼 𝑔(𝛽, 𝑥 ).      (18) 

 

Remark 4 (Applicability to nonlinear functions). 

There exist several bijective-mapping functions of practical relevance which qualify for 

the model type (18): The Box Lucas model or a “simple exponential” model such as the 

Arrhenius model, the nonlinear-resistance model, the time-power model or the 

economic model for a compounded growth rate. Other functions may be considered as 

well that are not proven bijective-mapping functions. An application to the Freundlich 

adsorption isotherm or the Michaelis–Menten model of chemical kinetics is feasible. - 

Further, an application to periodic functions could be possible for a certain range of 

bijectivity: An example of rather theoretical nature is the mapping to a sine-function  

𝑦∗ = 𝛼 sin(𝛽𝑥 ), which is bijective for equidistant data 𝑥 = 𝑖 in a maximum range of 

− /2  𝛽   /2 that narrows as the number of values 𝑛 increases.    

 

Equation (17) can be used to map a set of data (𝑥 , 𝑦∗), located on a nonlinear function 

(18) to a set of data on a line segment by simply substituting 𝑦 = 𝛼 ∑ 𝑔(𝛽, 𝑥 )/𝑛 and 

(15b) into (17). The reverse mapping from a set of data of a line segment to that of a 

nonlinear model can be accomplished by using the following theorem. 

Theorem 2. The mean-value mapping from a set of any scattered data (𝑥 , 𝑦 ), 𝑖 =

1, … , 𝑛 to a set of data points (𝑥 , 𝑦∗), 𝑖 = 1, … , 𝑛, located on the function of a non-

linear model 𝑦∗ = 𝛼 𝑔(𝛽, 𝑥 ) with the unknown parameters 𝛼 and  𝛽,where {𝛼, 𝛽, 𝑥 } 

 ℝ, is achieved by substituting the mean-value ratio  

 𝜙 =  
∑

∑
, 

into the equation 

∑ (𝑥 − 𝜙) 𝑔(𝛽, 𝑥 ) = 0,     (19) 

to determine the parameter 𝛽, which is subsequently used for obtaining the parameter 

𝛼 =  
∑

∑ ( , ) 
.      (20) 
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Proof. Dividing equation (5) by (4) eliminates the model parameter 𝛼 leading to (6), 

i.e., ∑ 𝐴  𝑔(𝛽, 𝑥 ) = 0. Since 𝐴 =  𝑥 − 𝜙 from (7) and (14), equation (19) follows. 

Equation (20) is obtained by substitution of (18) into (4) by replacing 𝑦  by 𝑦 .  

Theorem 2 is formulated for any set of scattered observations which, of course, include 

all straight-line segments, which can be viewed regression lines through the points of 

these data sets. Thus, all three data sets, namely those of the scattered data, the straight 

regression line and the nonlinear function have the same centroid and covariance. - 

Apparently, Theorem 2 is suitable to be applied to nonlinear regression problems such 

as in real-time image processing [18]. Thus, the approach may have potential to get 

employed to geophysical systems and automated geographic mapping [19], pattern 

recognition [20] and computer graphics [21]. Interestingly, fast collision detection uses 

the covariance to determine the orientation of bounding boxes providing tight fittings 

for point clouds which represent moving objects [22]. 

 

5. APPLICATION TO EQALLY-SPACED DATA SEQUENCES. 

If sets of scattered data points (𝑥 , 𝑦 ) are equally spaced by 𝑥 = 𝑖 = 1, … , 𝑛, the 

mean-value representation of a straight-line segment yields from (17) 

= 𝜙 − 1 (𝑖 − ) + 1.    (21) 

A mapping of data on the line segment (21) to a sequence of data points (𝑖, 𝑦∗) located 

on a two-parameter nonlinear model 𝑦∗ = 𝛼 𝑔(𝛽, 𝑖), which is linear in one of its 

parameters, can be accomplished by Theorem 1 by equations (19) and (20).  

Considering equally-spaced data, (19) allows to precompute the unknown 𝛽 for a given 

range of the mean-value ratio 𝜙. Thus, the unknown model parameters can be obtained 

by using the look-up table (𝜙, 𝑛) →  𝛽, created once and for all in the range of (16), 

which is valid for any set of data 𝑦 . Thus, the mean-value mapping is considered 

computationally fast due to all mapping information aggregated in the covariance or the 

mean-value ratio.  

5. CONCLUSIONS.  

Preserving the centroid and the covariance of data defines not only the linear least squares 

approach, but as well the proposed mean-value mapping consisting of two consecutive 

linear and inverse linear mappings of data on a straight line to a nonlinear function. 
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Applied to sets of scattered data, the main Theorem 2 suggests a novel method for an 

unbiased fit to a nonlinear model. It preserves the orientation of the data, whereas 

nonlinear regression does not. Computational advantages of the proposed covariant-

invariant mapping are addressed which are relevant for real-time applications: Instead of 

using root-finding algorithms, which are needed to solve nonlinear least-squares 

regression problems, a single one-time created look-up table can be used to determine 

unknown model parameters in the case of equally-spaced data. Further, a conditions for 

bijectivity of the mapping are stated, yielding an unique one-to-one “linear twin” of a 

nonlinear model. Further work could focus on the generalization to models with 𝑚 

parameters by taking 𝑚-th-order cross-central moments into account such as the 

coskewness and cokurtosis. Further, the applicability of the covariance-invariant mapping 

to various fields ranging from econometrics to computer graphics may be worthwhile to 

explore. 
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