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Abstract. The Lie group of infinitesimal transformations technique and similarity reduction is performed for obtaining an
exact invariant solution to generalized Kadomstev-Petviashvili-Boussinesq (gKPB) equation in (3+1)-dimensions. We obtain

generators of infinitesimal transformations, which provide us a set of Lie algebras. In addition, we get geometric vector fields, a

commutator table of Lie algebra, and a group of symmetries. It is observed that the analytic solution (closed-form solutions) to
the nonlinear gKPB evolution equations can easily be treated employing the Lie symmetry technique. A detailed geometrical

framework related to the nature of the solutions possessing traveling wave, bright and dark soliton, standing wave with multiple

breathers, and one-dimensional kink, for the appropriate values of the parameters involved.

1. Introduction

Many nonlinear partial differential equations (PDEs) have been proposed to model various complex physical, chemical, and
biological phenomena mathematically throughout the last several decades. For example, diverse theoretical advancements in
mathematics such as fluid mechanics (including the interaction of waves, solitary waves, traveling waves, shallow water waves,
and rogue waves), theory of turbulence (including analysis of chaos) have been perused in a variety of application to model
nonlinear phenomena [1–3]. These nonlinear phenomena are mathematically modeled as a nonlinear system based on the
nonlinear system of equations, which is a set of simultaneous differential equations [4–14]. Therefore, the qualitative analysis
of various solutions to nonlinear evolution PDEs plays a significant role in such studies. It is known that the nonlinear
PDEs are not straightforward to solve. A variety of techniques including the multiple exp-function method [23], generalized
symmetry method [15–19], the Bäcklund transformation method, Hirota’s bilinear method [20], Pfaffian technique, Darboux
transformation [21], the Painlevé analysis, the inverse scattering method [22], Wronskian and Grammian solutions have been
widely employed to understand characteristics of nonlinear evolution equations.

In current work, we aim to analyze the following gKPB equation in (3+1)-dimensions [24,25],

∆ := wxxxy + 3wxwxy + 3wywxx + wtt + wxt + wyt − wzz = 0, (1.1)

where w(x, y, z, t) represents the height of the wave at a spatial point (x, y, z) in time t on a three dimensional real space.
Removal of the term wtt from the equation (1.1), gives us widely popular Kadomtsev-Petviashvili (KP) equation [26, 27]. It
is observed that the KP equation is integrable model and can be represented by a first-order PDE in time, while Kadomstev-
Petviashvili-Boussinesq equation can take the form of second-order nonlinear PDE in temporal direction. Moreover, it models
both left and right-moving waves.

Wazwaz and El-Tantawy [28] derived the b-type KPB equation and double-soliton solutions by employing the simplified
Hirota’s method. Yu and Sun [29], constructed a direct bilinear Bäcklund transformation and obtained rational and expo-
nential traveling wave solutions with various wavenumbers. The exact lump solutions through the perturbation expansion
technique combined with Hirota’s bilinear transformation are described in Kaur and Wazwaz [30]. Lü [31] formulated the
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lump, breather-wave, and interaction solution with few restrictions considering Hirota transformation and symbolic tools of
Mathematica. Using Hirota’s bilinear transform, Sun and Wazwaz [32] constructed highorder lumps, high-order rogue waves,
and hybrid solutions to the KPB equation in (3+1)-dimensions. Recently, Wang et al. [33] applied the bifurcation theory of
dynamical system to it and presented traveling wave solutions of the KPB equation.
The present work is arranged in the following manner. In Section 2, the Lie symmetry analysis of the gKPB equation in
(3+1)-dimensions is obtained. In Section 3, we derive the symmetry groups for the gKPB equation. We shall further perform
symmetry reduction and determine the analytic solution in section 4. Section 5 contains a geometrical representation of
extracted solutions by providing a 3D solution surface for various values of parameters. This section also includes brief
analytical discussions about the nature of obtained solutions. Finally, Section 6 is concluded with remarks and findings.

2. (3 + 1)−dimensions gKPB equation and its Lie symmetry analysis

Using Lie symmetry analysis similarity reductions of the gKPB equation is derived as given in [15, 16]. Let us construct
the one parameter Lie group of transformation with (u1 = w, x1 = x, x2 = y, x3 = z, x4 = t),

˙̆x
˙̆y
˙̆z
˙̆t
˙̆w

 =


x
y
z
t
w

+ ς


ξ1(x, y, z, t, w)
ξ2(x, y, z, t, w)
ξ3(x, y, z, t, w)
τ(x, y, z, t, w)
η(x, y, z, t, w)

+O(ς2). (2.1)

Lie group transformations’ generators for the independent and dependent variables are ξ1, ξ2, ξ3, τ , and η, respectively,
together with continuous group parameter ς. The aforementioned transformations’ vector field is represented as

X = ξ1(x, y, z, t, w)
∂

∂x
+ ξ2(x, y, z, t, w)

∂

∂y
+ ξ3(x, y, z, t, w)

∂

∂z
+ τ(x, y, z, t, w)

∂

∂t
+ η(x, y, z, t, w)

∂

∂w
.

