References
[1] S.H. Sicherer, H.A. Sampson, Food Allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention and management, Journal of Allergy & Clinical Immunology, 141 (2017) 41-58. doi: 10.1016/j.jaci.2017.11.003.
[2] F. Zhou, S. He, H. Sun, Y. Wang, Y. Zhang, Advances in epitope mapping technologies for food protein allergens: A review, Trends in Food Science & Technology, 107 (2020) 226-239. doi: 10.1016/j.tifs.2020.10.035.
[3] X. Sun, X. Shan, Z. Yan, Y. Zhang, L. Guan, Prediction and characterization of the linear IgE epitopes for the major soybean allergen β-conglycinin using immunoinformatics tools, Food & Chemical Toxicology, 56 (2013) 254-260. doi: 10.1016/j.fct.2013.02.014.
[4] G. Bu, T. Li, T. Zhu, G. Xi, Identification of the linear immunodominant epitopes in the β subunit of β-conglycinin and preparation of epitope antibodies, International Journal of Biological Macromolecules, 154 (2020) 724-731. doi: 10.1016/j.ijbiomac.2020.03.159.
[5] A.K. Verma, S. Kumar, M. Das, P.D. Dwivedi, A comprehensive review of legume allergy, Clinical Reviews in Allergy & Immunology, 45 (2013) 30-46. doi: 10.1007/s12016-012-8310-6.
[6] Malherbe, Laurent, T-cell epitope mapping, Annals of Allergy Asthma & Immunology, 103 (2009) 76-79. doi: 10.1016/S1081-1206(10)60147-0
[7] P. Walden, T-cell epitope determination, Current Opinion in Immunology, 8 (1996) 68. doi: 10.1016/S0952-7915(96)80107-5.
[8] W.-L. Fan, M.-S. Shiao, R.C.-Y. Hui, S.-C. Su, C.-W. Wang, Y.-C. Chang, W.-H. Chung, HLA association with drug-induced adverse reactions, Journal of Immunology Research, 2017 (2017) 1-10. doi: 10.1155/2017/3186328.
[9] T. Rahaman, T. Vasiljevic, L. Ramchandran, Effect of processing on conformational changes of food proteins related to allergenicity, Trends in Food ence & Technology, 49 (2016) 24-34. doi: 10.1016/j.tifs.2016.01.001.
[10] G. Bu, Y. Luo, F. Chen, K. Liu, T. Zhu, Milk processing as a tool to reduce cow’s milk allergenicity: a mini-review, Dairy Science & Technology, 93 (2013) 211-223. doi: 10.1007/s13594-013-0113-x.
[11] C.Y.Y. Wai, N.Y.H. Leung, P.S.C. Leung, K.H. Chu, T cell epitope immunotherapy ameliorates allergic responses in a murine model of shrimp allergy, Clinical & Experimental Allergy, 46 (2016) 491-503. doi: 10.1111/cea.12684.
[12] P. Rupa, Y. Mine, Oral immunotherapy with immunodominant T-cell epitope peptides alleviates allergic reactions in a Balb/c mouse model of egg allergy, Allergy, 67 (2012) 74-82. doi: 10.1111/j.1398-9995.2011.02724.x.
[13] R.E. Soria-Guerra, R. Nieto-Gomez, D.O. Govea-Alonso, S. Rosales-Mendoza, An overview of bioinformatics tools for epitope prediction: Implications on vaccine development, Journal of Biomedical Informatics, 53 (2015) 405-414. doi: 10.1016/j.jbi.2014.11.003.
[14] M. Ramesh, A. Yuenyongviwat, G.N. Konstantinou, J. Lieberman, M. Pascal, M. Masilamani, H.A. Sampson, Peanut T-cell epitope discovery: Ara h 1, Journal of Allergy and Clinical Immunology, 137 (2016) 1764-1771. doi: 10.1016/j.jaci.2015.12.1327.
