Leukocyte differential test is a widely performed clinical procedure for screening infectious diseases. Existing hematology analyzers require labor-intensive work and a panel of expensive reagents. Here we report an artificial-intelligence enabled reagent-free imaging hematology analyzer (AIRFIHA) modality that can accurately classify subpopulations of leukocytes with minimal sample preparation. AIRFIHA is realized through training a two-step residual neural network using label-free images of isolated leukocytes acquired from a custom-built quantitative phase microscope. By leveraging the rich information contained in quantitative phase images, we not only achieved high accuracy in differentiating B and T lymphocytes, but also classified CD4 and CD8 cells, therefore outperforming the classification accuracy of most current hematology analyzers. We validated the performance of AIRFIHA in a randomly selected test set and cross-validated it across all blood donors. Owing to its easy operation, low cost, and accurate discerning capability of complex leukocyte subpopulations, we envision AIRFIHA is clinically translatable and can also be deployed in resource-limited settings, e.g., during pandemic situations for the rapid screening of infectious diseases. Corresponding author(s) Email: rjzhou@cuhk.edu.hk, rishikesh.pandey@uconn.edu