SUPPLEMENTAL TABLE 8: Model output of a multiple linear regression used to explore how late hibernation body mass differed between caged and free-flying bats in each of the two persisting sites.
ACKNOWLEDGEMENTS
We would like to thank several individuals for their invaluable contributions to the field element of this study. From the New York State Department of Environmental Conservation (NYDEC), we would like to thank Amanda Bailey, Samantha Hoff, and Casey Pendergast. From the Vermont Fish & Wildlife Department, we thank Kerry Monahan and Joel Flewelling. Funding was provided by the joint NSF-NIH-NIFA Ecology and Evolution of Infectious Disease award DEB-1911853 and Virginia Tech.
REFERENCES
1. Antolin, M. F., Gober, P., Luce, B., Biggins, D. E. & Van Pelt, W. E. The Influence of Sylvatic Plague on North American Wildlife at the The Influence of Sylvatic Plague on North American Wildlife at the Landscape Level, with Special Emphasis on Black-footed Ferret and Prairie Dog Conservation. US Fish Wildl. Publ. 57 , 104–127 (2002).
2. LaDeau, S. L., Kilpatrick, A. M. & Marra, P. P. West Nile virus emergence and large-scale declines of North American bird populations.Nature 447 , 710–713 (2007).
3. Langwig, K. E. et al. Sociality, density-dependence and microclimates determine the persistence of populations suffering from a novel fungal disease, white-nose syndrome. Ecol. Lett.15 , 1050–1057 (2012).
4. Mccallum, H. et al. Transmission dynamics of Tasmanian devil facial tumor disease may lead to disease-induced extinction.Ecology 90 , 3379–3392 (2009).
5. Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science (80-. ).363 , 1459–1463 (2019).
6. Van Riper III, C., Van Riper, S. G., Goff, M. L. & Laird, M. The Epizootiology and Ecological Significance of Malaria in Hawaiian Land Birds. Ecol. Monogr. 56 , 327–344 (1986).
7. de Castro, F. & Bolker, B. Mechanisms of disease-induced extinction.Ecol. Lett. 8 , 117–126 (2005).
8. Friedman, A. & Yakubu, A.-A. HOST DEMOGRAPHIC ALLEE EFFECT, FATAL DISEASE, AND MIGRATION: PERSISTENCE OR EXTINCTION. SIAM J. Appl. Math. 72 , 1644–1666 (2012).
9. Lande, R. Demographic Stochasticity and Allee Effect on a Scale with Isotropic Noise. Oikos 83 , 353–358 (1998).
10. Brannelly, L. A. et al. Mechanisms underlying host persistence following amphibian disease emergence determine appropriate management strategies. Ecol. Lett. 24 , 130–148 (2021).
11. Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians.Proc. Natl. Acad. Sci. 107 , 9695–9700 (2010).
12. Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science (80-. ). 359 , 1517–1519 (2018).
13. Scheele, B. C., Hunter, D. A., Skerratt, L. F., Brannelly, L. A. & Driscoll, D. A. Low impact of chytridiomycosis on frog recruitment enables persistence in refuges despite high adult mortality. Biol. Conserv. 182 , 36–43 (2015).
14. Scheele, B. C. et al. After the epidemic: Ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206 , 37–46 (2017).
15. Epstein, B. et al. Rapid evolutionary response to a transmissible cancer in Tasmanian devils. Nat. Commun.7 , 12684 (2016).
16. Lazenby, B. T. et al. Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils. J. Appl. Ecol. 55 , 1368–1379 (2018).
17. Patton, A. H. et al. A transmissible cancer shifts from emergence to endemism in Tasmanian devils. Science (80-. ).370 , eabb9772 (2020).
18. Hohenlohe, P. A. et al. Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer.Conserv. Genet. 20 , 81–87 (2019).
19. Woodworth, B. L. et al. Host population persistence in the face of introduced vector-borne diseases: Hawaii amakihi and avian malaria. Proc. Natl. Acad. Sci. 102 , 1531–1536 (2005).
20. Reichard, J. D. et al. Interannual Survival of Myotis lucifugus (Chiroptera: Vespertilionidae) near the Epicenter of White-Nose Syndrome. Northeast. Nat. 21 , N56–N59 (2014).
