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Abstract

Rényi complexity ratio of two density functions is introduced for three and multidimensional quantum sys-
tems. Localization property of several density functions are defined and five theorems about near continuous
property of Rényi complexity ratio are proved by Lebesgue measure. Some properties of Rényi complexity ratio
are demonstrated and investigated for different quantum systems. Exact analytical forms of Rényi entropy,
Rényi complexity ratio, statistical complexities based on Rényi entropy for integral order have been presented
for solutions of pseudoharmonic and a family of isospectral potentials. Some properties of Rényi complexity
ratio are verified for six diatomic molecules (CO, NO, No, CH, Hy, and ScH) and for other quantum systems.
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1 Introduction

Information entropy and statistical complexity is a growing interesting subject for studying the behavior of atomic
structure in physics and quantum chemistry. Specially the Shannon entropy [1] and the Rényi entropy [2] are more
useful measurements for entropic uncertainty relations [3, 4], in atomic system and statistical thermodynamics
[5, 6]. The Rényi entropy is important in quantum chemistry [7], mathematical physics [8], quantum information
& quantum computation [9], statistical mechanics [10], image processing [11], computer science [12] and different
fields of science. It is used as a generalization of Shannon entropy. It has many applications in quantum information
and some interesting physical measurement can de defined by it [13, 4, 17, 16, 18, 14, 15]. In momentum space,
it is defined for shell structure of atoms [19].

A useful and important statistical complexity is Lépez-Ruiz-Mancini-Calbet (LMC) complexity [22, 20, 21, 23].
It is defined, as a product Shannon entropy and disequilibrium [24]. Another simple measure of complexity is
Shiner, Davison, Landsber (SDL), which is a product of order and disorder of a quantum state [25]. The LMC
is modified and known as shape LMC [20, 23, 26, 27, 28], which is a product of power of Shannon entropy and
disequilibrium. The LMC and shape LMC complexities have been applied in different fields of science [26, 29].
Moreover, shape LMC is modified, so-called shape Rényi complexity (SRC) [30, 31], where Shannon entropy is
replaced by Rényi entropy. Again the shape Rényi complexity is modified, so-called generalized Rényi complexity
(GRC) [32, 33, 34, 35, 36, 37|, where disequilibrium is replaced by inverse of Rényi entropic power. The SRC
is a one parameter family of complexity measure, whereas GRC is a two parameters family complexity. The

LMC, SRC and GRC have several properties and applications in physics, mainly in quantum chemistry for atomic

*1 Department of Mathematics, Vivekananda College, Thakurpukur, Kolkata, West Bengal, India. Email: debrajn@gmail.com



structure. But there is an example to prove the near continuous property of LMC, SRC, GRC and there is no
analytical prove for arbitrary density functions [23, 32, 38].

Different types of complexities such as Fisher-Shannon [39] for ionization processes ans Fisher-Rényi for atomic
density function [40] are investigated in some literatures. All such complexities are defined for a single density
function. In addition, some conditional or relative information, such as (i) relative Shannon [41], (ii) relative Fisher
[42], (iii) relative Rényi [43] and (iv) relative Tsallis [44] have been defined between two density functions. The
relative Shannon [41], relative Rényi [43] are used in atomic system. The relative Fisher has been used for central
potential. A relative LMC-type complexity is defined for atoms [45, 46] and a generalized relative complexity [46]
is defined for Dicke model [43, 38] by the definitions of relative Shannon and relative Rényi entropies. Recently
complexity ratio has been introduced in position and momentum spaces for radial pseudoharmonic oscillator
potential [47]. With respect to generalized quantum similarity index [48], we already shown that, wave functions
of some diatomic molecules are same for pseudoharmonic oscillator which match with a family isospectral potentials
in 3D [49].

In this paper, the Rénti complexity ratio (RCR) of two density functions will be introduced. The aim of this
paper is to find the relation between RCR and GRC. To this aim, some definitions of localization property of several
density functions will be defined and some theorems of near continuous property of RCR in different dimensions
will be proved by Lebesgue measure. But the main focus of this paper is to explore the Rényi complexity ratio in
three dimensional quantum systems for central potential.

The RCR is an extension of GRC, which is an interesting field of quantum chemistry. The definition of RCR
can be applied directly to GRC, SRC and LMC for two identical density functions, as a particular case of RCR.
All properties of RCR will be verified to the solutions of pseudoharmonic oscillator [50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 60, 47, 61, 62] and a family of isospectral potentials [63]. Moreover, the effect of isospectral parameter A
on Rényi entropy, RCR, GRC and SRC will be examined. An interesting limiting case (|]A| — o0), which will be
considered for the measures of RCR, GRC and SRC. Moreove we will examine the effect of D, (dissociation energy
of diatomic molecules), r. (equilibrium intermolecular separation), m,, (reduced mass of diatomic molecules) and
A (isospectral parameter) on Rényi entropy, RCR, GRC and SRC.

This paper is divided into four sections. They are organized as follows. In Sec. 2, localization property of
several density functions will be introduced. Then some known results of Rényi entropy will rewritten. In Sec.
3, main idea for Rényi complexity ratio which is an extension of generalized Rényi complexity will be explained.
Next some theorems and properties of RCR will be demonstrated and investigated. In Sec. 4, the exact forms
of Rényi entropy, RCR, GRC and SRC of the solutions of pseudoharmonic oscillator and a family of isospectral
potentials will be presented. In Sec. 5 Rényi entropy, RCR, GRC and SRC will be calculated numerically for
rational orders for 19 diatomic molecules and some other quantum systems. Beside this example, this method will

be worked for solutions of any other potentials. Finally, some conclusion will be given in Sec. 6.



2 Preliminaries about density functions and Rényi entropy

2.1 Localization property of density functions

All density functions are bounded in a region RY = [0,00) x [0,7] X [0,27] for a three dimensional spherical
coordinates and the joint density function p : RY — [0, 1] can be expressed as a product of three independent
density functions f(r), g(f) and h(¢). For a central potential one of them, h(¢) = %, ¢ € [0,27] is a uniform

density function and there exists a d > 0 such that

/OOO fr)r?dr=1= /Odf(r)r2dr, /doo f(r)r2dr = 0. (1)

Integrations in Eq.(1) are considered as a measure of Lebesgue integration. One can define a partition of the

interval [0, d] by disjoint sets, such that [13, 37] [0,d] = UY.,Q; and

N
pi=1, 0<p; <1, where p; = / f(r)rdr. (2)
=1 Q

Under the region 2 = U;§2;, where p; # 0, one can obtain

/O T ) =1 = /Q F(r)r2dr. (3)

Then  is the actual effective domain of the density function f(r). In this paper, the Lebesgue measure of Q is
written by £(£2). Several effective domains with respect to radial distance r, polar angle 6, azimuthal angle ¢ and

r of their corresponding density functions can be defined by Lebesgue measure

Definition 2.1 (Effective domain with respect to r [37]). A region , C [0,00) is called the effective domain
of the density function f(r), zf/ f(r)r?dr = 1 and there exists no Q1 C [0,00) such that L() < L(,),
Qy

where f(r)r?dr = 1. On the other hand . is called the effective domain of f(r), Zf/ f(r)yr’dr =1 and
9 Qr

L) < L) for any O € {Q C [0,00) : /Qf(r)rzdr = 1}.

