Acknowledgments
This study was supported by the Key Project of National Natural Science
Foundation of China (31730105) and the Priority Academic Program
Development of Jiangsu Higher Education Institutions.
References
Agrawal, M. K., Bagchi, D., & Bagchi, S. N. (2005). Cysteine and serine
protease-mediated proteolysis in body homogenate of a zooplankter,Moina macrocopa , is inhibited by the toxic cyanobacterium,Microcystis aeruginosa PCC7806. Comparative Biochemistry
and Physiology Part B: Biochemistry and Molecular Biology, 141 (1),
33-41. doi:10.1016/j.cbpc.2005.01.002
Alvarez, M., Landeira-Dabarca, A., & Peckarsky, B. (2014). Origin and
specificity of predatory fish cues detected by Baetis larvae(Ephemeroptera; Insecta). Animal Behaviour, 96 , 141-149.
doi:10.1016/j.anbehav.2014.07.017
Auld, J. R., Agrawal, A. A., & Relyea, R. A. (2010). Re-evaluating the
costs and limits of adaptive phenotypic plasticity. Proceedings of
the Royal Society B: Biological Sciences, 277 (1681), 503.
doi:10.1098/rspb.2009.1355
Boersma, M., Spaak, P., & De Meester, L. (1998). Predator‐mediated
plasticity in morphology, life History, and behavior of Daphnia :
the uncoupling of responses. The American naturalist, 152 (2),
237-248. doi:10.1086/286164
Brönmark, C., & Miner, J. G. (1992). Predator-induced phenotypical
change in body morphology in crucian carp. Science, 258 (5086),
1348-1350. doi:10.1126/science.258.5086.1348
Charles, J. P. (2010). The regulation of expression of insect cuticle
protein genes. Insect Biochemistry and Molecular Biology, 40 (3),
205-213. doi:10.1016/j.ibmb.2009.12.005
Chen, L., Barnett, R. E., Horstmann, M., Bamberger, V., Heberle, L.,
Krebs, N., . . . Weiss, L. C. (2018). Mitotic activity patterns and
cytoskeletal changes throughout the progression of diapause
developmental program in Daphnia . BMC cell biology, 19 (1),
30. doi:10.1186/s12860-018-0181-0
Christjani, M., Fink, P., & Elert, E. V. (2016). Phenotypic plasticity
in three Daphnia genotypes in response to predator kairomone:
evidence for an involvement of chitin deacetylases. Journal of
Experimental Biology, 219 , 1697-1704. doi:10.1242/jeb.133504
Dawidowicz, P., Predki, P., & Pietrzak, B. (2010). Shortened lifespan:
another cost of fish-predator avoidance in cladocerans?Hydrobiologia, 643 , 27-32. doi:10.1007/s10750-010-0132-z
De Meester, L. (1993). Genotype, fish-mediated chemical, and phototactic
behavior in Daphnia Magna . Ecology, 74 (5), 1467-1474.
doi:10.2307/1940075
Decaestecker, E., De Meester, L., & Ebert, D. (2002). In deep trouble:
Habitat selection constrained by multiple enemies in zooplankton.Proceedings of the National Academy of Sciences, 99 (8),
5481-5485. doi:10.1073/pnas.082543099
Decaestecker, E., De Meester, L., & Mergeay, J. (2009). Cyclical
parthenogenesis in Daphnia : Sexual versus asexual reproduction.
In I. Schön, K. Martens, & P. Dijk (Eds.), Lost Sex: The
Evolutionary Biology of Parthenogenesis (pp. 295-316). Dordrecht:
Springer Netherlands.
Diel, P., Kiene, M., Martin-Creuzburg, D., & Laforsch, C. (2020).
Knowing the enemy: Inducible defences in freshwater zooplankton.Diversity, 12 (4), 147. doi:10.3390/d12040147
Dodson, S. (1988). The ecological role of chemical stimuli for the
zooplankton: Predator‐avoidance behavior in Daphnia .Limnology and Oceanography, 33 (6part2), 1431-1439.
doi:10.4319/lo.1988.33.6part2.1431
Edgar, B. A. (2006). How flies get their size: genetics meets
physiology. Nature Reviews Genetics, 7 (12), 907-916.
doi:10.1038/nrg1989
Effertz, C., Mueller, S., & von Elert, E. (2015). Differential Peptide
Labeling (iTRAQ) in LC-MS/MS based proteomics in Daphnia reveal
mechanisms of an antipredator response. Journal of proteome
research, 14 (2), 888-896. doi:10.1021/pr500948a
Effertz, C., & von Elert, E. (2014). Light intensity controls
anti-predator defences in Daphnia : the suppression of
life-history changes. Proceedings of the Royal Society B:
Biological Sciences, 281 (1782), 20133250. doi:10.1098/rspb.2013.3250
Gianuca, A. T., Pantel, J. H., & De Meester, L. (2016). Disentangling
the effect of body size and phylogenetic distances on zooplankton
top-down control of algae. Proceedings of the Royal Society B:
Biological Sciences, 283 (1828), 20160487. doi:10.1098/rspb.2016.0487
Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D.
