Vidal Essebag

and 9 more

Introduction: Pulsed Field Cryoablation (PFCA) is a dual-energy cardiac ablation modality consisting of short-duration ultra-low temperature cryoablation (ULTC) followed immediately by pulsed field ablation (PFA) delivered from the same catheter. It is hypothesized that PFCA may improve contact stability during PFA, while maintaining lesion depth and effectiveness of ULTC. Methods: PARALELL is a first-in-human multicenter study evaluating safety and effectiveness of a novel PFCA catheter and system in patients with persistent atrial fibrillation (PsAF) using the combination of pulmonary vein (PVI) and posterior wall (PWI) isolation. Results: 66 patients were ablated at six sites. Groin hematoma in one patient was the only serious procedure- or device-related adverse event recorded in the study. Per protocol, acute effectiveness was evaluated in 46 patients, including 31 patients with post-hoc analysis of cryogenic energy per lesion. After an average of 21.1 ± 9.3 lesions per patient the rates of PVI and PWI were 95.7% (176/184) and 97.7% (42/43), respectively. The average cryogenic energy per patient was highly predictive of acute isolation success with ROC AUC = 0.944 and 100% rates of both PVI and PWI in 24 patients in the optimal energy cohort. Grade I microbubbles and faint muscle contractions were detected in 1.1% and 0.5% of ablations, respectively. Conclusion: This initial multi-center experience suggests that PFCA can be efficiently performed for PVI and PWI using a single versatile catheter system, with high acute success and good early safety profile. The evaluation of the chronic 12-month effectiveness of PFCA is ongoing.

Michael Waight

and 9 more

Introduction: Prior to ablation, predicting the site of origin (SOO) of outflow tract ventricular arrhythmia (OTVA), can inform patient consent and facilitate appropriate procedural planning. We set out to determine if OTVA variability can accurately predict SOO. Methods: Consecutive patients with a clear SOO identified at OTVA ablation had their prior 24-hour ambulatory ECGs retrospectively analysed (derivation cohort). Percentage ventricular ectopic (VE) burden, hourly VE values, episodes of trigeminy/bigeminy, and the variability in these parameters were evaluated for their ability to distinguish right from left sided SOO. Effective parameters were then prospectively tested on a validation cohort of consecutive patients undergoing their first OTVA ablation. Results: High VE variability (coefficient of variation ≥ 0.7) and the presence of any hour with < 50 VE, were found to accurately predict RVOT SOO in a derivation cohort of 40 patients. In a validation cohort of 29 patients, the correct SOO was prospectively identified in 23/29 patients (79.3%) using CoV, and 26/29 patients (89.7%) using VE < 50. Including current ECG algorithms, VE < 50 had the highest Youden Index (78), the highest positive predictive value (95.0%) and the highest negative predictive value (77.8%). Conclusion: VE variability and the presence of a single hour where VE < 50 can be used to accurately predict SOO in patients with OTVA. Accuracy of these parameters compares favourably to existing ECG algorithms.