References
Anikwe, M., Ikenganyia, E., Egbonimale, J., Oputah, C., 2017. Assessment
of some tropical plants for use in the phytoremediation of petroleum
contaminated soil: effects of remediation on soil physical and chemical
properties. Int. J. Plant Soil Sci. 14(2), 1–9.
Azin, E., Moghimi, H., Heidarytabar, R., 2018. Petroleum degradation,
biosurfactant and laccase production by Fusarium
neocosmosporiellum RH-10: a microcosm study. Soil Sediment Contam.
27(4), 329–342.
Baoune, H., Aparicio, J.D., Acuña, A., El Hadj-khelil, A.O., Sanchez,
L., Polti, M.A., 2019. Effectiveness of the Zea mays-Streptomyces
association for the phytoremediation of petroleum hydrocarbons impacted
soils. Ecotoxicol. Environ. Saf. 184, 109591.
Benoit, I., van den Esker, M.H., Patyshakuliyeva, A., Mattern, D.J.,
Blei, F., Zhou, M., Dijksterhuis, J., Brakhage, A.A., Kuipers, O.P., de
Vries, R.P., Kov´acs, ´A.T., 2015. Bacillus subtilis attachment
to Aspergillus niger hyphae results in mutually altered
metabolism. Environ. Microbiol. 17, 2099–2113.
Bokulich, N.A., Kaehler, B.D., Rideout, J.R. Dillon, M., Bolyen, E.,
Knight, R., Huttley, G.A., Caporaso, J.G., 2018. Optimizing taxonomic
classification of marker-gene amplicon sequences with QIIME 2’s
q2-feature-classifier plugin. Microbiome. 6, 90.
Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A.,
Holmes, S.P., 2016. DADA2: High-resolution sample inference from
Illumina amplicon data. Nat. Methods. 13, 581.
Catania, V., Santisi, S., Signa, G., Vizzini, S., Mazzola, A., Cappello,
S., 2015. Intrinsic bioremediation potential of a chronically polluted
marine coastal area. Mar. Pollut. Bull. 99, 138–49.
Cheema, S., Lavania, M., Lal, B., 2015. Impact of petroleum hydrocarbon
contamination on the indigenous soil microbial community. Ann.
Microbiol. 65, 359–369.
Cremer, J., Melbinger, A., Wienand, K., Henriquez, T., Jung, H., Frey,
E., 2019. Cooperation in microbial populations: theory and experimental
model systems. J. Mol. Biol. 431(23), 4599–4644.
Dariush, M.T., Shahriari, M.H., Gholamareza, S.F., Kalantari, F., Azzi,
M., 2007. Effect of light crude oil-contaminated soil on growth and
germination of Festuca arundinacea . J. Appl. Sci. 7(18),
2623–2628.
de Boer, W., Folman, L.B., Summerbell, R.C., Boddy, L., 2005. Living in
a fungal world: impact of fungi on soil bacterial niche development.
FEMS Microbiol. Rev. 29, 795–811.
de la Cruz‐Izquierdo, Rosa., Paz, A., Reyes, E., Francisco, V.J., Lenci,
S.S., Martha, G.D.M., Rivera, G., 2021. Analysis of phenanthrene
degradation by Ascomycota fungi isolated from contaminated soil from
Reynosa, Mexico. Lett. Appl. Microbiol. 72.
De Menezes, A.B., Prendergast-Miller, M.T., Richardson, A.E., Toscas,
P., Farrell, M., Macdonald, L.M., Baker, G., Wark, T., Thrall, P.H.,
2015. Network analysis reveals that bacteria and fungi form modules that
correlate independently with soil parameters. Environ. Microbiol. 17,
2677–2689.
Deshpande, R., VanderSluis, B., Myers, C.L., 2013. Comparison of profile
similarity measures for genetic interaction networks. PLoS One. 8(7),
e68664.
Ezekoye, C.C., Chikere, C.B., Okpokwasili, G.C., 2018. Fungal diversity
associated with crude oil-impacted soil undergoing in-situ
bioremediation. Sustain. Chem. Pharm. 10, 148–152.
Feng, X., Liu, Z., Jia, X., Lu, W., 2020. Distribution of bacterial
communities in petroleum-contaminated soils from the Dagang oilfield,
China. Trans. Tianjin Univ. 26, 22–32.
Gałązka, A., Król, M., Perzyński, A., 2012. The Efficiency of
rhizosphere bioremediation with Azospirillum sp. andPseudomonas stutzeri in soils freshly contaminated with PAHs and
diesel fuel. Pol. J. Environ. Stud. 21, 345–353.
