References
Anikwe, M., Ikenganyia, E., Egbonimale, J., Oputah, C., 2017. Assessment of some tropical plants for use in the phytoremediation of petroleum contaminated soil: effects of remediation on soil physical and chemical properties. Int. J. Plant Soil Sci. 14(2), 1–9.
Azin, E., Moghimi, H., Heidarytabar, R., 2018. Petroleum degradation, biosurfactant and laccase production by Fusarium neocosmosporiellum RH-10: a microcosm study. Soil Sediment Contam. 27(4), 329–342.
Baoune, H., Aparicio, J.D., Acuña, A., El Hadj-khelil, A.O., Sanchez, L., Polti, M.A., 2019. Effectiveness of the Zea mays-Streptomyces association for the phytoremediation of petroleum hydrocarbons impacted soils. Ecotoxicol. Environ. Saf. 184, 109591.
Benoit, I., van den Esker, M.H., Patyshakuliyeva, A., Mattern, D.J., Blei, F., Zhou, M., Dijksterhuis, J., Brakhage, A.A., Kuipers, O.P., de Vries, R.P., Kov´acs, ´A.T., 2015. Bacillus subtilis attachment to Aspergillus niger hyphae results in mutually altered metabolism. Environ. Microbiol. 17, 2099–2113.
Bokulich, N.A., Kaehler, B.D., Rideout, J.R. Dillon, M., Bolyen, E., Knight, R., Huttley, G.A., Caporaso, J.G., 2018. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 6, 90.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes, S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581.
Catania, V., Santisi, S., Signa, G., Vizzini, S., Mazzola, A., Cappello, S., 2015. Intrinsic bioremediation potential of a chronically polluted marine coastal area. Mar. Pollut. Bull. 99, 138–49.
Cheema, S., Lavania, M., Lal, B., 2015. Impact of petroleum hydrocarbon contamination on the indigenous soil microbial community. Ann. Microbiol. 65, 359–369.
Cremer, J., Melbinger, A., Wienand, K., Henriquez, T., Jung, H., Frey, E., 2019. Cooperation in microbial populations: theory and experimental model systems. J. Mol. Biol. 431(23), 4599–4644.
Dariush, M.T., Shahriari, M.H., Gholamareza, S.F., Kalantari, F., Azzi, M., 2007. Effect of light crude oil-contaminated soil on growth and germination of Festuca arundinacea . J. Appl. Sci. 7(18), 2623–2628.
de Boer, W., Folman, L.B., Summerbell, R.C., Boddy, L., 2005. Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol. Rev. 29, 795–811.
de la Cruz‐Izquierdo, Rosa., Paz, A., Reyes, E., Francisco, V.J., Lenci, S.S., Martha, G.D.M., Rivera, G., 2021. Analysis of phenanthrene degradation by Ascomycota fungi isolated from contaminated soil from Reynosa, Mexico. Lett. Appl. Microbiol. 72.
De Menezes, A.B., Prendergast-Miller, M.T., Richardson, A.E., Toscas, P., Farrell, M., Macdonald, L.M., Baker, G., Wark, T., Thrall, P.H., 2015. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters. Environ. Microbiol. 17, 2677–2689.
Deshpande, R., VanderSluis, B., Myers, C.L., 2013. Comparison of profile similarity measures for genetic interaction networks. PLoS One. 8(7), e68664.
Ezekoye, C.C., Chikere, C.B., Okpokwasili, G.C., 2018. Fungal diversity associated with crude oil-impacted soil undergoing in-situ bioremediation. Sustain. Chem. Pharm. 10, 148–152.
Feng, X., Liu, Z., Jia, X., Lu, W., 2020. Distribution of bacterial communities in petroleum-contaminated soils from the Dagang oilfield, China. Trans. Tianjin Univ. 26, 22–32.
Gałązka, A., Król, M., Perzyński, A., 2012. The Efficiency of rhizosphere bioremediation with Azospirillum sp. andPseudomonas stutzeri in soils freshly contaminated with PAHs and diesel fuel. Pol. J. Environ. Stud. 21, 345–353.
Ge, R., Sun, H., 2009. Metallomics: An integrated biometal science. Sci. China, Ser. B: Chem. 52 (12), 2055−2070.
Guo, H., Yao, J., Cai, M., Qian, Y., Yue, G., Richnow, H.H., 2012. Effects of petroleum contamination on soil microbial numbers, metabolic activity and urease activity. Chemosphere. 87(11), 1273–1280.
Hamdan, H.Z., Salam, D.A., 2020. Microbial community evolution during the aerobic biodegradation of petroleum hydrocarbons in marine sediment microcosms: effect of biostimulation and seasonal variations. Environ. Pollut. 265, 114858.
Haraguchi, H., 2004. Metallomics as integrated biometal science. J. Anal. At. Spectrom. 19(1), 5−14.
Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater. 169, 1–15.
Hassan, I., Ai-Jawhari, H., 2014. Ability of Some Soil Fungi in Biodegradation of Petroleum Hydrocarbon. Appl. Environ. Microbiol. 2, 46–52.
Hidayat, A., Tachibana, S., 2012. Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water. J. Environ. Sci. Technol. 5(1), 64–73.
Hu, G., Li, J., Zeng, G., 2013. Recent development in the treatment of oily sludge from petroleum industry: A review. J. Hazard. Mater. 261, 470–490.
Huesemann, M.H., 1995. Predictive model for estimating the extent of petroleum hydrocarbon biodegradation in contaminated soils. Environ. Sci. Technol. 29, 7e18.