21. Frick, W. F. et al. Disease alters macroecological patterns of North American bats. Glob. Ecol. Biogeogr. 24 , 741–749 (2015).
22. Hoyt, J. R. et al. Environmental reservoir dynamics predict global infection patterns and population impacts for the fungal disease white-nose syndrome. Proc. Natl. Acad. Sci. 117 , 7255–7262 (2020).
23. Hoyt, J. R., Kilpatrick, A. M. & Langwig, K. E. Ecology and impacts of white-nose syndrome on bats. Nat. Rev. Microbiol. 19 , 1–15 (2021).
24. Langwig, K. E. et al. Drivers of variation in species impacts for a multi-host fungal disease of bats. Philos. Trans. R. Soc. B Biol. Sci. 371 , 20150456 (2016).
25. Samuel, M. D., Woodworth, B. L., Atkinson, C. T., Hart, P. J. & LaPointe, D. A. Avian malaria in Hawaiian forest birds: Infection and population impacts across species and elevations. Ecosphere6 , 1–21 (2015).
26. Scheele, B. C. et al. After the epidemic: Ongoing declines, stabilizations and recoveries in amphibians afflicted by chytridiomycosis. Biol. Conserv. 206 , 37–46 (2017).
27. Best, A., White, A. & Boots, M. Maintenance of host variation in tolerance to pathogens and parasites. Proc. Natl. Acad. Sci.105 , 20786–20791 (2008).
28. Boots, M., Best, A., Miller, M. R. & White, A. The role of ecological feedbacks in the evolution of host defence: what does theory tell us? Philos. Trans. R. Soc. B 364 , 27–36 (2009).
29. Kutzer, M. A. M. & Armitage, S. A. O. Maximising fitness in the face of parasites: a review of host tolerance. Zoology119 , 281–289 (2016).
30. Råberg, L., Sim, D. & Read, A. F. Disentangling Genetic Variation for Resistance and Tolerance to Infectious Diseases in Animals.Science (80-. ). 318 , 812–814 (2007).
31. Råberg, L., Graham, A. L. & Read, A. F. Decomposing health: tolerance and resistance to parasites in animals. Philos. Trans. R. Soc. B Biol. Sci. 364 , 37–49 (2009).
32. Restif, O. & Koella, J. C. Concurrent Evolution of Resistance and Tolerance to Pathogens. Am. Nat. 164 , E90–E102 (2004).
33. Roy, B. A. & Kirchner, J. W. Evolutionary Dynamics of Pathogen Resistance and Tolerance. Evolution (N. Y). 54 , 51–63 (2000).
34. Voyles, J. et al. Shifts in disease dynamics in a tropical amphibian assemblage are not due to pathogen attenuation. Science (80-. ). 359 , 1517–1519 (2018).
35. Wilber, M. Q., Carter, E. D., Gray, M. J. & Briggs, C. J. Putative resistance and tolerance mechanisms have little impact on disease progression for an emerging salamander pathogen. Funct. Ecol.35 , 847–859 (2021).
36. Heard, G. W. et al. Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol. Lett.18 , 853–863 (2015).
37. Mosher, B. A., Bailey, L. L., Muths, E. & Huyvaert, K. P. Host–pathogen metapopulation dynamics suggest high elevation refugia for boreal toads. Ecol. Appl. 28 , 926–937 (2018).
38. Schelkle, B. et al. Parasites pitched against nature: Pitch Lake water protects guppies (Poecilia reticulata) from microbial and gyrodactylid infections. Parasitology 139 , 1772–1779 (2012).
39. Springer, Y. P. Do extreme environments provide a refuge from pathogens? A phylogenetic test using serpentine flax. Am. J. Bot.96 , 2010–2021 (2009).
40. Tobler, M., Schlupp, I., García De León, F. J., Glaubrecht, M. & Plath, M. Extreme habitats as refuge from parasite infections? Evidence from an extremophile fish. Acta Oecologica 31 , 270–275 (2007).