Definition 2.2 (Localization with respect to v [37]). Let fi(r) and f2(r) be two radial density functions, Q} and
02 be the effective domains of f1 and fo respectively with respect to r. Then fi is called localized than fy with
respect to r if L(Q}) < L(02).

Definition 2.3 (Effective domain with respect to 6 [37]). A region Qy C [0,7| is called the effective domain
of the density function f(0), z'f/ f(0)sin@dd = 1 and there exists no Q1 C [0,7] such that L(21) < L(Qp),
Qg

where f(0)sinfdh = 1. Alternatively Qg is called the effective domain of f(0), if f(0)sinfdhd = 1 and
Ql QG

L(Qg) < L) for any Q; € {Q C [0,7] : /Qf(e) sinf df = 1}.

Definition 2.4 (Localization with respect to 0 [37]). Let fi1(0) and f2(0) be two rotational density functions of
the polar angle 0, Qé and Qg be the effective domains of f1 and fo respectively with respect to 8. Then f1 is called
localized than fo with respect to 0 if L) < L(Q2).



Definition 2.5 (Effective domain with respect to ¢). A region Qg C [0,27] is called the effective domain of
the density function f(¢), z'f/ f(@)dp =1 and there exists no Q C [0,27] such that L(Q1) < L(y), where
Q

f(@)do = 1. Alternatively effective domain Q2 of f($) can be defined as, / f(@)do =1 and L(Qy) < L(2)
(o1 Q

for cmlee{QC[O,QW]:/{)f((ﬁ)dgb—l}.

Definition 2.6 (Localization with respect to ¢). Let fi1(¢) and fa(¢) be two density functions of the azimuthal
angle ¢, Qé and Qi be the effective domain of f1 and fo respectively with respect to ¢. Then f1 is called localized
than fo with respect to ¢ if ﬁ(Q}b) < £(Qi)

Definition 2.7 (Effective domain with respect to r). Let a joint density function p(r ) (1)po(0)py(@) be de-
fined in RI. If there exist Q. C [0,00), Qg C [0, 7], Qg C [0,27] such that/ 1, pr(r)r? dr =
Q- xQy ><Q¢ Q,

/Q po(0)sin0do = /Q po(d)dd = 1, and L(Q,) < L), L(Q) < L(N), L(Q) < L(Q3) for all Q) €
0 ¢

{2 C[0,00): / pr (1)1 dr}; Oy € {Q C [0,7] : / po(0)sinf dh = 1}; and Q3 € {Q C [0,27] : / po(P)dp = 1},
Q Q Q
then the region Q, x Qg x Qg is called the effective domain of p(r).

It is to be noted that, the effective domain is an area or a volume of a two or three dimensional quantum
system. One can define the effective domain of a D dimensional quantum system. It is difficult to find the effective
domain of a multi-dimensional non-separable quantum state. But one can define the localization property, for a
multi-dimensional non-separable quantum system with known density functions. In this paper, three dimensional

quantum system for central potential is considered.

2.2 Rényi entropy, Rényi length and Rényi volume

Let a density function p : MP — [0,1] is defined on a D-dimensional space M” C RP. The one-parameter (order

a) Rényi entropy of p is defined by [2]

R = In [I(O‘)] La>0, £1, (4)

11—«

where I(®) is the entropic moments of the density function p and is defined by

1@ = /QD p%(r)dr, (5)

and QP ¢ MP is the effective domain of p. If the effective domain of p exists, then Rényi entropy (4) can be
written as

Ry = oY prL(), a >0, #£1, (6)



where

= 0, r ¢ Qi,
and QE = U;€;. The sum (6) is a good approximation of (4), if £(2;) — 0. For a discrete distribution Rényi
entropy is written by RE,Q) = - In)" p¢. Also it can be obtained form (6), if £(£2;) = 1 and Z L(Q) = (’)(QE) =
i i
order of the set Qf,) or size of the distributions. The Rényi entropy defined in (6) of a finite discrete distribution

is always positive, but (4) may be negative [17] for sufficiently large variations. It is a non-increasing function of

order . The Tsallis entropy is an another important family of generalized entropy and it is defined by [64]

1
(o) — _ 7@
T a_1<1 I ),oz>0,7é1. (8)
A relation between Rényi and Tsallis entropies is
1 (o)
(o) (1-—a)Rp™ _
7o l—«a (6 ’ 1) ’ )
or
RO — 1 14 (1— )T (10)
b =1 gl )Ty |

If p is a delta function, then both are equal to zero. In the limiting case (v — 1), they reduce to the Shannon

entropy S, and it is defined by [1]
Sy =— /p(r) In p(r) dr. (11)

Rényi volume and length are denoted by Vﬁ(,a) and (EEZ))) respectively and for D = 3 a relation between them is

defined by [47, 65]

1
£ = (i%a)) - (41) 3R 0> 0,£1. (12)

For a special case o = 0 and for continuous distribution the Rényi entropy Rgo) is defined by In £(Q/’? ). For

discrete random variable REJO) is equal to [5, 6] In O(Q? ).

Moreover, for a = %, %, 2, Rényi entropy is related with some physical quantities, such as Thomas-Fermi kinetic
energy, the Dirac exchange energy and electron density. It has many applications in density functional theory
for atoms and molecules [14, 15, 17]. The average density is called the disequilibrium and it has dimension of
inverse volume. It is inversely proportional to the Rényi volume of order 2 and it is defined by [66, 48, 20, 24],
D, = ¢~R+”. On the other hand RE}) — RE,I) is defined the structural entropy [13] of p. An another special case
is [67]

R = —In || p [|oc, if & — o0, (13)



where || p |loco= sup p(r). The Rényi entropy satisfies several properties [13, 4, 16, 17, 18] and some important
r

inequalities which are relevant to this work [5] are written as follows

saRe” <0,
2 (=) > )
R > oRP) R

3 Rényi complexity ratio

Rényi complexity ratio of two density functions f and g of order («, 3) is defined by

(a) (8)
D) = Rs R, (15)

3.1 Simple general properties of RCR

The Rényi complexity ratio of two density functions f and g satisfies several properties. They are as follows:

e (i) C’((?’fﬁ)) reduces to GRC [31, 32, 33, 34, 35, 36] of f with order («, 3).

-l

i il -1 ety -1

. (iv) Cfp) = 1.

o (v)C ff)) is a non-increasing function of «, for fixed 8 and g. It is an increasing function of 3, for fixed v and

f.

3.2 DMajorization effect on RCR

Definition 3.1 (Majorization for FDD [68]) Let pj = (pl,pQ, e ,pfl), j=1,2 be two finite discrete distributions
n n

(FDD). Then p1 majorizes p2 (p1 > p2), if sz- > Zpi , 1 <k <mn, and prl = pr = 1, where
=1 =1 i=1

p%j—max{pg:i:I,Q,...,n}, p%j:min{pg:izl,Q,...,n}, p%jzp‘%jz...Zp%j.