By employing the invariance condition Pr(4)X(∆) = 0, for ∆ = 0, the infinitesimal criteria to the invariance of (1.1) is
obtained as

ηxxxy + 3ηxwxy + 3wxηxy + 3ηywxx + 3ηxxwy + ηtt + ηxt + dηyt − ηzz = 0. (2.2)

Now, implementing the fourth prolongation Pr(4)X of X to (2.2), one can receive the following determining equations

ξ1t = ξ1x =
ξ3z
3
, ξ1w = 0, ξ1y = 0, ξ1z =

ξ3t
2

= 0,

ξ2t = ξ2z = ξ2w = 0, ξ2y = ξ3z , ξ
2
z =

ξ3t
2
,

ξ3w = ξ3x = ξ3y = ξ3tt = ξ3tz = ξ3zz = 0,

τt = ξ3z , τx = τw = τy = 0, τz = ξ3t ,

ηw = −ξ
3
z

3
, ηx =

ξ3z
9

= ηy, ηtt = ηzz.

(2.3)

Upon simplifying the determining equations (2.3), the infinitesimal generators are

ξ1 =
c1
2
z +

c2
3

(x+ t) + c6, ξ2 = 2c4y +
a

c
c3t+ c6, ξ3 =

c1
2
z + c2y + c3,

τ = c1t+ c2z + c3, η = ϕ(t− z) + ψ(t+ z) +
c2)

9
(x+ y − 3w),

(2.4)
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where ci, i = 1, . . . , 6 and ϕ(t−z) & ψ(t+z) are arbitrary constants and arbitrary functions, respectively. Assume ϕ(t−z) = c7,
the Lie algebra of infinitesimal symmetries of (1.1) is spanned by following vector fields

X1 =
1

2
(z + 2t)

∂

∂x
+

1

2
z
∂

∂y
+ z

∂

∂t

X2 =
1

3
(x+ t)

∂

∂x
+ y

∂

∂y
+ z

∂

∂x
+ t

∂

∂t
+

1

9
(x+ y − 3w)

∂

∂w

X3 =
∂

∂z
, X4 =

∂

∂t
, X5 =

∂

∂y
, X6 =

∂

∂x
, X7 =

∂

∂w
.

(2.5)

2.1. Computation of Lie-Brackets. The Lie algebra commutation relation, through the Lie bracket table appears to be
antisymmetric with (i, j)th entry as [Xi, Xj ] = Xi∗Xj = Xi ·Xj−Xj ·Xi. Moreover, the diagonal elements of the commutator
table are all zero, since [Xα, Xβ ] = −[Xβ , Xα]. Further, the commutator table offer each structure constants in a simplified
manner. The following commutation table is constructed using the generators of infinitesimal transformation (2.5),

Table 1. Lie Brackets for the gKPB equation

[·] X1 X2 X3 X4 X5 X6 X7

X1 0 0 X5−X6

2 +X4 −X3 0 0 0
X2 0 0 −X3

−X6

3 −X4 −X5 − X7

9 −X6

3 −
X7

9
X7

3

X3
−X5+X6

2 −X4 X3 0 0 0 0 0
X4 X3

X6

3 +X4 0 0 0 0 0
X5 0 X5 + X7

9 0 0 0 0 0
X6 0 X6

3 + X7

9 0 0 0 0 0
X7 0 −X7

3 0 0 0 0 0

As depicted in Table 1, a continuous group of transformations for the (3+1)-dimensional gKPB is found by vector fields that
span an infinite-dimensional Lie algebra. The linear combinations of generators Xi, i = 1, 2, . . . , 7 yield infinite subalgebras
for the above Lie algebra.

2.2. Adjoint Representation. We shall apply the following formula to evaluate the adjoint representations of vector fields
to the Eq. (1.1) [16]

Ad(exp(ςXi))Xj =

∞∑
m=0

ςm

m!
(adXi)

m(Xj) = Xj − ς[Xi, Xj ] +
1

2
ς2[Xi, [Xi, Xj ]]− · · · . (2.6)

The Table 2.2 enumerates the adjoint representation of Table 1 by applying the formula (2.6)