A., Amit, I., . . . Zeng, Q. (2011). Full-length transcriptome assembly
from RNA-Seq data without a reference genome. Nature
biotechnology, 29 (7), 644-652. doi:10.3410/f.13296969.14657090
Grant, J., & Bayly, I. (1981). Predator induction of crests in morphs
of the Daphnia carinata King complex. Limnology and
Oceanography, 26 (2), 201-218. doi:10.4319/lo.1981.26.2.0201
Gu, L., Qin, S., Lu, N., Zhao, Y., Zhou, Q., Zhang, L., . . . Yang, Z.
(2020). Daphnia mitsukuri traits responding to predation cues
alter its population dynamics. Ecological Indicators, 117 ,
106587. doi:10.1016/j.ecolind.2020.106587
Gu, L., Qin, S., Zhu, S., Lu, N., Sun, Y., Zhang, L., . . . Yang, Z.
(2020). Microcystis aeruginosa affects the inducible
anti-predator responses of Ceriodaphnia cornuta .Environmental Pollution, 259 , 113952.
doi:10.1016/j.envpol.2020.113952
Gu, L., Xu, X., Li, Y., Sun, Y., Zhang, L., Lyu, K., . . . Yang, Z.
(2021). Induction and reversibility of Ceriodaphnia cornuta horns
under varied intensity of predation risk and their defensive
effectiveness against Chaoborus larvae. Freshwater Biology,
00 , 1– 11. doi:10.1111/fwb.13710
Hahn, M. A., Effertz, C., Bigler, L., & von Elert, E. (2019). 5
alpha-cyprinol sulfate, a bile salt from fish, induces diel vertical
migration in Daphnia . Elife, 8 , e44791.
doi:10.7554/eLife.44791
Hales, N. R., Schield, D. R., Andrew, A. L., Card, D. C., Walsh, M. R.,
& Castoe, T. A. (2017). Contrasting gene expression programs correspond
with predator-induced phenotypic plasticity within and across
generations in Daphnia . Molecular ecology, 26 (3),
5003-5015. doi:10.1111/mec.14213
Herzog, Q., & Laforsch, C. (2013). Modality matters for the expression
of inducible defenses: introducing a concept of predator modality.Bmc Biology, 11 , 113. doi:10.1186/1741-7007-11-113
Herzog, Q., Rabus, M., Ribeiro, B. W., & Laforsch, C. (2016). Inducible
defenses with a ”Twist”: Daphnia barbata abandons bilateral
symmetry in response to an ancient predator. Plos One, 11 (2),
e0148556. doi:10.1371/journal.pone.0148556
Heynen, M., Bunnefeld, N., & Borcherding, J. (2017). Facing different
predators: adaptiveness of behavioral and morphological traits under
predation. current zoology, 63 (3), 249–257.
doi:10.1093/cz/zow056
Kilham, S. S., Kreeger, D. A., Lynn, S. G., Goulden, C. E., & Herrera,
L. (1998). COMBO: a defined freshwater culture medium for algae and
zooplankton. Hydrobiologia, 377 (1), 147-159.
doi:10.1023/A:1003231628456
Kvile, K. Ø., Altin, D., Thommesen, L., & Titelman, J. (2021).
Predation risk alters life history strategies in an oceanic copepod.Ecology, 102 (1), e03214. doi:10.1002/ecy.3214
Laforsch, C., Ngwa, W., Grill, W., & Tollrian, R. (2004). An acoustic
microscopy technique reveals hidden morphological defenses inDaphnia . Proceedings of the National Academy of Sciences,
101 (45), 15911-15914. doi:10.1073/pnas.0404860101
Loose, C. J., & Dawidowicz, P. (1994). Trade‐offs in diel vertical
migration by zooplankton: the costs of predator avoidance.Ecology, 75 (8), 2255-2263. doi:10.2307/1940881
Lürling, M. (2020). Grazing resistance in phytoplankton.Hydrobiologia, 848 , 237–249. doi:10.1007/s10750-020-04370-3
Mahato, S., Morita, S., Tucker, A. E., Liang, X., Jackowska, M.,
Friedrich, M., . . . Zelhof, A. C. (2014). Common transcriptional
mechanisms for visual photoreceptor cell differentiation among
Pancrustaceans. PLOS Genetics, 10 (7), e1004484.
doi:10.1371/journal.pgen.1004484
Miner, B. E., De Meester, L., Pfrender, M. E., Lampert, W., & Hairston,
N. G., Jr. (2012). Linking genes to communities and ecosystems:Daphnia as an ecogenomic model. Proceedings of the Royal
Society B: Biological Sciences, 279 (1735), 1873-1882.
doi:10.1098/rspb.2011.2404
Mitchell, M. D., Bairos-Novak, K. R., & Ferrari, M. C. O. (2017).
