References
1. K. Satyanarayana. Impact factor and other indices to assess science, scientists and scientific journals.Indian. J. Physiol. Pharmacol. 54 , 197-212 (2010).
2. D. F. Thompson, E. C. Callen, M. C. Nahata. New indices in scholarship assessment. Am. J. Pharm. Educ . 73 , 111 (2009).
3. J. E. Hirsch. An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. U S A . 102 , 16569-16572 (2005).
4. J. P. A. Ioannidis. Prolific non-research authors in high impact scientific journals: meta-research study. Scientometrics 128 , 3171-3184 (2023).
5. GBD 2021 Demographics Collaborators. Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950-2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 403 , 1989-2056 (2024).
6. GBD 2021 Causes of Death Collaborators. Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403 , 2100-2132 (2024).
7. GBD 2021 Risk Factors Collaborators. Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. Lancet 403 , 2162-2203 (2024).
8. C. S. Hu. Scientific papers: Which type would you prefer? J. Integr. Med. 17, 77-79 (2019).
9. R. I. Aroeira, M. A R B Castanho. Can citation metrics predict the true impact of scientific papers? FEBS. J .287 , 2440-2448 (2020).
10. S. Şahin, S. Alkan. Contribution of Turkey in Heart Transplant Research: A Web of Science Database Search.Exp. Clin. Transplant . 21 , 150-157 (2023).
11. H. S. Chiang, R. Y. Huang, P. W. Weng, L. P. Mau, Y. C. Tsai, M. P. Chung, C. H. Chung, H. W. Yeh, Y. S. Shieh, W. C. Cheng. Prominence of scientific publications towards peri-implant complications in implantology: A bibliometric analysis using the H-classics method.J. Oral. Rehabil . 45 , 240-249 (2018).
12. L. Bornmann, R. Haunschild. Measuring Individual Performance with Comprehensive Bibliometric Reports as an Alternative to h-Index Values. J. Korean. Med. Sci . 33 , e138 (2018).
13. A. Duclos, E. Herquelot, S. Polazzi, M. Malbezin, O. Claris. Performance curves of medical researchers during their career: analysis of scientific production from a retrospective cohort. BMJ. Open .27 , e013572 (2017).
14. Sych T, Schlegel J, Barriga HMG, Ojansivu M, Hanke L, Weber F, Beklem Bostancioglu R, Ezzat K, Stangl H, Plochberger B, Laurencikiene J, El Andaloussi S, Fürth D, Stevens MM, Sezgin E. High-throughput measurement of the content and properties of nano-sized bioparticles with single-particle profiler. Nat. Biotechnol .42 , 587-590 (2024).
15. Huang S, Siah KW, Vasileva D, Chen S, Nelsen L, Lo AW. Life sciences intellectual property licensing at the Massachusetts Institute of Technology. Nat. Biotechnol . 39 , 293-301 (2021).
16. Manjunath A, Li H, Song S, Zhang Z, Liu S, Kahrobai N, Gowda A, Seffens A, Zou J, Kumar I. Comprehensive analysis of 2.4 million patent-to-research citations maps the biomedical innovation and translation landscape. Nat. Biotechnol .39 , 678-683 (2021).
17. R. B. Altman, N. Khuri, M. Salit, K. M. Giacomini. Unmet needs: Research helps regulators do their jobs. Sci. Transl. Med. 7 , 315ps22 (2015).
18. R. Fears, J. W. van der Meer, V. ter Meulen. Translational medicine policy issues in infectious disease. Sci. Transl. Med. 2 , 14cm2 (2010).
19. Keaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A, Evangelou E, Hellwege JN, Yengo L, et al. Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nat. Genet . 56 , 778-791 (2024).
20. Kachuri L, Chatterjee N, Hirbo J, Schaid DJ, Martin I, Kullo IJ, Kenny EE, Pasaniuc B; Polygenic Risk Methods in Diverse Populations (PRIMED) Consortium Methods Working Group; Witte JS, Ge T. Principles and methods for transferring polygenic risk scores across global populations.Nat. Rev. Genet . 25 , 8-25 (2024)
21. Lim J, Chin V, Fairfax K, Moutinho C, Suan D, Ji H, Powell JE. Transitioning single-cell genomics into the clinic. Nat. Rev. Genet .24 , 573-584 (2023).
22. Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H, Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, et al. Multi-ancestry genome-wide study identifies effector genes and druggable pathways for coronary artery calcification. Nat. Genet . 55 , 1651-1664 (2023).
23. Adlam D, Berrandou TE, Georges A, Nelson CP, Giannoulatou E, Henry J, Ma L, Blencowe M, Turley TN, Yang ML, et al. Genome-wide association meta-analysis of spontaneous coronary artery dissection identifies risk variants and genes related to artery integrity and tissue-mediated coagulation. Nat. Genet . 55 , 964-972 (2023).
24. Wessel, M. J. Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat. Neurosci . 26 , 2005-2016 (2023).
25. Silva, N. T., Ramírez-Buriticá, J., Pritchett, D. L. & Carey, M. R. Climbing fibers provide essential instructive signals for associative learning.Nat. Neurosci . 27 , 940-951 (2024).