Table 2. Adjoint table for Lie subalgebras

Ad X1 X2 X3 X4 X5 X6 X7

X1 X1 X2
X6−X5−2X4

2 sin ς +X3 cos ς X4 + ςX3 X5 X6 X7

X2 X1 X2 X3eς eςX4 + e
ς
3 (X6 +X7 − 1) eςX5 + e

ς
9X7 e

ς
3X6 + e

ς
9X7 e

−ς
3 X7

X3 X1 + ς(X5−X6

2 +X4) X2 − ςX3 X3 X4 X5 X6 X7

X4 X1 − ςX3 X2 − ς(X6

3 +X4) X3 X4 X5 X6 X7

X5 X1 X2 − ς(X5 + X7

9 ) X3 X4 X5 X6 X7

X6 X1 X2 − ς(X6

3 + X7

9 ) X3 X4 X5 X6 X7

X7 X1 X2 + ς X7

3 X3 X4 X5 X6 X7
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If a transformation connects two similar algebras, corresponding invariant solutions are connected with the transformation
mentioned earlier. Thus, similar algebras constitute a class. With the aid of Table 1 and Table 2.2 and by prudently applying
adjoint maps, the optimal system, with linearly independent vector fields, of one-dimensional subalgebras is spanned by

{X1, X3, X4, X5, X6, X2 +X7} (2.7)

3. Symmetry groups of (3 + 1)−dimensional gKPB equation

To obtain the group transformations, Gi : (x, y, z, t, w) → ( ˙̆x, ˙̆y, ˙̆z, ˙̆t, ˙̆w), generated by the vector fields Xi for i = 1(1)7,
the given system of ordinary differential equations is to be solved

d( ˙̆x, ˙̆y, ˙̆z, ˙̆t, ˙̆w)

dς
= (ξ1, ξ2, ξ3, τ, η),

( ˙̆x, ˙̆y, ˙̆z, ˙̆t, ˙̆w)|ς=0 = (ξ1, ξ2, ξ3, τ, η).

The vector fields Xi span following groups Gi having one continuous parameter ς

G1 : (x, y, z, t, w)→
(
x+

ς

2
z, y +

ς

2
z, z + ςt, t+ ςz, w

)
,

G2 : (x, y, z, t, w)→
(
x+

ς

3
(x+ t), y + ςy, z + ςz, t+ ςt, w +

ς

9
(x+ y − 3w)

)
,

G3 : (x, y, z, t, w)→ (x, y, z + ς, t, w) ,

G4 : (x, y, z, t, w)→ (x, y, z, t+ ς, w) ,

G5 : (x, y, z, t, w)→ (x, y + ς, z, t, w) ,

G6 : (x, y, z, t, w)→ (x+ ς, y, z, t, w) ,

G7 : (x, y, z, t, w)→ (x, y, z, t, w + ς) .

(3.1)

The entry on the right hand side gives the transformed point exp(x, y, z, t, w) = ( ˙̆x, ˙̆y, ˙̆z, ˙̆t, ˙̆w). If w = f(x, y, z, t) is given
solution of (1.1), thereby applying the groups Gi, the updated solutions wi, i = 1(1)7, are given as

w1 = f
(
x− ς z

2
, y − ς z

2
, z − ς, t− ς

)
, w2 =

1

3

[
x+ t− f

(
3x− t
ς

,
y

1 + ς
,

z

1 + ς
,

t

1 + ς

)]
, (3.2)

w3 = f (x, y, z − ς, t) , w4 = f (x, y, z, t− ς) , w5 = f (x, y − ς, z, t) , w6 = f (x− ς, y, z, t) , w7 = f (x, y, z, t)− ς.

4. Symmetry Reduction and Closed-form Solutions

In this section, we seek to derive a group invariant solution for the Eq. (1.1) from the reduced equations. Note that
reduced equations are, in turn, derived from invariant functions. It is easy to simplify the characteristic of Lagrange’s system
to determine invariant functions

dx

ξ1
=
dy

ξ2
=
dz

ξ3
=
dt

τ
=
dw

η
. (4.1)

Invariance is a remarkable property of the Lie group of transformations method. The solutions obtained under a one-parameter
Lie group of transformations are invariant. The Lagrange system of characteristic equations allows group invariant solutions
to construct differential equations with the one-less independent variable, resulting in an ordinary differential equation (ODE).
The resolution of ODE is back substituted to yield a solution of the primary differential equation.
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4.1. Vector field X1.

X1 =
z

2

∂

∂x
+
z

2

∂

∂y
+ t

∂

∂x
+ z

∂

∂t
. (4.2)

The Eqs. (4.2) and (4.1) are being used to find characteristic equation for Lagrange’s system

dx
z
2

=
dy
z
2

=
dz

t
=
dt

z
=
dw

0
.

The invariant solution for the Eq. (1.1) is

w(x, y, z, t) = f(X,Y, Z), with Y = 2y − t, X = 2x− t, Z = z2 − t2. (4.3)

From Eqs. (4.3) and (1.1), we get following PDE

− fZ − 4ZfZZ − fY Y − 2fXY − fXX + 24fXfXY + 24fY fXX + 16fXXXY = 0. (4.4)

Using similarity transformation method (STM), the infinitesimal generators for Eq. (4.4) are

ξX =
a1
4
X + a3, ξY =

a1
2
Y + a2, ξZ = a1Z, ηf = a5 logZ +

a1
48

(X + Y ) + a4, (4.5)

where ξX , ξY , ξZ are the generators of infinitesimal transformations for independent variables X, Y, Z, respectively while ηf
for dependent variable f ; ai, i = 1(1)5, are constants.
A set of vector fields for generators of infinitesimal transformation (4.5) is given by

π1 =
X

4

∂

∂X
+
Y

2

∂

∂Y
+ Z

∂

∂Z
+
X + Y

48

∂

∂f
,

π2 =
∂

∂Y
, π3 =

∂

∂X
, π4 =

∂

∂f
, π5 = logZ

∂

∂f
.