Ge, R., Sun, H., 2009. Metallomics: An integrated biometal science. Sci.
China, Ser. B: Chem. 52 (12), 2055−2070.
Guo, H., Yao, J., Cai, M., Qian, Y., Yue, G., Richnow, H.H., 2012.
Effects of petroleum contamination on soil microbial numbers, metabolic
activity and urease activity. Chemosphere. 87(11), 1273–1280.
Hamdan, H.Z., Salam, D.A., 2020. Microbial community evolution during
the aerobic biodegradation of petroleum hydrocarbons in marine sediment
microcosms: effect of biostimulation and seasonal variations. Environ.
Pollut. 265, 114858.
Haraguchi, H., 2004. Metallomics as integrated biometal science. J.
Anal. At. Spectrom. 19(1), 5−14.
Haritash, A.K., Kaushik, C.P., 2009. Biodegradation aspects of
polycyclic aromatic hydrocarbons (PAHs): A review. J. Hazard. Mater.
169, 1–15.
Hassan, I., Ai-Jawhari, H., 2014. Ability of Some Soil Fungi in
Biodegradation of Petroleum Hydrocarbon. Appl. Environ. Microbiol. 2,
46–52.
Hidayat, A., Tachibana, S., 2012. Biodegradation of aliphatic
hydrocarbon in three types of crude oil by Fusarium sp. F092
under stress with artificial sea water. J. Environ. Sci. Technol. 5(1),
64–73.
Hu, G., Li, J., Zeng, G., 2013. Recent development in the treatment of
oily sludge from petroleum industry: A review. J. Hazard. Mater. 261,
470–490.
Huesemann, M.H., 1995. Predictive model for estimating the extent of
petroleum hydrocarbon biodegradation in contaminated soils. Environ.
Sci. Technol. 29, 7e18.
Kaufmann, K., Christophersen, M., Buttler, A., Harms, H., HÃhener, P.,
2004. Microbial community response to petroleum hydrocarbon
contamination in the unsaturated zone at the experimental field site
Værløse, Denmark. FEMS Microbiol. Ecol. 48, 387–399.
Kim, T., Hong, J.K., Jho, E.H., Kang, G.Y., Lee, S.J., 2019. Sequential
biowashing-biopile processes for remediation of crude oil contaminated
soil in Kuwait. J. Hazard. Mater. 378, 120710.
Kitano, H., 2004. Biological robustness. Nat. Rev. Genet. 5, 826–837.
Koshlaf, E., Ball, S., 2017. Soil bioremediation approaches for
petroleum hydrocarbon polluted environments. AIMS Microbiol. 3, 25–49.
Labud, V., Garcia, C., Hernandez, T., 2007. Effect of hydrocarbon
pollution on the microbial properties of a sandy and a clay soil.
Chemosphere. 66(10), 1863–1871.
Li, Q., Huang, Y., Wen, D., Fu, R., Feng, L., 2020. Application of alkyl
polyglycosides for enhanced bioremediation of petroleum
hydrocarbon-contaminated soil using Sphingomonas changbaiensisand Pseudomonas stutzeri . Sci. Total Environ. 719, 137456.
Liu, R., Zhang, Y., Ding, R., Li, D., Gao, Y., Yang, M., 2009.
Comparison of archaeal and bacterial community structures in heavily
oil-contaminated and pristine soils. J. Biosci. Bioeng. 108, 400–407.
Liu, Z., Guo, Q., Feng, Z.Y., Liu, Z.D., Li, H.Y., Sun, Y.F., Liu, C.S.,
Lai, H.X., 2020. Long-term organic fertilization improves the
productivity of kiwifruit (Actinidia chinensis Planch.) through
increasing rhizosphere microbial diversity and network complexity. Appl.
Soil Ecol. 147, 103426.
Liu, Z., Ma, X., He, N., Zhang, J., Wu, J., Liu, C., 2020. Shifts in
microbial communities and networks are correlated with the soil ionome
in a kiwifruit orchard under different fertilization regimes. Appl. Soil
Ecol. 149, 103517.
Ma, B., Wang, Y., Ye, S., Liu, S., Stirling, E., Gilbert, J.A., Xu, J.,
2020. Earth microbial cooccurrence network reveals interconnection
pattern across microbiomes. Microbiome. 8(1), 82.
Margesin, R., Labbé, D., Schinner, F., Greer, C.W., Whyte, L.G., 2003.
