REFERENCES
Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, & Begley DJ (2010). Structure and function of the blood-brain barrier. Neurobiol Dis 37: 13-25.
Abrahao A, Meng Y, Llinas M, Huang Y, Hamani C, Mainprize T, et al. (2019). First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nat Commun 10: 4373.
Al-Bachari S, Naish JH, Parker GJM, Emsley HCA, & Parkes LM (2020). Blood–brain barrier leakage is increased in Parkinson’s disease. Front Physiol 11: 593026.
Andjus PR, Bataveljić D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo N, et al. (2009). In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer’s-like disease: MRI approach. Anat Rec 292: 1882-1892.
Bartels AL, Willemsen AT, Kortekaas R, de Jong BM, de Vries R, de Klerk O, et al. (2008). Decreased blood-brain barrier P-glycoprotein function in the progression of Parkinson’s disease, PSP and MSA. J Neural Transm 115: 1001-1009.
Beghi E, Mennini T, Bendotti C, Bigini P, Logroscino G, Chiò A, et al. (2007). The heterogeneity of amyotrophic lateral sclerosis: a possible explanation of treatment failure. Curr Med Chem 14:3185-3200.
Bruijn LI, Becher MW, Lee MK, Anderson KL, Jenkins NA, Copeland NG, et al. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18: 327-338.
Chan GNY, Evans RA, Banks DB, Mesev EV, Miller DS, & Cannon RE (2017). Selective induction of P-glycoprotein at the CNS barriers during symptomatic stage of an ALS animal model. Neurosci lett 639:103-113.
Chiò A, Logroscino G, Hardiman O, Swingler R, Mitchell D, Beghi E, et al. (2009). Prognostic factors in ALS: A critical review. Amyotroph Lateral Scler 10: 310-323.
Davis TP, Sanchez-Covarubias L, & Tome ME (2014). P-glycoprotein trafficking as a therapeutic target to optimize CNS drug delivery. Adv Pharmacol 71: 25-44.
Donnenfeld H, Kascsak RJ, & Bartfeld H (1984). Deposits of IgG and C3 in the spinal cord and motor cortex of ALS patients. J Neuroimmunol 6: 51-57.
Engelhardt JI, & Appel SH (1990). IgG reactivity in the spinal cord and motor cortex in amyotrophic lateral sclerosis. Arch Neurol 47:1210-1216.
Garbuzova-Davis S, Haller E, Saporta S, Kolomey I, Nicosia SV, & Sanberg PR (2007). Ultrastructure of blood–brain barrier and blood–spinal cord barrier in SOD1 mice modeling ALS. Brain Res 1157: 126-137.
Garbuzova-Davis S, Hernandez-Ontiveros DG, Rodrigues MCO, Haller E, Frisina-Deyo A, Mirtyl S, et al. (2012). Impaired blood–brain/spinal cord barrier in ALS patients. Brain Res 1469: 114-128.
Garbuzova-Davis S, Saporta S, Haller E, Kolomey I, Bennett SP, Potter H, et al. (2007). Evidence of compromised blood-spinal cord barrier in early and late symptomatic SOD1 mice modeling ALS. PLoS One 2: e1205-e1205.
Ge S, & Pachter JS (2006). Isolation and culture of microvascular endothelial cells from murine spinal cord. J Neuroimmunol 177:209-214.
Golden PL, & Pardridge WM (1999). P-glycoprotein on astrocyte foot processes of unfixed isolated human brain capillaries. Brain Res 819: 143-146.
Grande G, Morin L, Vetrano DL, Fastbom J, & Johnell K (2017). Drug use in older adults with amyotrophic lateral sclerosis near the end of life. Drugs Aging 34: 529-533.
Gurney ME, Pu H, Chiu AY, Dal Canto MC, Polchow CY, Alexander DD, et al. (1994). Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264: 1772-1775.
Han-Xiang D, Hujun J, Ronggen F, Hong Z, Yong S, Erdong L, et al.(2008). Molecular dissection of ALS-associated toxicity of SOD1 in transgenic mice using an exon-fusion approach. Hum Mol Genet 17: 2310-2319.