Mechanisms underlying the control of responses to predator odours in
aquatic prey. Journal of Experimental Biology, 220 (11),
1937-1946. doi:10.1242/jeb.135137
Miyakawa, H., Imai, M., Sugimoto, N., Ishikawa, Y., Ishikawa, A.,
Ishigaki, H., . . . Cornette, R. (2010). Gene up-regulation in response
to predator kairomones in the water flea, Daphnia pulex .BMC Developmental Biology, 10 (1), 45. doi:10.1186/1471-213x-10-45
Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L., & Wold, B.
(2008). Mapping and quantifying mammalian transcriptomes by RNA-Seq.Nat Methods, 5 (7), 621-628. doi:10.1038/nmeth.1226
O’brien, W. (1987). Predation: direct indirect impacts on aquatic
communities. In W. C. Kerfoot & A. Sih (Eds.), Planktivory by
freshwater fish: thrust and parry in the pelagia (pp. 3-16). Hanover,
N.H.: University Press of New England.
Otte, K., Fröhlich, T., Arnold, G., & Laforsch, C. (2014). Proteomic
analysis of Daphnia magna hints at molecular pathways involved in
defensive plastic responses. BMC Genomics, 15 (1), 1-17.
doi:10.1186/1471-2164-15-306
Pauwels, K., Stoks, R., & De Meester, L. (2005). Coping with predator
stress: interclonal differences in induction of heat-shock proteins in
the water flea Daphnia magna . Journal of Evolutionary
Biology, 18 (4), 867-872. doi:10.1111/j.1420-9101.2005.00890.x
Pauwels, K., Stoks, R., Decaestecker, E., & De Meester, L. (2007).
Evolution of heat shock protein expression in a natural population ofDaphnia magna . The American naturalist, 170 (5), 800-805.
doi:10.1086/521956
Pietrzak, B., Pijanowska, J., & Dawidowicz, P. (2017). The effect of
temperature and kairomone on Daphnia escape ability: a simple
bioassay. Hydrobiologia, 798 (1), 15-23.
doi:10.1007/s10750-015-2539-z
Pijanowska, J., & Kloc, M. (2004). Daphnia response to predation
threat involves heat-shock proteins and the actin and tubulin
cytoskeleton. Genesis, 38 (2), 81-86. doi:10.1002/gene.20000
Qin, S., Ma, L., Li, D., Huang, J., Zhang, L., Sun, Y., & Yang, Z.
(2021). Rising temperature accelerates the responses of inducible
anti-predator morphological defenses of Ceriodaphnia cornuta but
decreases the responsive intensity. Ecological Indicators, 120 ,
106919. doi:10.1016/j.ecolind.2020.106919
Reede, T. (1995). Life history shifts in response to different levels of
fish kairomones in Daphnia . Journal of Plankton Research,
17 (8), 1661-1667. doi:10.1093/plankt/17.8.1661
Riessen, H. P., & Gilbert, J. J. (2019). Divergent developmental
patterns of induced morphological defenses in rotifers andDaphnia : ecological and evolutionary context. Limnology and
Oceanography, 64 (2), 541-557. doi:10.1002/lno.11058
Riessen, H. P., & Trevett-Smith, J. B. (2009). Turning inducible
defenses on and off: adaptive responses of Daphnia to a
gape-limited predator. Ecology, 90 (12), 3455-3469.
doi:10.2307/25660991
Ritschar, S., Rabus, M., & Laforsch, C. (2020). Predator‐specific
inducible morphological defenses of a water flea against two freshwater
predators. Journal of Morphology, 281 (6), 653-661.
doi:10.1002/jmor.21131
Schwarzenberger, A., Courts, C., & von Elert, E. (2009). Target gene
approaches: Gene expression in Daphnia magna exposed to
predator-borne kairomones or to microcystin-producing and
microcystin-free Microcystis aeruginosa . BMC Genomics,
10 (1), 527. doi:10.1186/1471-2164-10-527
Scoville, A. G., & Pfrender, M. E. (2010). Phenotypic plasticity
facilitates recurrent rapid adaptation to introduced predators.Proceedings of the National Academy of Sciences, 107 (9),
4260-4263. doi:10.1073/pnas.0912748107
Selander, E., Kubanek, J., Hamberg, M., Andersson, M. X., Cervin, G., &
Pavia, H. (2015). Predator lipids induce paralytic shellfish toxins in
bloom-forming algae. Proceedings of the National Academy of
Sciences, 112 (20), 6395-6400. doi:10.1073/pnas.1420154112
Steiner, U. K., & Auld, J. R. (2012). Why is the jack of all trades a
master of none? Studying the evolution of inducible defences in aquatic
systems. In C. Brönmark & L. A. Hansson (Eds.), Chemical Ecology
in Aquatic Systems (pp. 172). New York, NY: Oxford University Press.