41. Zumbado-Ulate, H., Bolaños, F., Gutiérrez-Espeleta, G. & Puschendorf, R. Extremely Low Prevalence of Batrachochytrium dendrobatidis in Frog Populations from Neotropical Dry Forest of Costa Rica Supports the Existence of a Climatic Refuge from Disease.Ecohealth 11 , 593–602 (2014).
42. Arthur, A., Ramsey, D. & Efford, M. Impact of bovine tuberculosis on a population of brushtail possums (Trichosurus vulpecula Kerr) in the Orongorongo Valley, New Zealand. Wildl. Res. 31 , 389–395 (2004).
43. Lachish, S., McCallum, H. & Jones, M. Demography, disease and the devil: Life-history changes in a disease-affected population of Tasmanian devils (Sarcophilus harrisii). J. Anim. Ecol.78 , 427–436 (2009).
44. Mcdonald, J. L. et al. Demographic buffering and compensatory recruitment promotes the persistence of disease in a wildlife population. Ecol. Lett. 19 , 443–449 (2016).
45. Spitzen-Van Der Sluijs, A., Canessa, S., Martel, A. & Pasmans, F. Fragile coexistence of a global chytrid pathogen with amphibian populations is mediated by environment and demography. Proc. R. Soc. B Biol. Sci. 284 , 20171444 (2017).
46. Fenton, A., Fairbairn, J. P., Norman, R. & Hudson, P. J. Parasite transmission: reconciling theory and reality. J. Anim. Ecol.71 , 893–905 (2002).
47. Hochachka, W. M. & Dhondt, A. A. Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. 97 , 5303–5306 (2000).
48. Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20 , 511–519 (2005).
49. McCallum, H., Barlow, N. & Hone, J. How should pathogen transmission be modelled? Trends Ecol. Evol. 16 , 295–300 (2001).
50. Anderson, R. M. & May, R. M. Coevolution of hosts and parasites.Parasitology 85 , 411–426 (1982).
51. Boots, M., Hudson, P. J. & Sasaki, A. Large shifts in pathogen virulence relate to host population structure. Science (80-. ).303 , 842–844 (2004).
52. CRESSLER, C. E., McLEOD, D. V., ROZINS, C., VAN DEN HOOGEN, J. & DAY, T. The adaptive evolution of virulence: a review of theoretical predictions and empirical tests. Parasitology 143 , 915–930 (2016).
53. Kerr, B., Neuhauser, C., Bohannan, B. J. M. & Dean, A. M. Local migration promotes competitive restraint in a host-pathogen ‘tragedy of the commons’. Nature 442 , 75–78 (2006).
54. Levin, S. & Pimentel, D. Selection of Intermediate Rates of Increase in Parasite-Host Systems. Am. Nat. 117 , 308–315 (1981).
55. Wild, G., Gardner, A. & West, S. A. Adaptation and the evolution of parasite virulence in a connected world. Nature 459 , 983–986 (2009).
56. Lorch, J. M. et al. Experimental infection of bats with Geomyces destructans causes white-nose syndrome. Nature480 , 376–379 (2011).
57. Minnis, A. M. & Lindner, D. L. Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol. 117 , 638–649 (2013).
58. Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci.109 , 6999–7003 (2012).
59. Blehert, D. S. et al. Bat white-nose syndrome: An emerging fungal pathogen? Science (80-. ). 323 , 227 (2009).
60. Langwig, K. E. et al. Host and pathogen ecology drive the seasonal dynamics of a fungal disease, white-nose syndrome. Proc. R. Soc. B 282 , 20142335 (2015).
61. Hoyt, J. R. et al. Cryptic connections illuminate pathogen transmission within community networks. Nature 563 , 710–713 (2018).
62. Langwig, K. E. et al. Mobility and infectiousness in the spatial spread of an emerging fungal pathogen. J. Anim. Ecol.1–8 (2021) doi:10.1111/1365-2656.13439.
63. Frick, W. F. et al. An emerging disease causes regional population collapse of a common North America bat species. Science (80-. ). 329 , 679–682 (2010).
64. Fuller, N. W. et al. Disease recovery in bats affected by white-nose syndrome. J. Exp. Biol. 223 , jeb211912 (2020).
65. Meteyer, C. U. et al. Recovery of Little Brown Bats (Myotis Lucifugus) From Natural Infection With Geomyces Destructans, White-Nose Syndrome. J. Wildl. Dis. 47 , 618–626 (2011).