Definition 3.2 (Majorization for CD [69]) Let p1 : MP — [0,1] and py : MP — [0,1] be two continuous density

(CD) functions. Then p1 majorizes p2 (p1 > p2), if/ [p1(r) — 7o) dr > / [p2(r) — 70]T dr, holds, for all ro > 0,

+

where [y]" = max {y,0}.

The entropic moment I(® of density functions is a concave functional if 0 < o < 1 or convex functional if o > 1

[68, 69, 70, 71, 72]. Therefore,

I <1 ifo<a<1
p1 = p2 — . (16)
I >19 ifa>1



(a)

and then the Rényi entropy R, "’ is a concave functional of p, for any a > 0 and hence one can write

R <R >0
p1L = p2 = (17)

Spy < Spy,s a=1

(a)

It is well known that, Rényi entropy R is a non-increasing function of o and one can write [37]

RSCO‘) > R(a) if f is widely spread and ¢ is narrowly confined on a domain and for two discrete distributions [68]

R; @) 5 R(a) if f < g. Hence, C(( ’ )) satisfies some inequalities as follows

<1, azf, fryg
cl) . (18)

(f,9)
>1, a<pB, f<yg

We cannot say anything about the cases @ > 8, f < g and a < 3, f > g but one can find lower and upper bounds

of C((f )) using majorization effect (18). Upper bound of C((f )) =1, exists, if f > g and « > 5. Lower bound of

C’((Jof 5) =1 exists, if f < g and a < 8. The RCR is a postive definite functional of density functions, therefore, in

general lower bound of C(( ’ ’g)) is zero and the upper bound may be defined by Rényi entropic bound. It is already
known that, Réﬁ ) > Réoo), for > 0. Now, if two density functions f(r) and g(r) are defined in a D-dimensional

central potential, then one can write [73]

(@.8) (@) (r*);
i) <l g oo Bo@ (L) (19)
where
19 lleo=supg(x). (%), = | f(r)r*dr, (20)
and
7((2+D)a—D a D)a—D [ I'(:%3) |
Bp(a) = 3log [((2%)@)} ~1-a108 [%} — log r(<2;(}f)_a;f’)  pm<a<l
= Dlog(2me), a=1 . (21)
7((2+D)a—D a 2+D)a—D [ e
- g [P g [20] o ) o

So upper bound depends on f, g and («, 8). Now using inequalities (14), one can improve the inequality (19) as

D
r2 2
Clg) < min (6,9, ll) (T52) " eoot (22)
where
=B
Go(B) =l gllc)™2, B<
_ () a
= VR B= (23)
g
= g lloo; B>1
Moreover, one can write
R _
(o, 8) 19 [loo; B — oo, o« finite
Clro) = o —1 (24)
(H f oo eRo ) , a— o0, (B finite.

7



For infinite discrete or continuous distribution functions f and g, one can write

(o,5) 0, B —0, « finite
cy — (25)

(f.9)
oo, a—0, [ finite.

) In O(Q?), g is FDD
, and }}ir% Ry’ = exist, then the relation
_)

lnﬁ(Q?) fis CD InL(QY) gis CD

(25) can be improved as

(@) an(Q]f?), fis FDD
Now, if lim R} =
a—0 f

B8 — 0, « finite

(a,8)
C( fa) (26)

a— 0, [ finite.

for finite discrete distributions, or

, B—0, « finite
() L(QD
C(f,g) - ( %) (27)
L)
a— 0, [ finite.

for continuous distributions. If fo > f1 and g2 < g1, as > a1, B2 < [q, then C((f g)) > C(( ”8)) hold for finite
discrete distributions but it may not be true for large variations of continuous distributions i.e, for higly excited

bound states of the Schrodinger equation which has large number of nodes.

3.3 Scaling and replication

One can prove that C((?’b)) is not invariant under scaling transformation. If f(r) = a”f(a(r — b)), g(r) =
(a,B) _ (a.B)
cPg(c(r — d)), then C(f > (a) C(ﬁg) .
D3
Simililarly, it is not invariance under replication. Let f(r Z fi(r Z gi(r), where fi(r) =n2 """ f(y/n(r — a))

gi(r) = m3-1 F(/m(r — by)) /fl _i/ = /f dr—/g " dr:/f(r)dr:/g(r)drzl.

( 7B) m D 1 75)
Then C( ) (ﬁ) 2 C(f 9)

3.4 Main theorems for near continuous property of RCR

Definition 3.3 (§-neighboring [32, 34, 38]). Let fi : MP — [0,1] and fo : MP — [0,1] be two density functions
defined on a set MP in D-dimensional space and § be a positive real number. Then the functions fi and fo are

called the §-neighboring functions on MP | if L ({r : |fi(r) — fo(r)| > 6}) = 0.

Definition 3.4 (Near continuous [32, 34, 38]). A functional T, of density functions is said to be near continuous,

if for every positive € there exists a 6(€) > 0, such that L ({r : |fi(r) — fa(r)| > 6}) = 0 implies |T(f1)—T(f2)| < e.

Using definitions 2.1, 3.3 and 3.4 we can define a theorem for near continuous property of Rényi complexity ratio

for radial density functions.



Theorem 3.1 Let (f1,91) and (f2,g2) be two pairs of radial density functions. If for a positive €, there exists a
positive d(€), such that L <S = {7’ : \/(fl(r) — fo(M)? + (q1(r) — g2(r))* > 5}) =0, then |C(a’ﬁ) —

(f1,91) f2 92)‘
as § — 0, for positive integers a, (3.

Proof. Let F' be the effective domain of the function (f;(r))® with respect to r, for i = 1,2. Since f; and fo are

density functions then 0 < £(F'®) < oo, for i = 1,2, a € N.
Now /yﬁ — fo(r)|r2dr = / If1(r) = fo(r)|r2dr +/ |f1(r) — fa(r)|r?dr, where Sy = (F*UF?)N S, S) =
S
(FTUF?) —Sand F'=F",i=1,2.

Then / | fi(r r)|r?dr < & [sup Sl L(S]) and /f1 (r)|r2dr < 52 I a l_i), where 0 < I](.i) =

/ f;(r)r2d7“<oo,fori:O,l,...,a,]: , 2.
Fia—§

Therefore, /(fZO‘(r) — f(r))rdr — 0, as § — 0, and

a—1
(@) @) 0 (i) po=1-9)
Ry —RYY <5 1n<()ZI +1>%0 as § — 0.

1 =0
(a) (a)
Hence C'((a’a)) =CcRn Ry 1, as § — 0. Similarly we can proof that C'(( )1) CR(B) ~Rgy —1,as d — 0.
(o)
,B) (a,8) | _ ~(ap) Clta.rp
Therefore, ’C Fron) C'(f2 )| = C(fl,gl) 1-— ((52@1) —0,as d — 0.
2,91

Using definitions 2.3, 3.3 and 3.4 we can define another theorem.

Theorem 3.2 Let (f1,91) and (f2, g2) be two pairs of density functions of polar angle 0. If for a positive €, there

exists a positive d(e), such that L <S = {9: \/(fl(e) — f2(0)) + (g1(0) — g2(0))* > 5}) = 0, then |C(f ) "

(a
C(f2792)

| = 0 as § — 0, for positive integers a, 3.

Proof. Let F' be the effective domain of the function (f;(#))® with respect to 6, for i = 1,2. Since f; and fo are

density functions, then 0 < £(F*®) < oo, for i = 1,2, a € N.