Stibor, H. (2002). The role of yolk protein dynamics and predator
kairomones for the life history of Daphnia magna . Ecology,
83 (2), 362-369. doi:10.2307/2680020
Stibor, H., & Lüning, J. (1994). Predator-induced phenotypic variation
in the pattern of growth and reproduction in Daphnia hyalina(Crustacea: Cladocera). Functional Ecology, 8 , 97-101.
doi:10.2307/2390117
Stibor, H., & Navarra, D. M. (2000). Constraints on the plasticity ofDaphnia magna influenced by fish‐kairomones. Functional
Ecology, 14 (4), 455-459. doi:10.1046/j.1365-2435.2000.00441.x
Stoks, R., Govaert, L., Pauwels, K., Jansen, B., & De Meester, L.
(2016). Resurrecting complexity: the interplay of plasticity and rapid
evolution in the multiple trait response to strong changes in predation
pressure in the water flea Daphnia magna . Ecology letters,
19 (2), 180-190. doi:10.1111/ele.12551
Swift, M. C. (1992). Prey capture by the four larval instars ofChaoborus crystallinus . Limnology and Oceanography, 37 (1),
14-24. doi:10.4319/lo.1992.37.1.0014
Tollrian, R. (1993). Neckteeth formation in Daphnia pulex as an
example of continuous phenotypic plasticity: morphological effects ofChaoborus kairomone concentration and their quantification.Journal of Plankton Research, 15 (11), 1309-1318.
doi:10.1093/plankt/15.11.1309
Tollrian, R. (1995). Predator-induced morphological defenses: Costs,
life history shifts, and maternal effects in Daphnia pulex .Ecology, 76 (6), 1691-1705. doi:10.2307/1940703
Tollrian, R., & Harvell, C. D. (1999). The ecology and evolution
of inducible defenses . Princeton, NJ: Princeton University Press.
Von Elert, E., Agrawal, M. K., Gebauer, C., Jaensch, H., Bauer, U., &
Zitt, A. (2004). Protease activity in gut of Daphnia magna :
evidence for trypsin and chymotrypsin enzymes. Comparative
Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,
137 (3), 287-296. doi:10.1016/j.cbpc.2003.11.008
Weiss, L. C., Albada, B., Becker, S. M., Meckelmann, S. W., Klein, J.,
Meyer, M., . . . Tollrian, R. (2018). Identification of Chaoboruskairomone chemicals that induce defences in Daphnia . Nature
Chemical Biology, 14 (12), 1133-1139. doi:10.1038/s41589-018-0164-7
Weiss, L. C., Leese, F., Laforsch, C., & Tollrian, R. (2015). Dopamine
is a key regulator in the signalling pathway underlying predator-induced
defences in Daphnia . Proceedings of the Royal Society B:
Biological Sciences, 282 (1816), 20151440. doi:10.1098/rspb.2015.1440
Westra, Edze R., van Houte, S., Oyesiku-Blakemore, S., Makin, B.,
Broniewski, Jenny M., Best, A., . . . Buckling, A. (2015). Parasite
exposure drives selective evolution of constitutive versus inducible
defense. Current Biology, 25 (8), 1043-1049.
doi:10.1016/j.cub.2015.01.065
Yin, M., Laforsch, C., Lohr, J. N., & Wolinska, J. (2011).
Predator-induced defense makes Daphnia more vulnerable to
parasites. Evolution, 65 (5), 1482-1488.
doi:10.1111/j.1558-5646.2011.01240.x
Zhang, C., Jones, M., Govaert, L., Viant, M., De Meester, L., & Stoks,
R. (2021). Resurrecting the metabolome: Rapid evolution magnifies the
metabolomic plasticity to predation in a natural Daphniapopulation. Molecular ecology, 30 , 2285-2297.
doi:10.1111/mec.15886
Zhou, X., Liao, W., Liao, J., Liao, P., & Lu, H. (2015). Ribosomal
proteins: functions beyond the ribosome. Journal of Molecular Cell
Biology, 7 (2), 92-104. doi:10.1093/jmcb/mjv014
Data Accessibility
Sequence data is uploaded to the Sequence Read Archive (SRA) with
accession PRJNA735795.
Author contributions
LG, SA, LZ, and ZY designed the experiment. LG, SQ, YS, and JH performed
the experiment and analyzed the data. LG and ZY wrote the first draft of
the manuscript. All authors participated in discussions and editing of
the manuscript.
Tables and Figures