REFERENCES
  1. Gooskens SL, Furtwangler R, Vujanic GM, et al. Clear cell sarcoma of the kidney: a review. Eur J Cancer. 2012;48:2219-2226.
  2. Chiou SS. Malignant renal tumors in childhood. Pediatr Neonatol. 2014;55:159-160.
  3. Dong JJ, He XY, Liu X, et al. Retrospective analysis of outcomes in patients with clear cell sarcoma of the kidney: A tertiary single-institution experience. J Pediatr Surg. 2021;56:580-586.
  4. Chen S, Li M, Li R, et al. Clear cell sarcoma of the kidney in children: a clinopathologic analysis of three cases. Int J Clin Exp Pathol. 2020;13:771-777.
  5. Shin HJ, Kwak JY, Lee E, et al. Texture Analysis to Differentiate Malignant Renal Tumors in Children Using Gray-Scale Ultrasonography Images. Ultrasound Med Biol. 2019;45:2205-2212.
  6. Zekri W, Alfaar AS, Yehia D, et al. Clear cell sarcoma of the kidney: patients’ characteristics and improved outcome in developing countries. Pediatr Blood Cancer. 2014;61:2185-2190.
  7. Kang C, Shin HJ, Yoon H, et al. Differentiation between Clear Cell Sarcoma of the Kidney and Wilms’ Tumor with CT. Korean J Radiol. 2021;22:1185-1193
  8. Sebire NJ, Vujanic GM. Paediatric renal tumours: recent developments, new entities and pathological features. Histopathology.2009;54:516-528.
  9. Sun J, Liu K, Tong H, et al. CT Texture Analysis for Differentiating Bronchiolar Adenoma, Adenocarcinoma In Situ, and Minimally Invasive Adenocarcinoma of the Lung. Front Oncol. 2021;11:634564.
  10. Schieda N, Thornhill RE, Al-Subhi M, et al. Diagnosis of Sarcomatoid Renal Cell Carcinoma With CT: Evaluation by Qualitative Imaging Features and Texture Analysis. AJR Am J Roentgenol.2015;204:1013-1023.
  11. Meng X, Shu J, Xia Y, et al. A CT-Based Radiomics Approach for the Differential Diagnosis of Sarcomatoid and Clear Cell Renal Cell Carcinoma. Biomed Res Int. 2020:7103647.
  12. Di Giannatale A, Di Paolo PL, Curione D, et al. Radiogenomics prediction for MYCN amplification in neuroblastoma: A hypothesis generating study. Pediatr Blood Cancer. 2021;68:e29110.
  13. Song J, Yin Y, Wang H, et al. A review of original articles published in the emerging field of radiomics. Eur J Radiol.2020;127:108991.
  14. Deng Y, Soule E, Cui E, et al. Usefulness of CT texture analysis in differentiating benign and malignant renal tumours. Clin Radiol. 2020;75:108-115.
  15. Rogers W, Thulasi SS, Refaee T, et al. Radiomics: from qualitative to quantitative imaging. Br J Radiol. 2020;93:20190948.
  16. Yu H, Scalera J, Khalid M, et al. Texture analysis as a radiomic marker for differentiating renal tumors. Abdom Radiol (NY).2017;42:2470-2478.
  17. Deng Y, Soule E, Samuel A, et al. CT texture analysis in the differentiation of major renal cell carcinoma subtypes and correlation with Fuhrman grade. Eur Radiol. 2019;29:6922-6929.
  18. Fan TW, Malhi H, Varghese B, et al. Computed tomography-based texture analysis of bladder cancer: differentiating urothelial carcinoma from micropapillary carcinoma. Abdom Radiol (NY). 2019;44:201-208.
  19. Chen X, Huang Y, He L, et al. CT-Based Radiomics to Differentiate Pelvic Rhabdomyosarcoma From Yolk Sac Tumors in Children. Front Oncol. 2020;10:584272.
  20. Chen X, Wang H, Huang K, et al. CT-Based Radiomics Signature With Machine Learning Predicts MYCN Amplification in Pediatric Abdominal Neuroblastoma. Front Oncol. 2021;11:687884.
  21. Boo YJ, Fisher JC, Haley MJ, et al. Vascular characterization of clear cell sarcoma of the kidney in a child: a case report and review.J Pediatr Surg. 2009;44:2031-2036.
TABLE 1 The index of AUC, sensitivity and specificity of each selected feature in training and validation set.