References
1 Reguera, G. et al. Extracellular electron transfer via
microbial nanowires. Nature 435 , 1098-1101 (2005).
2 Lovley, D. R. & Holmes, D. E. Electromicrobiology: The ecophysiology
of phylogenetically diverse electroactive microorganisms. Nature
Reviews Microbiology 19 ,
doi.org/10.1038/s41579-41021-00597-41576 (2021).
3 Summers, Z. M. et al. Direct exchange of electrons within
aggregates of an evolved syntrophic co-culture of anaerobic bacteria.Science 330 , 1413-1415 (2010).
4 Liu, X. et al. Power generation from ambient humidity using
protein nanowires. Nature 578 , 550-554 (2020).
5 Fu, T. et al. Self-sustained green neuromorphic interfaces.Nature Communications 12 , 3351 (2021).
6 Lovley, D. R. & Yao, J. Intrinsically conductive microbial nanowires
for ‘green’ electronics with novel functions. Trends in
Biotechnology 39 , 940-952 (2021).
7 Lovley, D. R. & Walker, D. J. F. Geobacter protein nanowires.Frontiers in microbiology 10 , 2078 (2019).
8 Lovley, D. R. & Holmes, D. E. Protein Nanowires: The electrification
of the microbial world and maybe our own. J Bacteriol202 , e00331-00320 (2020).
9 Liu, X., Walker, D. J. F., Nonnenmann, S., Sun, D. & Lovley, D. R.
Direct observation of electrically conductive pili emanating from
Geobacter sulfurreducens. mBio 12 , e02209-21 (2021).
10 Gu, Y. et al. Structure of Geobacter pili reveals secretory
rather than nanowire behaviour. Naturehttps://doi.org/10.1038/s41586-021-03857-w (2021).
11 Liu, X., Zhou, S. & Lovley, D. R. A pilin chaperone required for the
expression of electrically conductive Geobacter sulfurreducens piliEnvironmental microbiology 21 , 2511-2522 (2019).
12 Cologgi, D. L., Lampa-Pastirk, S., Speers, A. M., Kelly, S. D. &
Reguera, G. Extracellular reduction of uranium via Geobacter conductive
pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108 , 15248–15252 (2011).
13 Tan, Y. et al. The low conductivity of Geobacter
uraniireducens pili suggests a diversity of extracellular electron
transfer mechanisms in the genus Geobacter. Frontiers in
microbiology 7 , 980 (2016).
14 Ing, N. L., Nusca, T. D. & Hochbaum, A. I. Geobacter sulfurreducens
pili support ohmic electronic conduction in aqueous solution.PCCP 19 , 21791-21799 (2017).
15 Wang, F. et al. Structure of microbial nanowires reveals
stacked hemes that transport electrons over micrometers. Cell177 , 361–369 (2019).
16 Ueki, T. et al. Decorating the outer surface of microbially
produced protein nanowires with peptides. ACS Synthetic Biology8 , 1809-1817 (2019).
17 Vargas, M. et al. Aromatic amino acids required for pili
conductivity and long-range extracellular electron transport in
Geobacter sulfurreducens mBio 4 , e00105-13. (2013).
18 Liu, X. et al. A Geobacter sulfurreducens strain expressing
Pseudomonas aeruginosa type IV pili localizes OmcS on pili but Is
deficient in Fe(III) oxide reduction and current production. Appl
Environ Microbiol 80 , 1219-1224 (2014).
19 Adhikari, R. Y., Malvankar, N. S., Tuominen, M. T. & Lovley, D. R.
Conductivity of individual Geobacter pili. RSC Advances6 , 8354-8357 (2016).
20 Steidl, R. J., Lampa-Pastirk, S. & Reguera, G. Mechanistic
stratification in electroactive biofilms of Geobacter sulfurreducens
mediated by pilus nanowires. Nature Communications 7 ,
12217 (2016).
21 Tan, Y. et al. Expressing the Geobacter metallireducens PilA
in Geobacter sulfurreducens yields pili with exceptional conductivity.mBio 8 , e02203-16 (2017).
22 Izallalen, M. et al. Going wireless? Additional phenotypes of
a pilin-deficient mutant weaken the genetic evidence for the role of
microbial nanowires in extracellular electron transfer. 108th
Annual Meeting of the American Society for Microbiology (2008).
23 Yalcin, S. E. et al. Electric field stimulates production of
highly conductive microbial OmcZ nanowires. Nature Chemical
Biology 16 , 1136–1142 (2020).