(4.6)

4.1.1. Vector field π2.

π2 =
∂

∂Y
.

The Lagrange’s characteristic equations for vector field π2 are

dX

0
=
dY

1
=
dZ

0
=
df

0
.

In addition, we express the function f in the invariant form shown below.

f(X,Y, Z) = H(r, q), r = X, q = Z. (4.7)

We reduce Eq. (4.4) as follows

Hq + 4Hqq +Hrr = 0. (4.8)

Using back substitution, solution of Eq. (4.8) provides solution of primary equation (1.1) as

w(x, y, z, t) =
(z2 − t2)

3
8

(
K2

1 exp(K1(2x− t)2) +K2

) [
BesselJ( 3

4 ,
√
−K1(z2 − t2))K3 + BesselY( 3

4 ,
√
−K1(z2 − t2))K4

]
exp(
√
K1(2x− t))

,

(4.9)

where Ki, i = 1, . . . , 4 are constants.
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4.1.2. Vector field π3.

π3 =
∂

∂X
.

Lagrange’s characteristic equations for vector field π3 are

dX

1
=
dY

0
=
dZ

0
=
df

0
.

Further, the function f is expressed in the given invariant form

f(X,Y, Z) = H(r, q) and r = Y, q = Z. (4.10)

We reduce Eq. (4.4) into following PDE

Hq + 4Hqq +Hrr = 0. (4.11)

Using back substitution, the solution of the Eq. (4.11) provides solution of primary equation (1.1)

w(x, y, z, t) =
(z2 − t2)

3
8

(
K2

1 exp(K1(2y − t)2) +K2

) [
BesselJ( 3

4 ,
√
−K1(z2 − t2))K3 + BesselY( 3

4 ,
√
−K1(z2 − t2))K4

]
exp(
√
K1(2y − t))

,

(4.12)
where Ki, i = 1, . . . , 4 are constants.

4.2. Vector field X3.

X3 =
∂

∂z
.

Eq. (4.1) is used to find the related Lagrange equations

dx

0
=
dy

0
=
dz

1
=
dt

0
=
dw

0
. (4.13)

The Eq. (1.1) can be converted into the given invariant form

w(x, y, z, t) = f(X,Y, T ), Y = y X = x, T = t, (4.14)

From Eqs. (4.14) and (1.1), we get following PDE

fXXXY + 3fXfXY + 3fY fXX + fXT + fY T + fTT = 0. (4.15)

We find traveling wave solutions of Eq. (4.15) is

f(X,Y, T ) = 2K2 tanh

(
K2X +K3Y +

(
−K2 +K3

2
− 1

2

√
−16K3

2K3 +K2
2 + 2K2K3 +K2

3

)
T +K1

)
+K5, (4.16)

f(X,Y, T ) = 2K2 tanh

(
K2X +K3Y +

(
−K2 +K3

2
+

1

2

√
−16K3

2K3 +K2
2 + 2K2K3 +K2

3

)
T +K1

)
+K5. (4.17)

We obtain following traveling wave solutions of Eq. (1.1)

w(x, y, z, t) = 2K2 tanh

(
K2x+K3y +

(
−K2 +K3

2
− 1

2

√
−16K3

2K3 +K2
2 + 2K2K3 +K2

3

)
t+K1

)
+K5, (4.18)

w(x, y, z, t) = 2K2 tanh

(
K2x+K3y +

(
−K2 +K3

2
+

1

2

√
−16K3

2K3 +K2
2 + 2K2K3 +K2

3

)
t+K1

)
+K5, (4.19)

where Ki, i = 1, . . . , 5 are constants.
Apply the similarity transformation approach to Eq.(4.15) to produce the infinitesimal generators shown below

ξX =
a1
3

(X + T ) + a4, ξY = a1Y + a3, τT = a1T + a2, ηf =
a1
9

(X + Y − 3f) + a5T + a6,
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where ai, i = 1, . . . , 6 are arbitrary constants. Vector fields associated to aforementioned infinitesimal generators are given
by

π1 =
1

3
(T +X)

∂

∂X
+ Y

∂

∂Y
+ T

∂

∂T
+

1

9
(X − 3f + Y )

∂

∂f
,

π2 =
∂

∂T
, π3 =

∂

∂Y
, π4 =

∂

∂X
, π5 = T

∂

∂f
, π6 =

∂

∂f
.