Now / |f1(0) — f2(0)] sin 0dO = / |f1(0) — f2(0)] sin 0d6 +/ | f1(0) — f2(6)| sin 6df, where Sy = (F*UF?) NS,
51
F1UF2) Sand F'=F" i=1,2.

a—1
Then / |f1(0) — f2(0)]sinOdo < 25, and / |f2(0) — f5(0)| sin §d < 52 11@) Iéa*H)’

=0
where 0 < Ij@ = / F1(8) sin6df < oo, for i =0,1,...,0a, j =1,2.
Fia_8

Therefore, § — 0 implies /(f2 (0 ) f1'(0))sinfdf — 0,

Il =0
(@) _po(@)
Hence C'((;;’af)) =R R*n 1, as 6 — 0. Similarly we can proof that C(( g)) CRa —RG

@B _ clad) Clis

Therefore, ( —o@h 11— (<{32,8};1)

f1,91) (f2,92)| = 7 (f1,91) ool
Similarly using the definitions 2.5, 3.3 and 3.4, we can define a theorem for near continuous property of Rényi

—1,as 6 — 0.

—0,as 6 — 0.

complexity ratio of density functions of ¢.



Theorem 3.3 Let (f1,91) and (f2, g2) be two pairs of density functions azimuthal angle ¢ defined on (0,2mw). If for
a positive €, there exists a positive §(€), such that L <S = {qﬁ : \/(f1(¢) — f2(0))* + (91(0) — g2(9))* > 6}) =0,

then \C’ ”8) — C((f s o) | — 0 as § — 0, for positive integers o, 3.

Proof. Let F' be the effective domain of the function (f;(¢))® with respect to ¢, for i = 1,2. Since f; and fo are
density functions then 0 < L(F') < oo, for i = 1,2, a € N.

Now / F1(6) — fa(d)ldé = / F1(é) — Fa(@)ldo + / F1(6) — fa(6)|dé, where Sy = (FLUF2) S, S =
51 st
(FTUF?)—Sand F' =F", i=1,2.

a—1
Then / |f1(¢)— fa(¢)| dp < 278 and / 2 (0)—f5 (@) dp < 6> I 1) where 0 < 1Y = / fi() d¢ <

i=0 Fie=§
oo, fort=0,1,...,a, 5 =1,2.

Therefore § — 0 implies /(ff‘(qﬁ) — () dp — 0.

a o J = i) rla—1—1
NowREfQ)—R;l)gllcyln(IwZﬁ)Ig ! )+1)—>0,a35—>0.

1 =0
(o) (a) (8) (B)
Hence C((]Cc;’(jc)) =R Rn 1, as § — 0. Similarly one can proof that C’((B B)) =CRoe2 Rot” 5 1asd—0.
o)
(e,B) (,8) | _ ~(ap) Cltantn)
Therefore, C(f1,g1) — C(f%gQ) =Cf o 1-— C((i g)i) —0,asd — 0.

Moreover, using the definitions 2.7, 3.3 and 3.4 we can define a theorem for near continuous property of the Rényi

complexity ratio of density functions in spherical coordinates system.

Theorem 3.4 Let (f1,91) and (f2,92) be two pairs of joint density functions of r, defined on RY = (0,00) x
(0,7) x (0,27). If for a positive €, there exists a positive 6(€), such that
L (S = {r : \/(fl(r) — f2(r))* + (g1(r) — ga(r))? > (5}) =0, then \C((Jofl’f]) C’((f2 P )\ — 0 as § — 0, for positive

integers a, 3.

Proof. Let fi(r) = fir(r)fio(0) fin(¢), be defined in RI. Moreover F'*, Fi* and F;)a be the effective domains of
firs fip and f;4 with respect to r, 6 and ¢ respectively, for i = 1,2. Since f; and f> are density functions then
0 < L(E!™), L(F}™), E(Fio‘) < o0, fori=1,2, « € N. Then F; = F! x Fg X Fq{ is the effective domain of f;, for
Fl =F' F] =F}',F] = FJ', for j =1,2.

Now / |f1(r) — fa(r)|dr = / |fi(r) — fg(r)]dr+/l |fi(r) — fa(r)|dr, where S = FLUF,NS, ST = FLUF —S.
a—1
Then / |f1(x) = fo(r)| dr < 476 [sup F} U F?] £(F' U F?) and / () — f8(e)dr < 6> 1) 1Y, where

=0
oglj(”:/ fir)dr < oo, for i =0,1,...,a—1,j =1,2.
Fi-S

Therefore, § — 0 implies /(f;(r) — fi¥(r)) dr — 0,

62] I(oclz

+1| —=0,asé —0.
JECE

and R;a) —RY
2

(a)
f1 Sﬁln

1
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R () (B) )
Thus we can write, C((?Qc})l) = C%h “Ri — 1, as § — 0. Similarly we can proof that C(( 9)1) = CR!J? ~Rg, — 1,

as & — 0.
ol
(ev,8) (a.f) | _ ~(aB) S0
Therefore, 1617 g) = Apngn)| = Clrran |1~ g | 7 05020
2:91

For a D-dimensional central potential total density function p(r), ¢, can be written as a product of hyper-

radial density (dn¢(r) = |Rn¢|?) and hyper-spherical density function (|Yy g,3|?), where

D—2
; i+ +1 . .
Yoquy = Neguye ™ [ CuZi, (cosby)(sin )1, (28)
j=1

and R, ¢ corresponds to wave function of hyper-radial Schrodinger equation, C’g is the Gegenbauer polynomial of
degree i with parameter j, Ny, provides the normalization constant and (¢, {u}) = (p1, p2, ..., tp-1), £ = p1 >
p2 > ... > pp—g > |pp—1| =|m|, £=0,1,2,..., m =0,£1,£2, ..., aj = (D — j — 1)/2. In this case the measure
dr = dPr = rP=1dr dQp_, where dQp_; = Dﬁf (sin 9]-)2% d9j] dfp_1. For D = 3, the hyperspherical density
functions |Yy,|* has a simple form which is de{]i;led in Eq. (52) and dr = r?sin @ dr df dp. Therefore, for central

potential total density function is separable and for non-central potential it may not be separable. If a total density

function p(r) in a D-dimensional quantum system has effective domain €2, then / p(r)dr =1, / [p(r)]%dr < 0o
Q Q

for « = 0,1,2,..... Therefore, in a similar manner one can extend theorem 3.4 for a D-dimensional quantum

system in more general circumstances.

Theorem 3.5 Let (f1,91) and (f2,g2) be two pairs of joint density functions defined on MP have effective do-

mains. If for a positive e, there exists a positive §(€), such that £ ({r : \/(fl(r) - fg(r))2 + (g1(r) — gg(r))2 > 5})

(a,B) (a
0, then ‘C(fl,g C(fz 92)

| — 0 as 6 — 0, for positive integers a, (3.

Proof. Let F; be the D-dimensional effective domain of f;(r) with respect to r for j = 1,2 defined in MP.