Henkel JS, Beers DR, Wen S, Bowser R, & Appel SH (2009). Decreased mRNA expression of tight junction proteins in lumbar spinal cords of patients with ALS. Neurology 72: 1614-1616.
Hobson EV, & McDermott CJ (2016). Supportive and symptomatic management of amyotrophic lateral sclerosis. Nat Rev Neurol 12: 526-538.
Howland DS, Liu J, She Y, Goad B, Maragakis NJ, Kim B, et al.(2002). Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci USA 99: 1604-1609.
Jablonski MR, Jacob DA, Campos C, Miller DS, Maragakis NJ, Pasinelli P, et al. (2012). Selective increase of two ABC drug efflux transporters at the blood-spinal cord barrier suggests induced pharmacoresistance in ALS. Neurobiol Dis 47: 194-200.
Jablonski MR, Markandaiah SS, Jacob D, Meng NJ, Li K, Gennaro V, et al. (2014). Inhibiting drug efflux transporters improves efficacy of ALS therapeutics. ACTN 1: 996-1005.
Jiang J, Zhu Q, Gendron Tania F, Saberi S, McAlonis-Downes M, Seelman A, et al. (2016). Gain of toxicity from ALS/FTD-linked repeat expansions in C9orf72 is alleviated by antisense oligonucleotides targeting GGGGCC-Containing RNAs. Neuron 90: 535-550.
Leonardi A, Abbruzzese G, Arata L, Cocito L, & Vische M (1984). Cerebrospinal fluid (CSF) findings in amyotrophic lateral sclerosis. J Neurol 231: 75-78.
Longinetti E, & Fang F (2019). Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol 32:771-776.
Lubberink M, van Assema D, Hendrikse NH, Schuit R, Lammertsma A, & Van Berckel B (2010). Decreased P-glycoprotein function at the blood-brain barrier in patients with Alzheimer’s disease as shown by [11C]-verapamil and PET. J Nucl Med 51:443-443.
Mehta DC, Short J, & Nicolazzo J (2013). Altered brain uptake of therapeutics in a triple transgenic mouse model of Alzheime’ s Disease. Pharm Res 30: 2868-2879.
Mejzini R, Flynn LL, Pitout IL, Fletcher S, Wilton SD, & Akkari PA (2019). ALS genetics, mechanisms, and therapeutics: where are we now? Front Neurosci 13.
Meyer T, Kettemann D, Maier A, Grehl T, Weyen U, Grosskreutz J, et al. (2020). Symptomatic pharmacotherapy in ALS: data analysis from a platform-based medication management programme. J Neurol Neurosurg Psychiatry 91: 783-785.
Milane A, Fernandez C, Dupuis L, Buyse M, Loeffler JP, Farinotti R, et al. (2010). P-glycoprotein expression and function are increased in an animal model of amyotrophic lateral sclerosis. Neurosci Lett 472: 166-170.
Miyazaki K, Ohta Y, Nagai M, Morimoto N, Kurata T, Takehisa Y, et al. (2011). Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J Neurosci Res 89: 718-728.
Nicaise C, Mitrecic D, Demetter P, De Decker R, Authelet M, Boom A, et al. (2009). Impaired blood-brain and blood-spinal cord barriers in mutant SOD1-linked ALS rat. Brain Res 1301:152-162.
Nicolazzo JA, Charman SA, & Charman WN (2006). Methods to assess drug permeability across the blood-brain barrier. J Pharm Pharmacol 58: 281-293.
O’Rourke Jacqueline G, Bogdanik L, Muhammad AKMG, Gendron Tania F, Kim Kevin J, Austin A, et al. (2015). C9orf72 BAC transgenic mice display typical pathologic features of ALS/FTD. Neuron 88:892-901.
Ono S, Imai T, Munakata S, Takahashi K, Kanda F, Hashimoto K, et al. (1998). Collagen abnormalities in the spinal cord from patients with amyotrophic lateral sclerosis. J Neurol Sci 160: 140-147.
Pan W, Banks WA, & Kastin AJ (1997). Permeability of the blood–brain and blood–spinal cord barriers to interferons. J Neuroimmunol 76: 105-111.