66. Verant, M. L., Boyles, J. G., Waldrep Jr., W., Wibbelt, G. & Blehert, D. S. Temperature-Dependent Growth of Geomyces destructans, the Fungus That Causes Bat White-Nose Syndrome. PLoS One 7 , e46280 (2012).
67. Marroquin, C. M., Lavine, J. O. & Windstam, S. T. Effect of Humidity on Development of Pseudogymnoascus destructans , the Causal Agent of Bat White-Nose Syndrome. Northeast. Nat.24 , 54–64 (2017).
68. Grieneisen, L. E., Brownlee-Bouboulis, S. A., Johnson, J. S. & Reeder, D. M. Sex and hibernaculum temperature predict survivorship in white-nose syndrome affected little brown myotis (Myotis lucifugus).R. Soc. Open Sci. 2 , 140470 (2015).
69. Hopkins, S. R. et al. Continued preference for suboptimal habitat reduces bat survival with white-nose syndrome. Nat. Commun. 12 , 1–9 (2021).
70. Lilley, T. M., Anttila, J. & Ruokolainen, L. Landscape structure and ecology influence the spread of a bat fungal disease. Funct. Ecol. 32 , 2483–2496 (2018).
71. Dobony, C. A. et al. Little Brown Myotis Persist Despite Exposure to White-Nose Syndrome. J. Fish Wildl. Manag.2 , 190–195 (2011).
72. Langwig, K. E. et al. Resistance in persisting bat populations after white-nose syndrome invasion. Philos. Trans. R. Soc. B 372 , 20160044 (2017).
73. Drees, K. P. et al. Phylogenetics of a fungal invasion: origins and widespread dispersal of white-nose syndrome. MBio8 , e01941-17 (2017).
74. Palmer, J. M. et al. Molecular characterization of a heterothallic mating system in Pseudogymnoascus destructans, the fungus causing white-nose syndrome of bats. G3 Genes, Genomes, Genet.4 , 1755–1763 (2014).
75. Ren, P. et al. Clonal spread of Geomyces destructans among bats, Midwestern and Southern United States. Emerg. Infect. Dis.18 , 883–885 (2012).
76. Hoyt, J. R. et al. Host persistence or extinction from emerging infectious disease: insights from white-nose syndrome in endemic and invading regions. Proc. R. Soc. B 283 , 20152861 (2016).
77. Langwig, K. E. et al. Invasion dynamics of white-nose syndrome fungus, midwestern United States, 2012–2014. Emerg. Infect. Dis. 21 , 1023–1026 (2015).
78. Mcguire, L. P., Mayberry, H. W. & Willis, C. K. R. White-nose syndrome increases torpid metabolic rate and evaporative water loss in hibernating bats. Am. J. Physiol. Integr. Comp. Physiol.313 , R680–R686 (2017).
79. Cryan, P. M., Meteyer, C. U., Boyles, J. G. & Blehert, D. S. Wing pathology of white-nose syndrome in bats suggests life-threatening disruption of physiology. BMC Biol. 8 , 1–8 (2010).
80. Cryan, P. M. et al. Electrolyte Depletion in White-nose Syndrome Bats. J. Wildl. Dis. 49 , 398–402 (2013).
81. Ehlman, S. M., Cox, J. J. & Crowley, P. H. Evaporative water loss, spatial distributions, and survival in white-nose-syndrome-affected little brown myotis: a model. J. Mammal. 94 , 572–583 (2013).
82. Verant, M. L. et al. White-nose syndrome initiates a cascade of physiologic disturbances in the hibernating bat host. BMC Physiol. 14 , 1–11 (2014).
83. Warnecke, L. et al. Pathophysiology of white-nose syndrome in bats: a mechanistic model linking wing damage to mortality. Biol. Lett. 9 , 20130177 (2013).
84. Willis, C. K. R., Menzies, A. K., Boyles, J. G. & Wojciechowski, M. S. Evaporative Water Loss Is a Plausible Explanation for Mortality of Bats from White-Nose. Integr. Comp. Biol. 51 , 364–373 (2011).