[15] T.A. Ahmad, A.E. Eweida, L.H. El-Sayed, T-cell epitope mapping for the design of powerful vaccines, Vaccine Reports, 6 (2016) 13-22. doi: 10.1016/j.vacrep.2016.07.002.
[16] C. Wang, Y. Wang, G. Liu, L. Fu, Food allergomics based on high-throughput and bioinformatics technologies, Food Research International, 130 (2020) 108942. doi: 10.1016/j.foodres.2019.108942.
[17] S. He, J. Zhao, W. Elfalleh, M. Jemaà, H. Sun, X. Sun, M. Tang, Q. He, Z. Wu, F. Lang, In silico identification and in vitro analysis of B and T-cell epitopes of the black turtle bean (Phaseolus vulgaris L.) lectin, Cellular Physiology & Biochemistry, 49 (2018) 1600-1614. doi: 10.1159/000493496.
[18] M.G. Zeece, T.A. Beardslee, J.P. Markwell, G. Sarath, Identification of an IgE-binding region in soybean acidic glycinin G1, Food & Agricultural Immunology, 11 (1999) 83-90. doi: 10.1080/09540109999942.
[19] R.M. Helm, G. Cockrell, C. Connaughton, H.A. Sampson, G.A. Bannon, V. Beilinson, N.C. Nielsen, A.W. Burks, A soybean G2 glycinin allergen, International Archives of Allergy and Immunology, 123 (2000) 205-212. doi: 10.1159/000024446.
[20] H. Saeed, C. Gagnon, E. Cober, S. Gleddie, Using patient serum to epitope map soybean glycinins reveals common epitopes shared with many legumes and tree nuts, Molecular Immunology, 70 (2016) 125-133. doi: 10.1016/j.molimm.2015.12.008.
[21] R. Vita, J.A. Overton, J.A. Greenbaum, J. Ponomarenko, J.D. Clark, J.R. Cantrell, D.K. Wheeler, J.L. Gabbard, D. Hix, A. Sette, B. Peters, The immune epitope database (IEDB) 3.0, Nucleic Acids Research, 43 (2015) 405-412. doi: 10.1093/nar/gku938.
[22] S.K. Dhanda, S. Gupta, P. Vir, G.P.S. Raghava, Prediction of IL4 inducing peptides, Clinical & Developmental Immunology, 2013 (2013) 1-9. doi: 10.1155/2013/263952.
[23] I. Dimitrov, D.R. Flower, I. Doytchinova, AllerTOP v.2–a server for in silico prediction of allergens, BMC Bioinformatics, 20 (2014) 1-6. doi: 10.1186/1471-2105-14-S6-S4.
[24] K. Narayanan, In silico prediction of potential vaccine candidates on capsid protein of human bocavirus 1, Molecular Immunology, 93 (2018) 193-205. doi: 10.1016/j.molimm.2017.11.024.
[25] L.-N. Zheng, H. Lin, R. Pawar, Z.-X. Li, M.-H. Li, Mapping IgE binding epitopes of major shrimp (Penaeus monodon) allergen with immunoinformatics tools, Food & Chemical Toxicology, 49 (2011) 2954-2960. doi: 10.1016/j.fct.2011.07.043.
[26] S. Hellberg, M. Sjoestroem, B. Skagerberg, S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach, Journal of Medicinal Chemistry, 30 (1987) 1126-1135. doi: 10.1021/jm00390a003.
[27] E. Gasteiger, C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel, A. Bairoch, Protein identification and analysis tools on the ExPASy server, (In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press (2005) pp. 571-607.
[28] Sinu Paul, C.S.L. Arlehamn, T.J. Scriba, M.B.C. Dillon, C. Oseroff, D. Hinz, D.M. McKinney, S.C. Pro, J. Sidney, B. Peters, A. Sette, Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes, Journal of Immunological Methods, 422 (2015) 28-34. doi: 10.1016/j.jim.2015.03.022.
[29] V. Kumar, A. Rani, P. Mittal, M. Shuaib, Kunitz trypsin inhibitor in soybean: contribution to total trypsin inhibitor activity as a function of genotype and fate during processing, Journal of Food Measurement & Characterization, 13 (2019) 1583-1590. doi: 10.1007/s11694-019-00074-y.