Kaufmann, K., Christophersen, M., Buttler, A., Harms, H., HÃhener, P., 2004. Microbial community response to petroleum hydrocarbon contamination in the unsaturated zone at the experimental field site Værløse, Denmark. FEMS Microbiol. Ecol. 48, 387–399.
Kim, T., Hong, J.K., Jho, E.H., Kang, G.Y., Lee, S.J., 2019. Sequential biowashing-biopile processes for remediation of crude oil contaminated soil in Kuwait. J. Hazard. Mater. 378, 120710.
Kitano, H., 2004. Biological robustness. Nat. Rev. Genet. 5, 826–837.
Koshlaf, E., Ball, S., 2017. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 3, 25–49.
Labud, V., Garcia, C., Hernandez, T., 2007. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere. 66(10), 1863–1871.
Li, Q., Huang, Y., Wen, D., Fu, R., Feng, L., 2020. Application of alkyl polyglycosides for enhanced bioremediation of petroleum hydrocarbon-contaminated soil using Sphingomonas changbaiensisand Pseudomonas stutzeri . Sci. Total Environ. 719, 137456.
Liu, R., Zhang, Y., Ding, R., Li, D., Gao, Y., Yang, M., 2009. Comparison of archaeal and bacterial community structures in heavily oil-contaminated and pristine soils. J. Biosci. Bioeng. 108, 400–407.
Liu, Z., Guo, Q., Feng, Z.Y., Liu, Z.D., Li, H.Y., Sun, Y.F., Liu, C.S., Lai, H.X., 2020. Long-term organic fertilization improves the productivity of kiwifruit (Actinidia chinensis Planch.) through increasing rhizosphere microbial diversity and network complexity. Appl. Soil Ecol. 147, 103426.
Liu, Z., Ma, X., He, N., Zhang, J., Wu, J., Liu, C., 2020. Shifts in microbial communities and networks are correlated with the soil ionome in a kiwifruit orchard under different fertilization regimes. Appl. Soil Ecol. 149, 103517.
Ma, B., Wang, Y., Ye, S., Liu, S., Stirling, E., Gilbert, J.A., Xu, J., 2020. Earth microbial cooccurrence network reveals interconnection pattern across microbiomes. Microbiome. 8(1), 82.
Margesin, R., Labbé, D., Schinner, F., Greer, C.W., Whyte, L.G., 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69, 3085–3092.
Mishra, S., Jyot, J., Kuhad, R.C., Lal, B., 2001. In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr. Microbiol. 43, 328–335.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J., Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O., Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, 259-264.
Niu, B., Paulson, J.N., Zheng, X., Kolter, R., 2017. Simplified and representative bacterial community of maize roots. Proc. Natl. Acad. Sci. U S A. 2017, 114, e2450.
Paisse, S., Coulon, F., Goni-Urriza, M., Peperzak, L., McGenity, T., Duran, R., 2008. Structure of bacterial communities along a hydrocarbon contamination gradient in a coastal sediment. FEMS Microbiol. Ecol. 66, 295–305.
Patowary, K., Saikia, R.R., Kalita, M.C., Deka, S., 2015. Degradation of polyaromatic hydrocarbons employing biosurfactant-producing Bacillus pumilus KS2. Ann. Microbiol. 65(1), 1–10.
Ramadass, K., Mallavarapu, M., Kadiyalaand Naidu, R., 2018. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp . on bioremediation. Sci. Total Environ. 636, 968–974.
Sheeba, V.S., Brinda, L.M., Perumalsam, R., Manickam, V., 2017. Degradation of total petroleum hydrocarbon (tph) in contaminated soil using Bacillus pumilus MVSV3. Biocontrol Sci. 22(1), 17–23.
Sheng, Y., Wang, G., Hao, C., Qian, X., Qian, Z., 2016. Microbial community structures in petroleum contaminated soils at an oil field, Hebei, China. CLEAN–Soil, Air, Water. 44(7), 829−839.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden, M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat. Commun. 10(1), 4841.
Walker, T.W., Adams, A.F.R., 1958. Studies on soil organic matter: 1. Influence of phosphorus contents of parent materials on accumulations of carbon, nitrogen, sulfur, and organic phosphorus in grassland soils. Soil Sci. 85, 307–318.
Wang, H.H., Kuang, S.P., Lang Q.L., Yu W.J., 2018. Effects of aged oil sludge on soil physicochemical properties and fungal diversity revealed by high-throughput sequencing analysis. Archaea. 8, 9264259.
Wang, X.Y., Jiang, F., Zhao, J.M., 2010. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environ. Monit. Assess. 161, 271–280.
Warmink, J.A., Nazir, R., Van Elsas, J.D., 2009. Universal and species-specific bacterial “fungiphiles” in the mycospheres of different basidiomycetous fungi. Environ. Microbiol. 11, 300–312.
Wu, M.L., Wu, J.L., Zhang, X.H., Ye, X.Q., 2019. Effect of bioaugmentation and biostimulation on hydrocarbon degradation and microbial community composition in petroleum-contaminated loessal soil. Chemosphere. 237, 124456–124456.
Zhang, D.C., Mörtelmaier, C., Margesin, R., 2012. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci. Total Environ. 421–422, 184–196.
Zhou, L., Lu, Y.W., Wang, D.W., Zhang, S.L., Tang, E.G., Qi, Z.Z., Xie, S.N., Wu, J., Liang, B., Liu, J.F., Yang, S.Z., Zhang, J., Gu, J.D., Mu, B.Z., 2020. Microbial community composition and diversity in production water of a high-temperature offshore oil reservoir assessed by DNA- and RNA-based analyses. Int. Biodeter. Biodegr. 151, 104970.