85. Hicks, A. C. et al. Environmental transmission of Pseudogymnoascus destructans to hibernating little brown bats.bioRxiv (2021) doi:https://doi.org/10.1101/2021.07.01.450774.
86. Meteyer, C. U. et al. Histopathologic criteria to confirm white-nose syndrome in bats. J. Vet. Diagnostic Investig.21 , 411–414 (2009).
87. Turner, G. G. et al. Nonlethal Screening of Bat-Wing Skin With the Use of Ultraviolet Fluorescence To Detect Lesions Indicative of White-Nose Syndrome. J. Wildl. Dis. 50 , 566–573 (2014).
88. Auteri, G. G. & Knowles, L. L. Decimated little brown bats show potential for adaptive change. Sci. Rep. 10 , 1–10 (2020).
89. Gignoux-Wolfsohn, S. A. et al. Genomic signatures of evolutionary rescue in bats surviving white-nose syndrome. Mol. Ecol. In press , (2021).
90. Valerio Garcia, M., Carlos Monteiro, A., Juan Pablo Szabo, M., Prette, N. & Henrique Bechara, G. MECHANISM OF INFECTION AND COLONIZATION OF RHIPICEPHALUS SANGUINEUS EGGS BY MERTARHIZIUM ANISOPLIAE AS REVEALED BY SCANNING ELEcTRON MICROSCOPY AND HISTOPATHOLOGY.Brazilian J. Microbiol. 36 , 368–372 (2005).
91. Ment, D. et al. The effect of temperature and relative humidity on the formation of Metarhizium anisopliae chlamydospores in tick eggs. Fungal Biol. 114 , 49–56 (2010).
92. Ben-Hamo, M., Muñoz-Garcia, A., Williams, J. B., Korine, C. & Pinshow, B. Waking to drink: rates of evaporative water loss determine arousal frequency in hibernating bats. J. Exp. Biol.216 , 573–577 (2013).
93. Thomas, D. W. & Cloutier, D. Evaporative Water Loss by Hibernating Little Brown Bats, Myotis lucifugus. Physiol. Zool. 65 , 443–456 (1992).
94. Reeder, D. M. et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome.PLoS One 7 , e38920 (2012).
95. Perry, R. W. A review of factors affecting cave climates for hibernating bats in temperate North America. Environ. Rev.21 , 28–39 (2013).
96. Ryan, C. C., Burns, L. E. & Broders, H. G. Changes in underground roosting patterns to optimize energy conservation in hibernating bats.Can. J. Zool. 97 , 1064–1070 (2019).
97. Boyles, J. G., Johnson, J. S., Blomberg, A. & Lilley, T. M. Optimal hibernation theory. Mamm. Rev. 50 , 91–100 (2020).
98. Boyles, J. G., Boyles, E., Dunlap, R. K., Johnson, S. A. & Brack Jr, V. Long-term microclimate measurements add further evidence that there is no ‘optimal’ temperature for bat hibernation. Mamm. Biol. 86 , 9–16 (2017).
99. McKenzie, J. M., Price, S. J., Connette, G. M., Bonner, S. J. & Lorch, J. M. Effects of snake fungal disease on short‐term survival, behavior, and movement in free‐ranging snakes. Ecol. Appl.31 , e02251 (2021).
100. Lorch, J. M. et al. Experimental Infection of Snakes with Ophidiomyces ophiodiicola Causes Pathological Changes That Typify Snake Fungal Disease. MBio 6 , e01534-15 (2015).
101. Burns, G., Ramos, A. & Muchlinski, A. Fever Response in North American Snakes. Source J. Herpetol. 30 , 133–139 (1996).
102. Bell, G. Evolutionary rescue and the limits of adaptation.Philos. Trans. R. Soc. B Biol. Sci. 368 , 20120080 (2013).
103. Auteri, G. G. & Knowles, L. L. Decimated little brown bats show potential for adaptive change. Sci. Rep. 10 , (2020).
104. Lilley, T. M. et al. Genome-Wide Changes in Genetic Diversity in a Population of Myotis lucifugus Affected by White-Nose Syndrome. Genes, Genomes, Genet. 10 , 2007–2020 (2020).