[30] S. Natarajan, C. Xu, H. Bae, B.A. Bailey, P. Cregan, T.J. Caperna, W.M. Garrett, D. Luthria, Proteomic and genetic analysis of glycinin subunits of sixteen soybean genotypes, Plant Physiology & Biochemistry, 45 (2007) 436-444. doi: 10.1016/j.plaphy.2007.03.031.
[31] T. Wang, G.-x. Qin, Z.-w. Sun, Y. Zhao, Advances of research on glycinin and β-conglycinin: A review of two major soybean allergenic proteins, Critical Reviews in Food Science & Nutrition, 54 (2014) 850-862. doi: 10.1080/10408398.2011.613534.
[32] L. L’Hocine, J.I. Boye, Allergenicity of soybean: New developments in identification of allergenic proteins, cross-reactivities and hypoallergenization technologies, Critical Reviews in Food Science and Nutrition, 47 (2007) 127-143. doi: 10.1080/10408390600626487.
[33] H.B. KRISHNAN, W.-S. KIM, S. JANG, M.S. KERLEY, All three subunits of soybean β-conglycinin are potential food allergens, Journal of Agricultural and Food Chemistry, 57 (2009) 938-943. doi: 10.1021/jf802451g.
[34] T. Geng, K. Liu, R. Frazier, L. Shi, E. Bell, K. Glenn, J.M. Ward, Development of a sandwich ELISA for quantification of Gly m 4, a soybean allergen, Journal of Agricultural & Food Chemistry, 63 (2015) 4947-4953. doi: 10.1021/acs.jafc.5b00792.
[35] J. Huang, C. Liu, Y. Wang, C. Wang, M. Xie, Y. Qian, L. Fu, Application of in vitro and in vivo models in the study of food allergy, Food Science & Human Wellness, 7 (2018) 235-243. doi: 10.1016/j.fshw.2018.10.002.
[36] L.T. Villuendas, J. Cuestaherranz, M. Gonzalezmuñoz, L.F. Pacios, E. Compes, B. Garciacarrasco, G.S. Duran, A.D. Perales, T-cell epitopes of the major peach allergen, Pru p 3: Identification and differential T-cell response of peach-allergic and non-allergic subjects, Molecular Immunology, 46 (2009) 722-728. doi: 10.1016/j.molimm.2008.10.018.
[37] Characterization of the T‐cell epitopes of a major peanut allergen, Ara h 2, Allergy, 60 (2005) 35-40. doi: 10.1111/j.1398-9995.2004.00608.x.
[38] E.A. Pastorello, M. Monza, V. Pravettoni, R. Longhi, P. Bonara, J. Scibilia, L. Primavesi, R. Scorza, Characterization of the T-cell epitopes of the major peach allergen Pru p 3, International Archives of Allergy and Immunology, 153 (2010) 1-12. doi: 10.1159/000301573.
[39] M. De Maria, E.J. Robinson, J.R. Kangile, R. Kadigi, I. Dreoni, M. Couto, N. Howai, J. Peci, Global soybean trade-the geopolitics of a bean, (2020). doi: 10.34892/7yn1-k494.
[40] N. Güzeler, Ç. Yildirim, The utilization and processing of soybean and soybean products, Journal of Agricultural Faculty of Uludag University, 30 (2016) 546-553.
[41] L. Zhang, K. Udaka, H. Mamitsuka, S. Zhu, Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools, Briefings in Bioinformatics, 13 (2012) 350-364. doi: 10.1093/bib/bbr060.
[42] M. Pascal, G. Konstantinou, M. Masilamani, J. Lieberman, H. Sampson, In silico prediction of Ara h 2 T cell epitopes in peanut‐allergic children, Clinical & Experimental Allergy, 43 (2013) 116-127. doi: 10.1111/cea.12014.