Since fi, f2 are density functions, we have 0 < / dr < oo, and 0 < IJ@ = / (fj(r))i dr < oo, for

FiUF—S Fi=8

i=01,...,a—1,j=1,2.
a—1 ) )

Then /]fl r)|dr < §V and /|f1 — f3(r)|dr < 52 I{Z) Iéa_l_z), where V is the volume of the

i=0

effective domain.

Therefore § — 0 implies /(fQO‘(r) — fi*(r)) dr — 0,

5 2{: ]- I(a 1—14)
andR;j)—Rgcl)gﬁln +1| —=0,as 6 — 0.
/ i e
. (a,0) R -R( (8,8) R R
Thus we can write, C( I = =C fi > 1, as § — 0. Similarly, we can write that C(gé o) = =(C" — 1,

as § — 0.
(o, )
(,8) (@B) | _ ~(aB) Cltanin)
Therefore, |C; "0y = C 0| = C R

(Frogn) —0,as §d — 0.

(92,91)

If fi and f5 are -neighboring total density functions, then their corresponding reduced density functions are

also d-neighboring. Similarly, if (f1, g1) and (f2, g2) are two pairs of total density functions satisfy near continuous

11



property of RCR, then their corresponding reduced density functions will be satisfy the near continuous property
of RCR. Therefore, if (f1,91) and (f2,g2) are two pairs of density functions defined on a closed and bounded
domain (compact set) satisfy d-neighboring property then, they satisfy the near continuous property of RCR.

3.5 Example of near continuous property of RCR

Now one can say that, the Rényi complexity ratio satisfies the near continuous property, for o, 5 € N with help
of the definitions 2.1, 2.3, 2.5, 2.7, 3.3, 3.4 and the theorems 3.1, 3.2, 3.3, 3.4 and 3.5. It is difficult to proof
above theorems for non integral values of @ and 8. One can prove and verify near continuous property of RCR
for positive real values of o and 8 by counter examples of density functions, such as step function and uniform
density functions [32, 33, 34, 35, 38|, Gaussian distributions and so on.

Let us consider two pairs of (f1,¢1) and (f2,g2) density functions defined on a D-dimensional space by

4, v <1
01
r)= . —— B 29
A=Y Gy 1<l < (29)
0, elsewhere,
\
LA e <1
5
ry=<¢ ———— 1 B 30
) = gy 1<ll< (30)
0, elsewhere,
and
é, Ir| <1
fa(r) = ga(r) = (31)
0, elsewhere,
D
where Cp = ;g(z), B >1,0< 4,07 <1. Then (f1, f2) and (g1, g2) are pairs of neighboring functions. Therefore,
2
one can obtain
(@) _ o of
RO — L m|a-a)e e InC 33
gl_l—an(_l)—i_(BD—l)o"l +InCp, (33)
and
R =R =mCp. (34)
Hence, it follows that
: () _ pla) _
alllgloRfl =R}, =InCp, (35)
and
Jim, R =R =InCp. (36)
Therefore,
H 3 (avﬂ) — M 1 (avﬁ) — (O‘7ﬁ) —
5111£>n0 51/11210 C(fhgl) o 6111210 5111330 C(f1,91) B C(f2,92) =L (37)

12



3.6 Extremal property of RCR

Let f and ¢ be two density functions define on QF, such that
)= pixa, 90)=>_ pixa,
i i
Zpimi = 172 qimi = 1,
i i
where m; = £(9;),7=1,2,...,n. Then

f%dr = Z P mi,/QD gﬁdr = Z q;.B m;. (39)

(38)

QD
Let us assume that 6((?5) =In C((?f)). Then one can write

C =

(S]] w
Then from the variation of C' with respect to m;

(1-«a) Z p; mi
@ a-pY i mi

(41)

Similarly, from the variation of C with respect to p; and ¢;, one can obtain &« = 0, ¢ uniform and g = 0, f
uniform respectively. For non zero values of « and (3, the second order variation of C with respect to p; and ¢;

are considered. Thus from the second order variation of C , one obtains
p?mi = QT_I Z p?mi,
i
-1
g/mi =523 lm.
i

From Eqgs.(41) and (42), it is to be noted that a, 8 > 1.

Therefore,

(i) uniform f, arbitrary density g, with « >0 & 8 =0,

(ii) uniform g, arbitrary density f, with « =0 & 8 > 0, and
L(OP)

L(OP —Q;)’

are solutions of (41) and (42). Now if, f and g be two uniform distributions, then C’((}X’gﬁ)) does not depend on «

and 3, but it violet the extremality conditions. Finally C’((?’gﬂ))

(iii) uniform f, g with a = 8 = 1=1,2,...n

has extremal values.

3.7 Properties of RCR for isospectral quantum systems

If (¢, F) and (15, E) are two pairs of eigen functions and eigen values of the Hamiltonians H4 = AA and
Hp = B'B respectively, where A(B) and Af(B') are the annihilation and creation operators, AAT = BB but
AYA # BTB. Then for two isospectral [63] density functions p = || of H4 and p(\) = |7Z()\)|2 of Hp one can

write

13



1) @D ), @D n), 0D\ = P as |A| = oo, and

@0 N ) (0.0) (0.0)
(i) CES (), 2 (N) = 1 as [A] = .
where )\ is the isospectral parameter. In this paper, C((;;Lg)()\),(}’((gf))()\), C’((Z"ﬁﬁ))(/\) & C’((;)’pﬁ)) will be found and

discussed about these two properties.

3.8 Generalized Rényi complexity and shape Rényi complexity

(a,8)
(p:p)

and defined by [32, 33, 34, 35, 36]

The Rényi complexity ratio C' is called generalized Rényi complexity of order (a, 3). It is denoted by C(ah)

(o) (8)
C’(auﬁ) — C((;’ig) — e'Rp —Ry , Ol,ﬁ > 0. (43)
The shape Rényi complexity [30, 31] of order « is defined by

o) — c((;f’j)). (44)

In the limiting case (o« — 1), Rényi entropy ’R,()a) reduces to Shannon entropy, therefore, the modified or shape
LMC complexity [23, 26, 27] is defined by C’((;’z)). Hence, one can write
GRC, if f=yg,

i ={ Sre, itf=gp=2 - (45)

CMC it f=g f=2,a=1.

A special case is that, In [C’((}]%;] represents the structural entropy of f.

4 Application

In this section Rényi entropy, Rényi complexity ratio, generalized Rényi complexity and shape Rényi complexity
will be discussed. To do so pseudoharmonic oscillator and a family of isospectral potentials have been considered.
Let us consider the pseudoharmonic oscillator potential [50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 47, 61, 62] of the

form

V3P (r) = D, (T - “’)2, (46)

Te T
where D, = Dy + = Dy is the chemical dissociation energy, we is called harmonic vibrational parameters, r is
the internuclear distance between diatomic molecules. The pseudoharmonic oscillator potential is solvable for any
angular momentum number ¢. It is minimum at point r = r. and it behaves like harmonic oscillator. It is one

of the most important molecular potential for diatomic molecules [74]. It is used to describe interaction of some

diatomic molecules [56, 58].