Pan Y, & Nicolazzo JA (2018). Impact of aging, Alzheimer’s disease and Parkinson’s disease on the blood-brain barrier transport of therapeutics. Adv Drug Deliv Rev 135: 62-74.
Peters Owen M, Cabrera Gabriela T, Tran H, Gendron Tania F, McKeon Jeanne E, Metterville J, et al. (2015). Human C9orf72 hexanucleotide expansion reproduces RNA foci and dipeptide repeat proteins but not neurodegeneration in BAC transgenic mice. Neuron 88: 902-909.
Philips T, & Rothstein JD (2015). Rodent models of amyotrophic lateral sclerosis. Curr Protoc Pharmacol 69: 5.67.61-65.67.21.
Picher-Martel V, Valdmanis PN, Gould PV, Julien J-P, & Dupré N (2016). From animal models to human disease: a genetic approach for personalized medicine in ALS. Acta Neuropathol Commun 4: 70.
Puris E, Gynther M, Auriola S, & Huttunen KM (2020). L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 37:88-88.
Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362: 59-62.
Sasaki S (2015). Alterations of the blood-spinal cord barrier in sporadic amyotrophic lateral sclerosis. Neuropathology 35:518-528.
Shefner J, Heiman-Patterson T, Pioro EP, Wiedau-Pazos M, Liu S, Zhang J, et al. (2020). Long-term edaravone efficacy in amyotrophic lateral sclerosis: Post-hoc analyses of Study 19 (MCI186-19). Muscle Nerve 61: 218-221.
Shelkovnikova TA, Peters OM, Deykin AV, Connor-Robson N, Robinson H, Ustyugov AA, et al. (2013). Fused in sarcoma (FUS) protein lacking nuclear localization signal (NLS) and major RNA binding motifs triggers proteinopathy and severe motor phenotype in transgenic mice. J Biol Chem 288: 25266-25274.
Sweeney MD, Sagare AP, & Zlokovic BV (2018). Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14: 133-150.
Uchida Y, Yagi Y, Takao M, Tano M, Umetsu M, Hirano S, et al.(2020). Comparison of absolute protein abundances of transporters and receptors among blood–brain barriers at different cerebral regions and the blood–spinal cord barrier in humans and rats. Mol Pharm 17: 2006-2020.
van Vliet EA, Iyer AM, Mesarosova L, Çolakoglu H, Anink JJ, van Tellingen O, et al. (2019). Expression and cellular distribution of P-glycoprotein and breast cancer resistance protein in amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol 79:266-276.
Wang J, Xu G, Li H, Gonzales V, Fromholt D, Karch C, et al.(2005). Somatodendritic accumulation of misfolded SOD1-L126Z in motor neurons mediates degeneration: αB-crystallin modulates aggregation. Hum Mol Genet 14: 2335-2347.
Waters S, Swanson MEV, Dieriks BV, Zhang YB, Grimsey NL, Murray HC, et al. (2021). Blood-spinal cord barrier leakage is independent of motor neuron pathology in ALS. Acta Neuropathol Commun 9: 144.
Wegorzewska I, Bell S, Cairns NJ, Miller TM, & Baloh RH (2009). TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 106: 18809-18814.
Winkler EA, Sengillo JD, Sullivan JS, Henkel JS, Appel SH, & Zlokovic BV (2013). Blood-spinal cord barrier breakdown and pericyte reductions in amyotrophic lateral sclerosis. Acta Neuropathol 125:111-120.
Wong PC, Pardo CA, Borchelt DR, Lee MK, Copeland NG, Jenkins NA, et al. (1995). An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria. Neuron 14: 1105-1116.
Yamadera M, Fujimura H, Inoue K, Toyooka K, Mori C, Hirano H, et al. (2015). Microvascular disturbance with decreased pericyte coverage is prominent in the ventral horn of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 16:393-401.
Zhong Z, Deane R, Ali Z, Parisi M, Shapovalov Y, O’Banion MK, et al. (2008). ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration. Nat Neurosci 11: 420-422.
Zoccolella S, Beghi E, Palagano G, Fraddosio A, Guerra V, Samarelli V, et al. (2007). Riluzole and amyotrophic lateral sclerosis survival: a population-based study in southern Italy. Eur J Neurol 14: 262-268.