Characterization of hydrocarbon-degrading microbial populations in
contaminated and pristine Alpine soils. Appl. Environ. Microbiol. 69,
3085–3092.
Mishra, S., Jyot, J., Kuhad, R.C., Lal, B., 2001. In situ bioremediation
potential of an oily sludge-degrading bacterial consortium. Curr.
Microbiol. 43, 328–335.
Nilsson, R.H., Larsson, K.H., Taylor, A.F.S., Bengtsson-Palme, J.,
Jeppesen, T.S., Schigel, D., Kennedy, P., Picard, K., Glöckner, F.O.,
Tedersoo, L., Saar, I., Kõljalg, U., Abarenkov, K., 2019. The UNITE
database for molecular identification of fungi: handling dark taxa and
parallel taxonomic classifications. Nucleic Acids Res. 47, 259-264.
Niu, B., Paulson, J.N., Zheng, X., Kolter, R., 2017. Simplified and
representative bacterial community of maize roots. Proc. Natl. Acad.
Sci. U S A. 2017, 114, e2450.
Paisse, S., Coulon, F., Goni-Urriza, M., Peperzak, L., McGenity, T.,
Duran, R., 2008. Structure of bacterial communities along a hydrocarbon
contamination gradient in a coastal sediment. FEMS Microbiol. Ecol. 66,
295–305.
Patowary, K., Saikia, R.R., Kalita, M.C., Deka, S., 2015. Degradation of
polyaromatic hydrocarbons employing biosurfactant-producing Bacillus
pumilus KS2. Ann. Microbiol. 65(1), 1–10.
Ramadass, K., Mallavarapu, M., Kadiyalaand Naidu, R., 2018.
Bioavailability of weathered hydrocarbons in engine oil-contaminated
soil: impact of bioaugmentation mediated by Pseudomonas spp . on
bioremediation. Sci. Total Environ. 636, 968–974.
Sheeba, V.S., Brinda, L.M., Perumalsam, R., Manickam, V., 2017.
Degradation of total petroleum hydrocarbon (tph) in contaminated soil
using Bacillus pumilus MVSV3. Biocontrol Sci. 22(1), 17–23.
Sheng, Y., Wang, G., Hao, C., Qian, X., Qian, Z., 2016. Microbial
community structures in petroleum contaminated soils at an oil field,
Hebei, China. CLEAN–Soil, Air, Water. 44(7), 829−839.
Wagg, C., Schlaeppi, K., Banerjee, S., Kuramae, E.E., van der Heijden,
M.G.A., 2019. Fungal-bacterial diversity and microbiome complexity
predict ecosystem functioning. Nat. Commun. 10(1), 4841.
Walker, T.W., Adams, A.F.R., 1958. Studies on soil organic matter: 1.
Influence of phosphorus contents of parent materials on accumulations of
carbon, nitrogen, sulfur, and organic phosphorus in grassland soils.
Soil Sci. 85, 307–318.
Wang, H.H., Kuang, S.P., Lang Q.L., Yu W.J., 2018. Effects of aged oil
sludge on soil physicochemical properties and fungal diversity revealed
by high-throughput sequencing analysis. Archaea. 8, 9264259.
Wang, X.Y., Jiang, F., Zhao, J.M., 2010. Effects of crude oil residuals
on soil chemical properties in oil sites, Momoge Wetland, China.
Environ. Monit. Assess. 161, 271–280.
Warmink, J.A., Nazir, R., Van Elsas, J.D., 2009. Universal and
species-specific bacterial “fungiphiles” in the mycospheres of
different basidiomycetous fungi. Environ. Microbiol. 11, 300–312.
Wu, M.L., Wu, J.L., Zhang, X.H., Ye, X.Q., 2019. Effect of
bioaugmentation and biostimulation on hydrocarbon degradation and
microbial community composition in petroleum-contaminated loessal soil.
Chemosphere. 237, 124456–124456.
Zhang, D.C., Mörtelmaier, C., Margesin, R., 2012. Characterization of
the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci.
Total Environ. 421–422, 184–196.
Zhou, L., Lu, Y.W., Wang, D.W., Zhang, S.L., Tang, E.G., Qi, Z.Z., Xie,
S.N., Wu, J., Liang, B., Liu, J.F., Yang, S.Z., Zhang, J., Gu, J.D., Mu,
B.Z., 2020. Microbial community composition and diversity in production
water of a high-temperature offshore oil reservoir assessed by DNA- and
RNA-based analyses. Int. Biodeter. Biodegr. 151, 104970.