Proc. R. Soc. Lond.
B . 267 :351–356. http://doi.org/10.1098/rspb.2000.1008
Kuznetsova A., Brockhoff P.B., Christensen R.H.B. (2017) LmerTest Package: Tests in Linear Mixed Effects Models. Journal of Statistical Software , 82 , 1–26.
Lambin, X., Petty, S.J. & Mackinnon, J.L. (2000), Cyclic dynamics in field vole populations and generalist predation. Journal of Animal Ecology , 69 : 106-119. https://doi.org/10.1046/j.1365-2656.2000.00380.x
Lüdecke D. (2020) sjPlot: Data Visualization for Statistics in Social Science. R package version 2.8.5, https://CRAN.R-project.org/package=sjPlot.
Massey, F.P. & Hartley, S.E. (2006) Experimental demonstration of the antiherbivore effects
of silica in grasses: impacts on foliage digestibility and vole growth rates. Proceedings
of the Royal Society of London. Series B, Biological Sciences273 , 2299– 2304.
https://doi: 10.1098/rspb.2006.3586
Matuszkiewicz, W. (2020) Guide to the identification of plant communities in Poland. 3rd
Edition, PWN, Warsaw [In Polish].
Nakagawa S., Johnson P., Schielzeth H. (2017) The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface 14 . https://doi: 10.1098/rsif.2017.0213
Oli, M.K. (2019), Population cycles in voles and lemmings: state of the science and future
directions. Mammal Review , 49 , 226-239. https://doi:10.1111/mam.12156
Quigley, K.M. & Anderson, T.M. (2014) Leaf silica concentration in Serengeti grasses
increases with watering but not clipping: insights from a common garden study and
literature review. Functional Plant Ecology , 5 , 568.
https://doi:10.3389/fpls.2014.00568
Quigley, K. M., Griffith, D. M., Donati, G. L., and Anderson, T. M.. 2020. Soil nutrients and
precipitation are major drivers of global patterns of grass leaf silicification. Ecology,
101 (6): https://e03006. 10.1002/ecy.3006
Raven, J.A. (1983) The transport and function of Si in plants.Biological Reviews , 58 , 179–
207. https://doi: 10.1111/j.1469-185X.1983.tb00385.x
Reynolds, J.J.H., Lambin, X., Massey, F.P., Reidinger, S., Sherratt, J.A., Smith, M.J. et al.
(2012) Delayed induced silica defences in grasses and their potential for destabilizing
herbivore population dynamics. Oecologia , 170 , 445– 456.
https://doi: 10.1007/s00442-012-2326-8
Ruffino, L., Hartley, S.E., DeGabriel, J.L. & Lambin, X. (2018) Population‐level
manipulations of field vole densities induce subsequent changes in plant quality but no
impacts on vole demography. Ecology and Evolution , 8 , 7752– 7762.
https://doi:10.1002/ece3.4204
Sangster, A.G., Hodson, M.J. & Tubb, H.J. (2001) Silicon deposition in higher plants. Silicon
in Agriculture (eds. L.E. Datonoff, G.H. Snyder & G.H. Korndörfer), pp 85– 114.
Elsevier Science, New York.
Schoelynck, J., Muller, F., Vandevenne, F., Bal, K., Barao, L., Smis, A. et al. (2014) Silicon–
vegetation interaction in multiple ecosystems: a review. Journal of Vegetation Science ,
25 , 301– 313. https:// doi: 10.1111/jvs.12055
Seldal, T., Andersen, K., & Högstedt, G. (1994). Grazing-Induced Proteinase Inhibitors: A
Possible Cause for Lemming Population Cycles. Oikos ,70 (1), 3-11.
https://doi:10.2307/3545692
Soininen, E.M., Bråthen, K.A., Herranz Jusdado, J.G., Reidinger, S. & Hartley, S.E. (2013)
More than herbivory: levels of silicon‐based defences in grasses vary with plant
species, genotype and location. Oikos , 122 , 30– 41.
https://doi: 10.1111/j.1600-0706.2012.20689.x
Soininen, E. M., Hamel, S., & Yoccoz, N. G. (2017). Importance of study design and robust
analyses in ecology – what is the evidence for silica‐vole interactions? Functional
Ecology , 31 (9), 1847– 1852. https://doi: 10.1111/1365-2435.12830
Stoffel, M.A., Nakagawa, S., Schielzeth, H. (2020). partR2: Partitioning R2 in generalized linear mixed models. bioRxiv 2020.07.26.221168; doi: https://doi.org/10.1101/2020.07.26.221168
Struyf, E. & Conley, D.J. (2009) Silica: an essential nutrient in wetland biogeochemistry.
Frontiers in Ecology and the Environment , 7 , 88– 94. https://doi: 10.1890/070126
Struyf, E., Mörth, C.‐M., Humborg, C. & Conley, D.J. (2010) An enormous amorphous silica
stock in boreal wetlands. Journal of Geophysical Research ,115 , G04008.
https://doi: 10.1029/2010JG001324
Tast, J. (1966) The root vole, Microtus oeconomus (Pallas), as an inhabitant of seasonally
flooded land. Annales Zoologici Fennici , 3, 127– 171. https://doi: 10.2307/23731273
Underwood, N. (1999) The influence of plant and herbivore characteristics on the interaction
between induced resistance and herbivore population dynamics. The American
Naturalist, 153, 282– 294. https://doi: 10.1086/303174
Wieczorek, M., Zub, K., Szafrańska, P.A., Książek, A. & Konarzewski, M. (2015a) Plant‐
herbivore interactions: silicon concentration in tussock sedges and population
dynamics of root voles. Functional Ecology, 29, 187– 194. https:// doi: 10.1111/1365-2435.12327
Wieczorek, M., Szafranska, P.A., Labecka, A.M., Lazaro, J. & Konarzewski, M. (2015b)
Effect of the abrasive properties of sedges on the intestinal absorptive surface and
resting metabolic rate of root voles. Journal of Experimental Biology , 218 , 309– 315.
https://doi: 10.1242/jeb.117168
Zub, K., Borowski, Z., Wieczorek, M., Szafrańska, P.A. & Konarzewski, M. (2014) Lower
body mass, but higher metabolic rates enhance winter survival in the root voles,
Microtus oeconomus. The Biological Journal of the Linnean Society , 113 , 297– 309.
https://doi: 10.1111/bij.12306