(4.20)

4.2.1. Vector field π2.

π2 =
∂

∂T
.

Invariant function H(r, q) and invariant variable r, q are produced by the characteristic equations of Lagrange’s system
for Eq. (4.15)

f(X,Y, T ) = H(r, q), r = X, q = Y. (4.21)

Further, the reduction of Eq. (4.15) is

3HrHrq + 3HqHrr +Hrrrq = 0. (4.22)

Apply Lie group of transformations method on Eq. (4.22) to obtain infinitesimal generators

ξr = b1r + b2, ξq = P (q), ηH = −b1H + b3, b1, b2, b3 are constants.

Assuming P (q) = 0, the invariant solution H(r, q) is written as

H(r, q) =
G(ζ)

r + b2
, with similarity variable ζ = q. (4.23)

Using above invariant function, Eq. (4.22) is reduced into following ODE

+ 3G′
2

(ζ) + 6G′(ζ)G(ζ)− 6G′(ζ) = 0. (4.24)

We back substitute the solutions of Eq. (4.24) to obtain solutions of Eq. (1.1)

w(x, y, z, t) = K3 +
1 +K1 exp(−2y)

x+K2
, (4.25)

w(x, y, z, t) = K3 +
K1

x+K2
, K1,K2,K3 are constants. (4.26)

4.2.2. Vector field π3.

π3 =
∂

∂Y
.

Lagrange’s characteristic equations for vector field π3 are

dX

0
=
dY

1
=
dT

0
=
df

0
.

By solving these equations, one can express f in terms of H(r, q) as

f(X,Y, T ) = H(r, q), r = X, q = T. (4.27)

Further, the Eq. (4.15) simplifies to

Hqq +Hrq = 0. (4.28)

By back substituting the solutions of Eq. (4.28), we find solutions of the Eq. (1.1) as

w(x, y, z, t) = K7 tanh3(K3(t− x)−K1) +K5 tanh(K3(t− x)−K1) +K4, (4.29)
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w(x, y, z, t) = K7 tanh3(K3(t− x)−K1) +K6 tanh2(K3(t− x)−K1) +K5 tanh(K3(t− x)−K1) +K4, (4.30)

where Ki, i = 1(1)7, are constants.

4.2.3. Vector field π4.

π4 =
∂

∂X
.

Lagrange’s characteristic equations are calculated as follows

dX

1
=
dY

0
=
dT

0
=
df

0
.

Solution of the characteristic equations provide the function f in the terms of invariant function H(r, q)

f(X,Y, T ) = H(r, q), r = Y, q = T. (4.31)

Using above invariant function, the reduced PDE from the Eq. (4.15) is

Hss +Hrs = 0. (4.32)

The solutions of the Eq. (1.1) are

w(x, y, z, t) = K7 tanh3(K3(t− y)−K1) +K5 tanh(K3(t− y)−K1) +K4, (4.33)

w(x, y, z, t) = K7 tanh3(K3(t− y)−K1) +K6 tanh2(K3(t− y)−K1) +K5 tanh(K3(t− y)−K1) +K4, (4.34)

where Ki, i = 1(1)7, are constants.

4.3. Vector field X4.

X4 =
∂

∂t
.

The characteristic equations of Lagrange are as follows

dx

0
=
dy

0
=
dz

0
=
dt

1
=
dw

0
.

The Eq. (1.1) is written in the form of invariant function f(X,Y, Z)

w(x, y, z, t) = f(X,Y, Z), Y = y, X = x, Z = z. (4.35)

Plugging Eq.(4.35) into Eq. (1.1) yields the following PDE

3fXfXY + 3fY fXX + fXXXY − fZZ = 0. (4.36)

Equation (4.36) has following traveling wave type solutions

f(X,Y, Z) = 2K2 tanh(K2X +K3Y − 2
√
K3

2K3 Z +K1) +K5, (4.37)

f(X,Y, Z) = 2K2 tanh(K2X +K3Y + 2
√
K3

2K3 Z +K1) +K5. (4.38)

Therefore, solutions of main Eq. (1.1) can be written as

w(x, y, z, t) = 2K2 tanh(K2x+K3y − 2
√
K3

2K3 z +K1) +K5, (4.39)

w(x, y, z, t) = 2K2 tanh(K2x+K3y + 2
√
K3

2K3 z +K1) +K5, (4.40)

where Ki, i = 1(1)5, are constants.
Apply the similarity transformation approach to Eq.(4.36) to produce the infinitesimal generators shown below

ξX =
1

3
(2a1 − a3)X + a5, ξY = a3Y + a4, ξZ = a1Z + a2, ηf = −1

3
(2a1 − a3)f + a6Z + a7,
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where ai, i = 1(1)7, are arbitrary constants. The vector fields associated to these infinitesimal generators are

π1 =
2X

3

∂

∂X
+ Z

∂

∂Z
− 2f

3

∂

∂f
, π2 =

∂

∂Z
,

π3 = − 1

3
X

∂

∂X
+ Y

∂

∂Y
+

1

3
f
∂

∂f
, π4 =

∂

∂Y
,

π5 =
∂

∂X
, π6 = Z

∂

∂f
, π7 =

∂

∂f
.