4.1 Solutions of pseudoharmonic oscillator and a family of isospectral potentials.

Then a family of isospectral potentials of the pseudoharmonic oscillator in spherical coordinates is [49]

2 2 72
_ 2 d
Dy =p, (L -Te) — 2% 7 4
PP =0, (L= 2) - o), (47)
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where .
L+2 @ Y
72 z
= I 3 E | L( 3) AN Z:GT'Q,
DL+ 3) ML+ 35 +))

1 1
L :2+¢he+u+4+ﬁ¢, (48)
_ \2uD,
@ = "R

¢ is the angular momentum number. Therefore, the wave solution and the ro-vibrational energy of the Schrédinger

equation for pseudoharmonic oscillator potential (46) are respectively [51, 62]

Pt () = VAN 3 (Var) LA E (ar?) Yo (6, 6). (49)

and

B30 = hw,(4n + 2L + 3) — 2D, (50)

n

L+i . . . . .
where LnJr2 (arz) is the associate Laguerre polynomial [75] of degree n in ar? with parameter L + %,

12
N, = n—\/&g (51)
P(n+ L+ 5)
is the normalization constants and w, = 25:2. The harmonic spherical function is defined by [52]
R+ D= mD'2 Sl
Yim(0,0) = p 0) eim? 9
nt.0) = | (cost) (52)

where P;m‘(cos 0) is the associate Legendre polynomial [75] of degree ¢ in cosf and parameter m. On the other
hand the wave solution and the ro-vibrational energy of a family of isospectral potentials (47) are respectively

37, 76, 77, 49]

Grntom (1, X) = Cp\/QUr, N (r) Yo (6, 6), (53)
and
E3D . = hw,(4n + 2L + 3) — 2D, (54)
where , \ . .
2a2T(L + 3) (ar2)L e—or
O(r\) — a2I'(L + 3) (ar®)” e N (55)
(A+ DL+ 3)—T(L + 3,ar?))
and

(L +3 2: 4 ) Lt (9
(fr)2L+3 —ar? % 9 _
nF(L—l—) L 1( )) n_172) ’
are orthogonal functions with normalization constants
N ~ n!T(L+ 3)
Co=+vVIA+1), Cp=/———2_n=1,2,.... 57
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4.2 Rényi entropy

The nature of the density functions are important for finding the information theoretic measures. Now the

normalized density functions of the states (49) and (53) are defined by

2
1
Protam(x) = aNZ = (ar2)L [Lfﬁz (mﬂ)} Vi (6, 0)2 (58)

and

23 T(L+2)02 (ar?)F e~ @2 (1 DYem 0.0)12 (59)

pn,Z,m(r7 )\) - {()\+1) (L+ ) F(L+2,ar2)}2

Therefore, the Rényi entropy of (58) of positive integral order « is defined by

o . 1) (1 .
Ri},m =5 n [CAO <u1,0,2a, {n}, {L + 2} ; {a}> J2(7 ;m)] ,n=0,1,2,..., (60)
where
(2 +1) p+B+1;, —m %&7"L —p 25)
Ap (/L,ﬁ, 2a, {ml}, {az} , {tl}) = (,8 + 1)“(m;r—;al) . (m2‘;;;a2a)FA ¢ ' 3t taay 1|,

a; +1,...,a25 +1, B+1
0

2a

—~—
a:ay,...,a,
. mip+ay) . . . (s) .
(B+1),, is the Pochhammer symbol, is the binomial term and o € N. F ST1,...,Ts
my bi,...,bs
S
is the Lauricella hypergeometric function of s variables z1,...,xs and 2s + 1 parameters aq,...,as,b1,...,bs,a
and it is defined by [78]
S
a;aly...,0g 00 ) ) ) Ji js
F(s) Ty, _ Ajr+..+js (al)]l“'(as) Ly . Ts 7 (61)
4 bi,...,bs ’ J1 Zj: (bl)jl"'(bs)js J ~--~]s!
\ , ] J1ey s
S
and JQ(CEE ) I the entropic moment of the rotational wave function Yy, (0, ¢) and it is defined by [79]

| 220@m=D+2(9) 4 1)°T(ma 4 1) [T(m + 3)?T(m + 1)?T(¢ —m + (¢ +m+1) "

1
7(Ze=DT(2ma + 2) I(2m+1)2I'(¢ 4+ 1)2 (a6,m)
(62)

where

2 £—

f—m J1seedze =0 (2ma + 2)j1+-.-+j2a (m+ 1)j1"'(m + 1)j2a JilJ2a!

AT e . : . .

i1 = ol + 2, and C = W Rényi entropy and information theoretic measure of Laguerre polynomial

is addressed in refs. [47, 80, 81, 82]. Similarly, Rényi entropy of (59) is defined by [47, 80, 81, 82]

() j 2a+j—1 = (@)
RO ()= b [V TOE DT S (P () O + 1) I ) .
. e [AT(L+3)] A D@+ D) aft Lk (L + 2+ k) (L + 3 4 By)
k1+...+kj:p
(64)
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25 7
—e—CO —¢—CH
—=—NO H,

2t —h— N2 ScH 7

Rényi entropy
3]

05

0 3 6 9 12 15

Figure 1: Plot of Rényi entropies of some diatomic molecules of state 120,070(1', A) with respect to A for a = 2.5.

(— 1)+ (30) ()

ni [AT(L + )]

S () . 2a a—l(pl)e
Rn,ﬁ,m()\)_ﬁln ( \1§I)J+) ) Z Z

=0 j,p=0
k1+ Akj=p
2a0—1 2a ]
i 2a—1 /—/?/—/T /—/1\
_ ~= A~
A 0,2 —1 L+—-,L+->, -
0| #3,Y,20, Q4 , N ) +2 +2 a+i (65)
(@)
X - J. >n:1>2> )
(a+d)ms gLk (L + 3 + k1) (L + 3 + kj) 2,(6m)
where
) 7 200—1 2a
i . —A— —— —— . »
) 5o f-/\l&” N 1 541 n4 L+ 2\ (n4 L+ 1\
p | M3,P,40, 4T , N ; 2> 2 ; a+i — u3 n—1 n
66
% 2a—1i ( )
2
us+pB+1L—n+1,....,—nmn+1,—n,....,—n,—p /—ﬁ—\
(2a-+1) 1 1
XFA L+§ L+§L+§ L+§ﬁ+1’0¢+2"m’a+i’1 ’
27"'7 27 27"'7 2’
7 2a0—1
and
fio=p+ (L+3 3)j+al+ 1,
(67)

fis=p+ (L+3)(i+j)+al+3,

ae€Nand A € (—o0,—2) U (1,00).

17
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1.5 ........ 4
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°
05 | 4 1
e CO e CH
* NO H, ®
ol v N, ScH
0 5 10

Figure 2: Compare Rényi complexity ratios of some diatomic molecules between <1Zn70,0(r, )\),wn,o,o(l‘)) with

respect to n of order (o, 8) = (2.25,3.5) and A = 2

4.3 Rényi complexity ratio

5.