105. Felsenstein, J. THE THEORETICAL POPULATION GENETICS OF VARIABLE SELECTION AND MIGRATION. Annu. Rev. Genet. 10 , 253–280 (1976).
106. García-Ramos, G. & Kirkpatrick, M. GENETIC MODELS OF ADAPTATION AND GENE FLOW IN PERIPHERAL POPULATIONS. Evolution (N. Y).51 , 21–28 (1997).
107. Hendry, A. P., Day, T. & Taylor, E. B. Population mixing and the adaptive divergence of quantitative traits in discrete populations: a theoretical framework for empirical tests. Evolution (N. Y).55 , 459–466 (2001).
108. Wright, S. Evolution and the Genetics of Populations, Volume 2: The Theory of Gene Frequencies . (University of Chicago Press, 1969).
109. Johnson, L. N. L. et al. Population Genetic Structure Within and among Seasonal Site Types in the Little Brown Bat (Myotis lucifugus) and the Northern Long-Eared Bat (M. septentrionalis). PLoS One10 , e0126309 (2015).
110. Talbot, B., Vonhof, M. J., Broders, H. G., Fenton, M. B. & Keyghobadi, N. Population structure in two geographically sympatric and congeneric ectoparasites (Cimex adjunctus and cimex lectularius) in the North American great lakes region. Can. J. Zool. 95 , 901–907 (2017).
111. Talbot, B., Vonhof, M. J., Broders, H. G., Fenton, B. & Keyghobadi, N. Range-wide genetic structure and demographic history in the bat ectoparasite Cimex adjunctus. BMC Evol. Biol.16 , 1–13 (2016).
112. Burns, L. E., Frasier, T. R. & Broders, H. G. Genetic connectivity among swarming sites in the wide ranging and recently declining little brown bat (Myotis lucifugus). Ecol. Evol. 4 , 4130–4149 (2014).
113. Wilder, A. P., Kunz, T. H. & Sorenson, M. D. Population genetic structure of a common host predicts the spread of white-nose syndrome, an emerging infectious disease in bats. Mol. Ecol. 24 , 5495–5506 (2015).
114. Davy, C. M., Martinez-Nunez, F., Willis, C. K. R. & Good, S. V. Spatial genetic structure among bat hibernacula along the leading edge of a rapidly spreading pathogen. Conserv. Genet. 16 , 1013–1024 (2015).
115. Miller-Butterworth, C. M., Vonhof, M. J., Rosenstern, J., Turner, G. G. & Russell, A. L. Genetic Structure of Little Brown Bats (Myotis lucifugus) Corresponds with Spread of White-Nose Syndrome among Hibernacula. J. Hered. 105 , 354–364 (2014).
116. Price, S. J. et al. Effects of historic and projected climate change on the range and impacts of an emerging wildlife disease.Glob. Chang. Biol. 25 , 2648–2660 (2019).
117. Altizer, S., Ostfeld, R. S., Johnson, P. T. J., Kutz, S. & Harvell, C. D. Climate Change and Infectious Diseases: From Evidence to a Predictive Framework. Science (80-. ). 341 , 514–519 (2013).
118. Parratt, S. R., Numminen, E. & Laine, A.-L. Infectious Disease Dynamics in Heterogeneous Landscapes. Annu. Rev. Ecol. Evol. Syst. 47 , 283–306 (2016).
119. Wilber, M. Q., Langwig, K. E., Kilpatrick, A. M., Mccallum, H. I. & Briggs, C. J. Integral Projection Models for host-parasite systems with an application to amphibian chytrid fungus. Methods Ecol. Evol. 7 , 1182–1194 (2016).
120. Barrett, R. D. H. & Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 23 , 38–44 (2008).
121. Wolinska, J. & King, K. C. Environment can alter selection in host–parasite interactions. Trends Parasitol. 25 , 236–244 (2009).
122. Muller, L. K. et al. Bat white-nose syndrome: a real-time TaqMan polymerase chain reaction test targeting the intergenic spacer region of Geomyces destructans . Mycologia 105 , 253–259 (2013).
123. Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw.67 , 1–48 (2015).