(4.41)

4.3.1. Vector field π1.

π1 =
2X

3

∂

∂X
+ Z

∂

∂Z
− 2f

3

∂

∂f
. (4.42)

Equation (4.42) and (4.1) are used to find the related Lagrange system

dX
2X
3

=
dY

0
=
dZ

Z
=

df
−2f
3

.

Invariant functions are formed by reducing Eq. (4.36) to its similarity

f(X,Y, Z) =
H(r, q)

Z
2
3

, r =
X3

Z2
, q = Y. (4.43)

We produce following PDE with one less independent variables using Eqs. (4.43) and (1.1)

− 10
9 H −

26
3 rHr + 6Hrq + 27r

4
3HrHrq − 4r2Hrr + 18r

1
3HrHq

+27r
4
3HqHrr + 54rHrrq + 27r2Hrrrq = 0. (4.44)

Apply the similarity transformation approach to Eq.(4.44) to produce the infinitesimal generators shown below

ξr = −b1r, ξs = b1q + b2, ηf =
b1
3
H, b1, b2 are constants.

Invariant function and invariant variable are produced by the characteristic equations of Lagrange’s system for Eq. (4.44)

H(r, q) = (q + b2)
1
3G(ζ), ζ = r(q + b2). (4.45)

The Eq. (4.45) reduces Eq. (4.44) into a fourth order nonlinear ODE

− 10
9 G(ζ) + (8− 26

3 ζ)G′(ζ) + 6ζ
1
3G(ζ)G′(ζ) + 54ζ

4
3G′

2

(132ζ − 4ζ2)G′′(ζ) + 9ζ
4
3G(ζ)G′′(ζ)

+54ζ
7
3G′(ζ)G′′(ζ) + 63ζ2G′′′(ζ) + 2ζ3G′′′′(ζ) = 0. (4.46)

In this case, we did not find an exact solution, though one can easily treat them numerically.

4.3.2. Vector field π2.

4π2 =
∂

∂Z
,

Invariant functions are formed by reducing Eq. (4.36) to its similarity

f(X,Y, Z) = H(r, q), r = X, q = Y. (4.47)

The Eq. (4.36) is reduced in a PDE with two independent variables

3HrHrq + 3HqHrr +Hrrrq = 0. (4.48)

Eq. (4.48), by applying Lie group analysis, yields the infinitesimal generators

ξr = b1r + b2, ξq = P (q), ηH = −b1H + b3, b1, b2, b3 are constants.
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Assuming P (q) = 0, the function H(r, q) is written in the form of invariant function G(ζ)

H(r, s) =
G(ζ)

r + b2
, where ζ = s. (4.49)

Upon simplifying above invariant function, the reduction of Eq. (4.48) into a first order ODE is

6G(ζ)G′(ζ)− 6G′(ζ) + 3G′
2

(ζ) = 0 (4.50)

To find solutions of the Eq. (1.1), we back substitute the solutions of Eq. (4.50)

w(x, y, z, t) = K3 +
1 +K1 exp(−2y)

x+K2
, (4.51)

w(x, y, z, t) = K3 +
K1

x+K2
, (4.52)

where Ki, i = 1, 2, 3 are constants.

4.3.3. Vector field π3.

π3 = −X
3

∂

∂X
+ Y

∂

∂Y
+
f

3

∂

∂f
.

Lagrange Characteristic equations for vector field π3 are

dX
−X
3

=
dY

Y
=
dZ

0
=
df
f
3

.

The Eq. (4.36) is converted into following invariant form

f(X,Y, Z) = Y
1
3H(r, q), r = X3Y, q = Z. (4.53)

Using above invariant functions, reduction of Eq. (4.36) is

−Hqq + 8Hr + 132rHrr + 54r
4
3H2

r + 54r
7
3HrHrr + 6r

1
3HHr + 9r

4
3HHrr + 144r2Hrrr + 27r3Hrrrr = 0. (4.54)

When applied to Eq. (4.54), the Lie group analysis method produces the infinitesimal generators below

ξr = 2b1r, ξq = b1q + b2, ηH = −2

3
b1H, b1, b2 are constants.

The characteristic equations are
dr

2r
=

dq

q +
∗
b2

=
dH
−2H
3

, where
∗
b2 =

b2
b1
.

