References
1. K. Satyanarayana.
Impact factor and other
indices to assess science, scientists and scientific journals.Indian. J. Physiol. Pharmacol. 54 , 197-212 (2010).
2. D. F. Thompson, E. C. Callen, M. C. Nahata.
New indices in
scholarship assessment. Am. J. Pharm. Educ . 73 , 111
(2009).
3. J. E. Hirsch. An index to quantify an individual’s scientific
research output. Proc. Natl. Acad. Sci. U S A . 102 ,
16569-16572 (2005).
4. J. P. A. Ioannidis. Prolific non-research authors in high
impact scientific journals: meta-research study. Scientometrics 128 , 3171-3184 (2023).
5. GBD 2021 Demographics Collaborators.
Global age-sex-specific
mortality, life expectancy, and population estimates in 204 countries
and territories and 811 subnational locations, 1950-2021, and the impact
of the COVID-19 pandemic: a comprehensive demographic analysis for the
Global Burden of Disease Study 2021. Lancet 403 ,
1989-2056 (2024).
6. GBD 2021 Causes of Death Collaborators.
Global burden of 288
causes of death and life expectancy decomposition in 204 countries and
territories and 811 subnational locations, 1990-2021: a systematic
analysis for the Global Burden of Disease Study 2021. Lancet 403 , 2100-2132 (2024).
7. GBD 2021 Risk Factors Collaborators.
Global burden and
strength of evidence for 88 risk factors in 204 countries and 811
subnational locations, 1990-2021: a systematic analysis for the Global
Burden of Disease Study 2021. Lancet 403 , 2162-2203
(2024).
8. C. S. Hu. Scientific papers: Which type would you prefer? J.
Integr. Med. 17, 77-79 (2019).
9. R. I. Aroeira, M. A R B Castanho.
Can citation metrics
predict the true impact of scientific papers? FEBS. J .287 , 2440-2448 (2020).
10. S. Şahin, S. Alkan.
Contribution of Turkey
in Heart Transplant Research: A Web of Science Database Search.Exp. Clin. Transplant . 21 , 150-157 (2023).
11. H. S. Chiang, R. Y. Huang, P. W. Weng, L. P. Mau, Y. C. Tsai, M. P.
Chung, C. H. Chung, H. W. Yeh, Y. S. Shieh, W. C. Cheng.
Prominence
of scientific publications towards peri-implant complications in
implantology: A bibliometric analysis using the H-classics method.J. Oral. Rehabil . 45 , 240-249 (2018).
12. L. Bornmann, R. Haunschild.
Measuring Individual
Performance with Comprehensive Bibliometric Reports as an Alternative
to h-Index Values. J. Korean. Med. Sci . 33 , e138
(2018).
13. A. Duclos, E. Herquelot, S. Polazzi, M. Malbezin, O. Claris.
Performance curves of
medical researchers during their career: analysis
of scientific production from a retrospective cohort. BMJ. Open .27 , e013572 (2017).
14. Sych T, Schlegel J, Barriga HMG, Ojansivu M, Hanke L, Weber F,
Beklem Bostancioglu R, Ezzat K, Stangl H, Plochberger B, Laurencikiene
J, El Andaloussi S, Fürth D, Stevens MM, Sezgin E.
High-throughput
measurement of the content and properties of nano-sized bioparticles
with single-particle profiler. Nat. Biotechnol .42 , 587-590 (2024).
15. Huang S, Siah KW, Vasileva D, Chen S, Nelsen L, Lo AW.
Life sciences
intellectual property licensing at the Massachusetts Institute of
Technology. Nat. Biotechnol . 39 , 293-301
(2021).
16. Manjunath A, Li H, Song S, Zhang Z, Liu S, Kahrobai N, Gowda A,
Seffens A, Zou J, Kumar I.
Comprehensive analysis
of 2.4 million patent-to-research citations maps the biomedical
innovation and translation landscape. Nat. Biotechnol .39 , 678-683 (2021).
17. R. B. Altman, N. Khuri, M. Salit, K. M. Giacomini.
Unmet needs: Research
helps regulators do their jobs. Sci. Transl. Med. 7 ,
315ps22 (2015).
18. R. Fears, J. W. van der Meer, V. ter Meulen.
Translational medicine
policy issues in infectious disease. Sci. Transl. Med. 2 , 14cm2 (2010).
19. Keaton JM, Kamali Z, Xie T, Vaez A, Williams A, Goleva SB, Ani A,
Evangelou E, Hellwege JN, Yengo L, et al.
Genome-wide analysis in
over 1 million individuals of European ancestry yields improved
polygenic risk scores for blood pressure traits. Nat.
Genet . 56 , 778-791 (2024).
20. Kachuri L, Chatterjee N, Hirbo J, Schaid DJ, Martin I, Kullo IJ,
Kenny EE, Pasaniuc B; Polygenic Risk Methods in Diverse Populations
(PRIMED) Consortium Methods Working Group; Witte JS, Ge T.
Principles and methods
for transferring polygenic risk scores across global populations.Nat. Rev. Genet . 25 , 8-25 (2024)
21. Lim J, Chin V, Fairfax K, Moutinho C, Suan D, Ji H, Powell JE.
Transitioning
single-cell genomics into the clinic. Nat. Rev. Genet .24 , 573-584 (2023).
22. Kavousi M, Bos MM, Barnes HJ, Lino Cardenas CL, Wong D, Lu H,
Hodonsky CJ, Landsmeer LPL, Turner AW, Kho M, et al.
Multi-ancestry
genome-wide study identifies effector genes and druggable pathways for
coronary artery calcification. Nat. Genet . 55 ,
1651-1664 (2023).
23. Adlam D, Berrandou TE, Georges A, Nelson CP, Giannoulatou E, Henry
J, Ma L, Blencowe M, Turley TN, Yang ML, et al.
Genome-wide association
meta-analysis of spontaneous coronary artery dissection identifies risk
variants and genes related to artery integrity and tissue-mediated
coagulation. Nat. Genet . 55 , 964-972 (2023).
24. Wessel, M. J. Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P,
Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH,
Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N,
Neufeld E, Hummel FC.
Noninvasive theta-burst
stimulation of the human striatum enhances striatal activity and motor
skill learning. Nat. Neurosci . 26 , 2005-2016
(2023).
25. Silva, N. T., Ramírez-Buriticá, J., Pritchett, D. L. & Carey, M. R.
Climbing fibers provide
essential instructive signals for associative learning.Nat. Neurosci . 27 , 940-951 (2024).