The explicit form of exact value of the Rényi complexity ratio of py, ¢, and py ¢ for positive integral order is

defined by
(A+1 ) = (2\/5(2Z+1)F(m+%)2F(m-i—l)?F(é—m-i-l)F(f-i-m-‘rl) ) ﬁ_%
A T(L+32)0(2m+1)2T(£+1)2
s PR B8R 5 (rna ) [D2mB + 277 [B(a, £,m)]
X I 2a-1_25-1 25 1 1
ot L (o i ()] 1 T e [D(2ma + 2] [B(8, 6, m))
pPsP),ME, M

I'(fg+1)

J o5 ey
=0 DPT@+3 e
k:1+...+k:]-:p

Aty Lk (L4 3 + k). (L + 3 + k)
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Figure 3: Compare RCR with respect to (A),(D) D, for r. = m, =1 (B),(E) 7. for D, = m, =1, (C),(F) m,

for D = r. = 1. The others parameters are A = 1.5, i = 1, for first row (n,¢,m) = (0,0,0) and for second

row (n,¢,m) = (3,2,1). The red (dashed), black (dotted), blue (dashed) and magenta (dotted) curves represnt

(2.5,3)

2.5,3 3.5,2.75 3.5,2.75 .
gt iy Clogy”™™ and R ™ respectively.
a— —1 _a B
a2 (2,/a(n)(20+ )T (m+ 32T (m + 12T —m + DLl +m+ 1)\ "= T2
] T(n+ L+ 3)02m + 1)20(0 + 1)2
2a(2m—1)+1 _ 28(2m—1)+1 2a 1 1
= -5 [C(ma+1)]™= [['(2mpB + 2)] =7 [B(a,{,m)]T=
_1 28 _1 1
[t (14,028, {nd {2 + 1}, {3 })] 7 T3 DI [T+ 275 B3, £,m)] 7
C(a,/)’) —
(ﬁ’p)7n’é)m
1
X 7 2a—1 2« —a
—~2 )7 )
Ao | 3,020, n—1,"n s L+5,L+5 N Py
20 0 (71)i+j+p(2if¥)(i+.§—1)
> ico j;o niAD(L+2)] (at+a)A3 Ty Lok (L4 2 +ky) ... (L+ 3 +k;)
k1+.,.+kj:p
\
n=123,...

where i} = L+ 3

,a,f€Nand X € (—o0,—2) U (1,00). Similarly, one can find the exact value of c(@p)
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Figure 4: Plot of RCR with respect to A for D, = %,re = 3,my = Lh=1, (A)-(B) (n,¢,m) = (0,1,1) and

(C)'(D) (n7 ¢, m) =

(1,1,1).

4.4 Generalized Rényi complexity and shape Rényi complexity

The explicit form of generalized Rényi complexity of 1, 7., (r) and 1//;”7g’m(r, A) are respectively defined by

_a B @i+
T-a 1-8 Bullj

_1
4 Ao (0,0,20, {n} AL+ 3} {21 I, ]

C(Oééﬁ): (2\/6(71')) (4, n—0.1.92
n,t.m FL+§ Hl'i: %7 y»
(+3) o= [ 4q (2,026, {n}, L+ 3}, {3 }) 400

(70)
and
00 j 20+7—1 (a0)
(2\/5(A+1))131_1fﬁf Z (=17 ﬂ;‘] )T (fi2 +1) Ty ,(£,m)
3 i
Ala) o o =D AT(EL+ D)) ol R L+ 5 + K)o (L4 5 + Ky)
75 1. =P
A 1

= o (2641 (8) =

(1)11511(1 i GO+ D) o 0m)

Ve = DT+ 3] B Lk (L4 8 4 ) (L + 3 + k)

k’1+ -‘rk’J =p

(71)
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Figure 5: Plot of GRC with respect to A for D, = £,r. = 3,m, = 1,h = 1, (A)-(B) (n,¢,m) = (0,1,1) and
(C)_(D) (n,ﬁ,m) = (17 17 1)

= I
2 ' l-a 1-— ﬁ J
O (y) = < ﬁ(n)) 2,(6m)

n,t,m 3 ()
I'(L+3) ‘]2,(£,m) 1
. . i 20—1 2a I—a
v 20— —~— —_—~—
oo i1y 0 M3,0,2a,{ﬁ7 /n\}? S e
o (3 — e 2
e )

Z Z:O 2\/ani[Ar(L+g)]”j (a+ i)Ast kg Lk (L + 3 + ky).. (L + 3 + k)

ki+...+kj=p
% 1 77,—1,2,3
) i 20— 20 )
2 3 1 1
~~
n—l n L+ —,L+ —
(—1)i+j+P(2f3 H—J 1 i, 0,25, ’ 2272 (7)) ati

Z “Zo 2y/an’ [AT(L + 3) ZJ” (B + i)t e Lk (L + 3 + k1) (L + 5 + k)

ki+...+kj=p

where

fth=p+ (L+3)j+BL+ 3
. ’ (73)
y=p+ (L+35)(i+j)+BL+3

Similarly, one can find the exact values of SRC of 9, ¢, (r) and Jn,&m(n A) from Egs. (70), (71) and (72), replacing
B8 by two.
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Figure 6: Plot of generalized Rényi complexities of some diatomic molecules of the state 12070,0 (r, \) with respect

to A for (o, B) = (8.5,3.5).
5 Results and discussions

The total density function of a state with quantum numbers (n,¢,m) is separable for the pseudoharmonic os-
cillator potential for n = 0,1,2,---; £ = 0,1,2,--+; and m = 0,£1,£2,...,£¢. Under this circumstances the
pseudoharmonic potential and a family of its isospectral potentials describe exact forms of Rényi entropy, RCR,
GRC and SRC. The harmonic spherical function Y}, is defined in a closed and bounded domain [0, 7] x [0, 27] and
the radial wave functions \/cfz]\fne_%‘“"2 (\/67“)LL,I;+% (ar?) and Ch V/Q(r, \)®,,(r) are bounded in [0, 00). Then the
corresponding total density functions have effective domains in [0, 00) x [0, 7] x [0,27]. The energy level spacing
of pseudoharmonic and its isospectral potentials are same and it describes internuclear potential-energy function
of diatomic molecules [74] but wave functions for isospectral potentials do not match with diatomic molecules. In
this section, we will find the numerical values of Rényi entropy, RCR, GRC and SRC of solutions (49) and (53).

The numerical values of Rényi entropies of 120,070(1', A) of order aw = 2.5 for CO, NO, Ny, CH, Ho, and ScH
diatomic molecules are plotted in Fig. 1 with respect to A\. The molecular parameter values of D, 7., u are
taken from refs. [83, 58, 37] (see Table 1) and we have considered 1 amu = 931.494028 MeV/c?, 1 em™! =
1.239841875 x 10~* eV, & ch = 1973.29 eV A, where ¢ is the speed of light. Note that Rényi entropies increase
and go to some fixed numbers as A increases.