Reduction of Eq. (4.54) to its similarity is

ζ =
r

q +
∗
b2

, H(r, q) =
G(ζ)

r
1
3

, (4.55)

The Eq. (4.55) reduces equation (4.54) into a fourth order nonlinear ODE

− 10
9 G(ζ)− 26ζG′(ζ) + 8G′(ζ) + 6ζ

1
3G′G(ζ) + 54ζ

4
3G′(ζ)− 4ζ2G′′(ζ)G(ζ)

+132ζG′′(ζ) + 9ζ
4
3G(ζ)G′′(ζ) + 54ζ

7
3G′′(ζ)G(ζ) + 144ζ2G′′′(ζ) + 27ζ3G′′′′(ζ) = 0. (4.56)

In this case, we did not find an exact solution, though it is easy to solve them by available discretization techniques.
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4.3.4. Vector field π4.

π4 =
∂

∂Y
.

The vector field π4 provide similarity reduction of Eq. (4.36) as follows

f(X,Y, Z) = H(r, q), where, r = X, q = Z. (4.57)

By using Eq. (4.57), reduction of Eq. (4.36) is

Hss = 0. (4.58)

Hence, Eq. (1.1) has following solution for this case

w(x, y, z, t) = α(x)z + β(x). (4.59)

4.3.5. Vector field π5.

π4 =
∂

∂X
.

The vector field π4 provide similarity reduction of the Eq. (4.36) as follows

f(X,Y, Z) = H(r, q), r = Y, q = Z. (4.60)

Equation (4.36) can be simplified as follows by using Eq. (4.60)

Hqq = 0. (4.61)

Hence, we obtain

w(x, y, z, t) = α(y)z + β(y) (4.62)

as one of a solution for Eq. (1.1).

4.4. Vector field X5.

X5 =
∂

∂y
. (4.63)

With the aid of Eqs. (4.63) and (4.1), we find following characteristic equations

dx

0
=
dy

1
=
dz

0
=
dt

0
=
dw

0
.

Invariant function f(X,Z, T ) formed by reducing Eq. (1.1)

w(x, y, z, t) = f(X,Z, T ), X = x, T = t, Z = z. (4.64)

By putting Eq.(4.64) into Eq. (1.1), the following PDE is generated

fXT + fTT − fZZ = 0. (4.65)

By solving Eq. (4.65), we back substitute its solutions to obtain following travelling wave type solutions

w(x, y, z, t) = K8 tanh3
(
K3t− K2

3−K
2
4

K3
x+K4z +K1

)
+K6 tanh

(
K3t− K2

3−K
2
4

K3
x+K4z +K1

)
+K5, (4.66)

w(x, y, z, t) = K8 tanh3
(
K3t− K2

3−K
2
4

K3
x+K4z +K1

)
+K7 tanh2

(
K3t− K2

3−K
2
4

K3
x+K4z +K1

)
+K6 tanh

(
K3t− K2

3−K
2
4

K3
x+K4z +K1

)
+K4, (4.67)

where Ki, i = 1(1)8, are constants.
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4.5. Vector field X6.

X6 =
∂

∂x
. (4.68)

The following characteristic equations of Lagrange are found using Eqs. (4.68) and (4.1)

dx

1
=
dy

0
=
dz

0
=
dt

0
=
dw

0
.

The Eq. (1.1) is converted to the following invariant form when new similarity variables are introduced

w(x, y, z, t) = f(Y,Z, T ), Y = y, Z = z, T = t. (4.69)

From Eqs. (4.69) and (1.1), following PDE is obtained

fY T + fTT − fZZ = 0. (4.70)

Upon solving Eq. (4.70), we back substitute its solutions to obtain following travelling wave type solutions

w(x, y, z, t) = K8 tanh3
(
K3t− K2

3−K
2
4

K3
y +K4z +K1

)
+K6 tanh

(
K3t− K2

3−K
2
4

K3
y +K4z +K1

)
+K5, (4.71)

w(x, y, z, t) = K8 tanh3
(
K3t− K2

3−K
2
4

K3
y +K4z +K1

)
+K7 tanh2

(
K3t− K2

3−K
2
4

K3
y +K4z +K1

)
+K6 tanh

(
K3t− K2

3−K
2
4

K3
y +K4z +K1

)
+K4, (4.72)

where Ki, i = 1(1)8, are arbitrary constant.

5. Graphical Interpretation and Discussion

(a) (b) (c) (d)
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(e) (f) (g) (h)

(i) (j) (k) (l)