[43] L.L. Xu, M. Gasset, H. Lin, C. Yu, J.L. Zhao, X.W. Dang, Z.X. Li, Identification of the dominant T-cell epitopes of Lit v 1 shrimp major allergen and their functional overlap with known B-cell epitopes, Journal of Agricultural and Food Chemistry, 69 (2021) 7420–7428. doi: 10.1021/acs.jafc.1c02231.
[44] B. Jahn-Schmid, A. Radakovics, D. Lüttkopf, S. Scheurer, S. Vieths, C. Ebner, B. Bohle, Bet v 1142-156 is the dominant T-cell epitope of the major birch pollen allergen and important for cross-reactivity with Bet v 1-related food allergens, Journal of Allergy and Clinical Immunology, 116 (2005) 213-219. doi: 10.1016/j.jaci.2005.04.019.
[45] F. Husslik, J. Nürnberg, C.S.v. Loetzen, T. Mews, B.K. BallmerWeber, J. Kleine-Tebbe, R. Treudler, J.-C. Simon, S. Randow, E. Völker, A. Reuter, P. Rösch, S. Vieths, T. Holzhauser, D. Schiller, The conformational IgE epitope profile of soya bean allergen Gly m 4, Clinical & Experimental Allergy, 46 (2016) 1484-1497. doi: 10.1111/cea.12796.
[46] N.M. Candreva, P.L. Smaldini, A. Cauerhff, S. Petruccelli, G.H. Docena, A novel approach to ameliorate experimental milk allergy based on the oral administration of a short soy cross-reactive peptide, Food Chemistry, 346 (2020) 128926. doi: 10.1016/j.foodchem.2020.128926.
[47] T.A. Beardslee, M.G. Zeece, G. Sarath, J.P. Markwell, Soybean glycinin G1 acidic chain shares IgE epitopes with peanut allergen Ara h 3, International Archives of Allergy & Immunology, 123 (2000) 299-307. doi: 10.1159/000053642.
[48] Y. Zhao, G. Naren, J. Qiang, G. Qin, N. Bao, M.H. Farouk, Identification of allergic epitopes of soybean β-conglycinin in different animal species, Frontiers in Veterinary Science, 7 (2020) 599546. doi: 10.3389/fvets.2020.599546.
[49] I. Berkower, G.K. Buckenmeyer, J.A. Berzofsky, Molecular mapping of a histocompatibility-restricted immunodominant T cell epitope with synthetic and natural peptides: implications for T cell antigenic structure, Journal of Immunology, 136 (1986) 2498-2503. doi: 10.1084/jem.163.4.1030.
[50] B. Wu, G. Toussaint, L.V. Elst, C. Granier, M.G. Jacquemin, J.-M.R. Saint-Remy, Major T cell epitope-containing peptides can elicit strong antibody responses, European Journal of Immunology, 30 (2000) 291-299. doi: 10.1002/1521-4141(200001)30:1<291::AID-IMMU291>3.0.CO;2-T.
[51] M. Weiss, B. Dhayalan, Y.-S. Chen, N. Phillips, M. Swain, N. Rege, A. Mirsalehi, M. Jarosinski, F. Ismail-Beigi, N. Metanis, Reassessment of an innovative insulin analogue excludes protracted action yet highlights the distinction between external and internal diselenide bridges, Chemistry-A European Journal, 26 (2020) 4695. doi: 10.1023/A:1007042825783.
[52] N. Priolo, S.M.d. Valle, M.C. Arribére, L. López, a.N. Caffini, Isolation and characterization of a cysteine protease from the latex of Araujia hortorum fruits, Journal of Protein Chemistry, 19 (2000) 39-49. doi: 10.1023/A:1007042825783.
[53] C.E. Osorio, N. Wen, J.H. Mejías, S. Mitchell, D.v. Wettstein, S. Rustgi, Directed-mutagenesis of flavobacterium meningosepticum prolyl-oligopeptidase and a glutamine-specific endopeptidase from barley, Frontiers in Nutrition, 7 (2020) 11. doi: 10.3389/fnut.2020.00011.