Figs. 2 shows RCR of (QZTL,QQ(I‘,)\),@/Jn’O’o(I‘)) of rational order («, ) = (2.25,3.5) for same molecules with

respect to n for A = 2.5. From this figure, one can see that, RCR goes to zero as n increases for these selected

(25,3)  ~(2.53) ~(3.5,2.75)
wp * CGp 0 Cop  and

50) are plotted with respect to De,re, m, in Fig. 3, for first row (n,¢,m) = (0,0,0) and for second row

_ i v ~(2253)  ~(2.253)  ~(2.5,1.5) (2.5,1.5)
(n,¢,m) = (3,2,1). Similarly, RCR’s C(pﬁ) , C(ﬁ,p) , C(p,ﬁ) and C(ﬁ,p)

Fig. 4 for first row (n,¢,m) = (0,1,1) and for the second row (n,¢,m) = (1,1,1). All curves of Figs. 3 and

molecules. Similarly, numerical values of RCR’s of rational pair orders such as C
(/(3:5:2.75)

are plotted with respect to A in

4 are plotted for some atomic values of parameters. From Figs. 3 and 4 it is clear that RCR’s are monotone
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Figure 7: Plot of generalized Rényi complexities of some diatomic molecules of the state 12070,0 (r, \) with respect

to A for (o, B) = (2.25,3.5).

functions of D, re,my,|A|. Moreover, from Fig. 4 we observe that RCR’s C’((s'%‘r”g), C’((;Zf’g) — C’((j'jf’g) and

C’((i'%l'f’), C((;‘;m) — C((z'ism), which are GRC of p or order (2.25,3) and (2.5,1.5) respectively.

Now, GRC’s C’;?;)’B) and C%O%’ﬁ) of order (a, ) = (2.25,3) and (2.5,1.5) are shown in Fig. 5, for first row

P(0,1,1): P(o,1,1) and for second row p(1 11y, P11y and De = £,re = 3

5,my = 1,h = 1. From this figure one can

observe that C’éo;?ﬁ ) is monotone and approaches to C’,(,?p’ﬁ ), Similarly, GRC of 1,/11\07070 (r, A) with respect to \ of order

(o, B) = (8.5,3.5) is shown in Fig. 6 and of order (o, 5) = (2.25,3.5) is shown in Fig. 7 of CO, NO, Ny, CH, Hs,
and ScH. On the other hand, SRC of diatomic molecules (CO, NO, Ny, CH, Hy, and ScH) of the state @Zo,o,o(r, A)
with respect to A is shown in Fig. 8 for o = 2.5 and shown in Fig. 9 for o = 1.75.

Now, one can say that, GRC and SRC are monotone and bounded functions of |A| for all admissible values

of De,re,my, (n,£,m). Moreover, the Rényi entropy becomes negative after some values of n due to irrational

(avﬁ) #

value of L. It is found that, if c(@p) increases, then c(@p) decreases and vice-versa but C(p ) mbm

(p:p);n.tm (p:p);mstm
—1
[C((g}g)an} . The RCR in Egs. (68) and (69) reduce to GRC in Eq. (70); GRC in Egs. (71) and (72) reduce
to GRC in Eq. (70) (see Fig. 5) for large |A|.
Therefore, in the limiting case |\| — oo, the family isospectral potentials match with pseudoharomic oscillator

in respect of Rényi entropy, RCR, GRC, SRC but the energy spacing same for all A\. Therefore, we can say that,

pseudoharomic oscillator and its isospectral potentials describe motion of diatomic molecules for large |A|. Energy

difference bewteen of two states of pairs (on+1,6,ms Pn.t;m)s (Pnt1,6ms Prem)s (Prti,6ms Prem) a0d (D1, 6,ms Prjtm)

2D,
pr?

RCR using definition (15) but cannot define GRC, SRC and LMC. Therefore, RCR is important to compare

are same 2Ah

for all n, which does not match for diatomic molecule [74, 84]. For any pair one can define
structure of objects which have same energy spacing. The energy spacing of these pairs for CO, NO, No, CH, Hs

and ScH diatomic molecules are [58, 62] 0.203796 eV, 0.164915 eV, 0.218245 eV, 0.336462 eV, 0.756658 eV and

0.155542 eV respectively. For non-central pseudoharmonic oscillator potential the energy spacing is not a constant
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Figure 8: Plot of shape Rényi complexities of some diatomic molecules of the state 12070,0(1', A) with respect to A

for a = 2.5.

[62]. In this paper we have considered a central potential, therefore, RCR’s of these pairs are independent of m,
if « = . Now, we define RCR of them of order («, ) = (2.5,2.5) for A = 2.5, £ = 0 and they are shown in
Figs. 10 and 11 for different n. From these figures we see that RCR’s are oscillate for n and for large n oscillation
lengths decrease. Among these diatomic molecules, CO quite preserves RCR of four pairs (pn+1,6m, Pntm),
(Pnt1,6ms Prem)s (Prt1,ems Prjem) a0A (Ppt1.0m, Pne,m) after certain value of n and it is shown in Fig. 12. From

this figure it is clear that RCR’s is less than 0.03 for 15 < n < 100.

6 Conclusion

In conclusion, the connection between generalized Rényi complexity and Rényi complexity ratio has been estab-
lished. RCR is the extension of GRC and it might be explored statistical complexities (SRC and LMC) as a
particular case of RCR, depends on its order. The GRC is a product of two global information of a density
function which are used in entropic uncertainty relations based on Rényi entropy. The GRC, SRC and LMC are
interesting field of quantum chemistry for atomic structure. The RCR has been defined as a product of two global
information of two density functions. Detailed mathematical characterizations of the properties of RCR have been
presented. Localization property of several density functions and five theorems of near continuous property of
RCR have been proved by Lebesgue measure. All these theorems would be helpful for understanding the Rényi
continuity bound. As an example, all properties of RCR are verified for solutions of pseudoharmonic oscillator and
a family of isospectral potentials. The energy levels and energy spacing in these quantum systems are same but the
corresponding wave functions are different. The exact forms of Rényi entropy, RCR and GRC have been obtained
for positive integral order and for some non-integral orders, all such measurable quantities have been calculated
numerically for CO, NO, Ny, CH, Hy and ScH. The Rényi entropy became negative for excited states with irra-

tional value of L for these molecules. Due to negative Rényi entropy, the RCR became zero for excited states with
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Figure 9: Plot of shape Rényi complexities of some diatomic molecules of the state 12070,0(1', A) with respect to A

for « = 1.75.

quantum number n. In addition, it has been found that, if C(z"g) increases, then C(g’f;) decreases and vice-versa,
-1

but C((pg) # [C((ﬁ,g)} . In the limiting case (JA] — o0), the Rényi complexity ratios (C((ﬁ,’;)), C((p’g) & Céﬁ,}?)

reduce to the generalized Rényi complexity (C’((S’pﬁ))). The motion of diatomic molecules can be describe a family

of isospectral potentials for large |\|, which agree with pseudoharomic oscillator potential. Using the definition
of RCR one can compare structure of objects which have same enegy spacing. Among CO, NO, No, CH, Hy and
ScH, the CO molecule quite preserves RCR’s of two consecutive states with quantum numbers (n + 1,4, m) and
(n, ¢, m) for pseudoharmonic and a its isospectral family potentials n. The RCR comparison of structure of objects
will be very easier for central potential. Moreover, majorization effect on RCR is defined in Eq. (18), which is an

important property of RCR.
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Table 1: Set of parameters for six diatomic molecules.

Diatomic molecule

D, in eV

rein A pin amu

CO
NO
Ny
CH
Hy

ScH

10.84514471

8.043782568

11.938193820

3.947418665

4.7446

2.25

1.1282

1.1508

1.0940

1.1198

0.7416

1.776

6.860586000

7.468441000

7.00335

0.929931

0.50391

0.986040
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