(A) In Eq. (4.9), t = 10.358, K1 = 50, K2 = 2, K3 = 3, K4 = 4 and x, z ∈ [20, 30],
(B) In Eq. (4.12), x = 1.024, K1 = 1.0950, K2 = 2, K3 = 3, K4 = 4 and z ∈ [−20, 20], t ∈ [−10, 0],
(C) In Eq. (4.18), x = 1.025, K1 = 11, K2 = 2, K3 = 3, K5 = 1 and z ∈ [−2, 2], y ∈ [−1, 1],
(D) In Eq. (4.18), x = 0.025, K1 = 11, K2 = 2, K3 = 3, K5 = 1 and y ∈ [−10, 1], z ∈ [−10, 5],
(E) In Eq. (4.18), x = 1.025, K1 = 11, K2 = 2, K3 = 3, K5 = 1 and y ∈ [−1, 1], z ∈ [−5, 5],
(F) In Eq. (4.25), K1 = 1.98, K2 = 10.105, K3 = 1.508 and x ∈ [−20, 2], y ∈ [−1, 10],
(G) In Eq. (4.29), K1 = 1,K3 = 3,K4 = 4,K5 = 5,K7 = 7 and x, y ∈ [−10, 10],
(H) In Eq. (4.33), y = 0.025, K1 = 1, K2 = 2, K3 = 3, K5 = 1 and x, z ∈ [−10, 10],
(I) In Eq. (4.59), α(x) = sin(x2), β(x) = sec2(x) and x, z ∈ [−10, 10],
(J) In Eq. (4.59), α(x) = sin(x2), β(x) = sec2(x) and x, z ∈ [−20, 20],
(K) In Eq. (4.59), α(x) = sin(x2), β(x) = sec2(x) and x, z ∈ [−50, 50],
(L) In Eq. (4.59), α(x) = sin(x), β(x) = sech(x2) and x, z ∈ [−50, 50].

Discussion: Fig.(A), Fig.(B), Fig(C), and Fig.(E) exhibit a standing wave with multiple breathers. The undulating array
of breathers with opposite phases can be regarded as a standing wave. The initial oscillatory dynamics of multi-breathers
with undulating amplitude is suggestive of the most unstable interaction among solitons. Gradually, the wave loses coherence
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and the chaotic regime prevails. Note that such multi-breathers interactions are not perfectly elastic.
Fig.(D) shows a topological defect with a one-dimensional kink. The presence of at least two discontinuous fibro-fatty plaques
may not be entirely discrete for each other because a one-dimensional kink connects these fibro-fatty plaques with distinct
spatial localization. In higher dimensions, multiple topological defects can be connected by higher-dimensional kinks. It
means that intra-arterial micro- and macro-transport is done through kink solitons. Note that the solitary wave for intra-
vascular transport is kink soliton.
Fig. (F) shows how the standing wave interacts with bright and dark solitons. The phase transition interacts with an array
of multiple breathers, which appears as a standing wave, due to the beaming correspondence among solitons. As a result,
nonlinear wave i.e. partially standing and partially traveling waves with changing amplitudes, propagates. Such solutions
are unstable due to oscillatory instabilities. Fig. (G) and Fig. (H) exhibit a traveling wave solution that characterizes the
flows in the forward direction..
Fig. (I) and Fig. (J) exhibit three bright solitons with progressively decreasing solitary wave amplitude, whereas Fig.(I) has
symmetry in three bright solitons at x = 0. Cumulative accretion of potential energy contributes to the creation of bright
soliton. The temporo-spatial localization of its energy and narrowing of time duration contributes to increment in wave
speed. As the wave propagates further, its speed is progressively retarded because bright soliton vanishes after the peak. In
this case, the slower wave comes in contact with another soliton of almost the same height; again, a bright soliton emerges.
Fig. (K) and Fig. (L) depict multiple breathers. While discussing Fig.(C), we have seen that multiple breathers with varying
amplitude are associated with more unstable interactions than other solitons. Fig.(K) exhibits quasi-periodic oscillatory
dynamics associated with increasing wave incoherence and spatial inhomogeneity. Fig. (L) exhibits periodic oscillatory
dynamics with progressively growing amplitude.

5.1. Conclusion. The (3+1)-dimensional gKPB equation widely appears to model physical phenomena in fluid dynamics.
In fact, the gKPB equation provides more accurate approximations to dynamics of water under a fewer number of constraints
than the KP equation. We have investigated various exact solutions of the (3+1)-dimensional gKPB equation using the
Lie group of transformations method in the present work. The generators of infinitesimal transformations are obtained by
utilizing Lie symmetry group analysis,. These generators rely on a number of parameters, and from these generators, we
obtained a set of Lie algebras. Finally, using the property of invariance of the Lie group of transformations, we obtained
various exact solutions for the gKPB equation in (3+1)-dimensions. The solutions we have derived are represented by the
equations (4.9), (4.12), (4.18), (4.25), (4.29), (4.33), (4.40), (4.51), (4.59) etc. A geometrical profile of these solutions in
3-dimensional plots ( by giving appropriate values to arbitrary constants) with an analytical discussion is provided. Traveling
wave solutions, bright and dark soliton solutions, kink, and standing waves with multiple breathers profiles of solutions are
presented. Our results show that the symmetry method is relevant to solve nonlinear evolution equations associated with
modeling nonlinear phenomena analytically.

6. Availability of Data and Material

All data generated or analysed during this study is included in this article.
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