References
Adnane Zendaoui, Dominic Lachance, Elise Roussel, Jacques Couet, and Marie Arsenault (2012). Effects of spironolactone treatment on an experimental model of chronic aortic valve regurgitation - PubMed.21 : 478–486.
Agarwal, R., Kolkhof, P., Bakris, G., Bauersachs, J., Haller, H., Wada, T., et al. (2021). Steroidal and non-steroidal mineralocorticoid receptor antagonists in cardiorenal medicine. Eur. Heart J. 42 : 152–161.
Amador, C.A., Barrientos, V., Peña, J., Herrada, A.A., González, M., Valdés, S., et al. (2014). Spironolactone decreases DOCA-salt-induced organ damage by blocking the activation of T helper 17 and the downregulation of regulatory T lymphocytes. Hypertension 63 : 797–803.
Asakura, M., Ito, S., Yamada, T., Saito, Y., Kimura, K., Yamashina, A., et al. (2020). Efficacy and Safety of Early Initiation of Eplerenone Treatment in Patients with Acute Heart Failure (EARLIER trial): a multicentre, randomized, double-blind, placebo-controlled trial. Eur. Hear. J. - Cardiovasc. Pharmacother. 11;pvaa132.
Bakris, G.L., Agarwal, R., Anker, S.D., Pitt, B., Ruilope, L.M., Rossing, P., et al. (2020). Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 383 : 2219–2229.
Bauersachs, J., Jaisser, F., and Toto, R. (2015). Mineralocorticoid receptor activation and mineralocorticoid receptor antagonist treatment in cardiac and renal diseases. Hypertension 65 : 257–263.
Berliner, D., Hänselmann, A., and Bauersachs, J. (2020). The treatment of heart failure with reduced ejection fraction. Dtsch. Arztebl. Int.117 : 376–386.
Bernay, F., Bland, J.M., Häggström, J., Baduel, L., Combes, B., Lopez, A., et al. (2010). Efficacy of spironolactone on survival in dogs with naturally occurring mitral regurgitation caused by myxomatous mitral valve disease. J. Vet. Intern. Med. 24 : 331–341.
Beygui, F., Belle, E. Van, Ecollan, P., Machecourt, J., Hamm, C.W., Lopez De Sa, E., et al. (2018). Individual participant data analysis of two trials on aldosterone blockade in myocardial infarction. Heart104 :1843-1849.
Beygui, F., Cayla, G., Roule, V., Roubille, F., Delarche, N., Silvain, J., et al. (2016). Early Aldosterone Blockade in Acute Myocardial Infarction the ALBATROSS Randomized Clinical Trial. J. Am. Coll. Cardiol. 67 : 1917–1927.
Bienvenu, L.A., Morgan, J., Rickard, A.J., Tesch, G.H., Cranston, G.A., Fletcher, E.K., et al. (2012). Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology 153 : 3416–3425.
Bozkurt, B., Hershberger, R.E., Butler, J., Grady, K.L., Heidenreich, P.A., Isler, M.L., et al. (2021). 2021 ACC/AHA Key Data Elements and Definitions for Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Heart Failure). Circ. Cardiovasc. Qual. Outcomes 77 : 2053–2150.
Brilla, C.G., Zhou, G., Matsubara, L., and Weber, K.T. (1994). Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J. Mol. Cell. Cardiol. 26 : 809–820.
Bulluck, H., Fröhlich, G.M., Nicholas, J.M., Mohdnazri, S., Gamma, R., Davies, J., et al. (2019). Mineralocorticoid receptor antagonist pre-treatment and early post-treatment to minimize reperfusion injury after ST-elevation myocardial infarction: The MINIMIZE STEMI trial. Am. Heart J. 211 : 60–67.
Butler, J., Anstrom, K.J., Felker, G.M., Givertz, M.M., Kalogeropoulos, A.P., Konstam, M.A., et al. (2017). Efficacy and safety of spironolactone in acute heart failure: The ATHENA-HF randomized clinical trial. JAMA Cardiol. 2 : 950–958.
Cai, W., Qiu, C., Zhang, H., Chen, X., Zhang, X., Meng, Q., et al. (2017). Detection of circulating natural antibodies to inflammatory cytokines in type-2 diabetes and clinical significance. J. Inflamm. (United Kingdom) 14 :24.
Caillon, A., Paradis, P., and Schiffrin, E.L. (2019). Role of immune cells in hypertension. Br. J. Pharmacol. 176 : 1818–1828.
Callera, G.E., Montezano, A.C.I., Yogi, A., Tostes, R.C., He, Y., Schiffrin, E.L., et al. (2005a). c-Src-dependent nongenomic signaling responses to aldosterone are increased in vascular myocytes from spontaneously hypertensive rats. Hypertension 46 : 1032–1038.
Callera, G.E., Touyz, R.M., Tostes, R.C., Yogi, A., He, Y., Malkinson, S., et al. (2005b). Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c-Src. In Hypertension, (Hypertension), pp 773–779.
Calvier, L., Miana, M., Reboul, P., Cachofeiro, V., Martinez-Martinez, E., Boer, R.A. De, et al. (2013). Galectin-3 mediates aldosterone-induced vascular fibrosis. Arterioscler. Thromb. Vasc. Biol.33 : 67–75.
Cannavo, A., Bencivenga, L., Liccardo, D., Elia, A., Marzano, F., Gambino, G., et al. (2018). Aldosterone and mineralocorticoid receptor system in cardiovascular physiology and pathophysiology. Oxid. Med. Cell. Longev. 2018 : 1204598.
Caprio, M., Newfell, B.G., Sala, A. La, Baur, W., Fabbri, A., Rosano, G., et al. (2008). Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule-1 expression and promote leukocyte adhesion. Circ. Res. 102 : 1359–1367.
Cat, A.N.D., Griol-Charhbili, V., Loufrani, L., Labat, C., Benjamin, L., Farman, N., et al. (2010). The endothelial mineralocorticoid receptor regulates vasoconstrictor tone and blood pressure. FASEB J. 24 : 2454–2463.
Cezar, M.D.M., Damatto, R.L., Pagan, L.U., Lima, A.R.R., Martinez, P.F., Bonomo, C., et al. (2015). Early Spironolactone Treatment Attenuates Heart Failure Development by Improving Myocardial Function and Reducing Fibrosis in Spontaneously Hypertensive Rats. Cell. Physiol. Biochem.36 : 1453–1466.
Chen, Y., Wang, H., Lu, Y., Huang, X., Liao, Y., and Bin, J. (2015). Effects of mineralocorticoid receptor antagonists in patients with preserved ejection fraction: A meta-analysis of randomized clinical trials. BMC Med. 13 :10.
Davel, A.P., Lu, Q., Moss, M.E., Rao, S., Anwar, I.J., DuPont, J.J., et al. (2018). Sex-specific mechanisms of resistance vessel endothelial dysfunction induced by cardiometabolic risk factors. J. Am. Heart Assoc.7 : e007675.
Denus, S. de, Leclair, G., Dubé, M.P., St-Jean, I., Zada, Y.F., Oussaïd, E., et al. (2020). Spironolactone metabolite concentrations in decompensated heart failure: insights from the ATHENA-HF trial. Eur. J. Heart Fail. 22 : 1451–1461.
Denus, S. de, O’Meara, E., Desai, A.S., Claggett, B., Lewis, E.F., Leclair, G., et al. (2017). Spironolactone Metabolites in TOPCAT — New Insights into Regional Variation. N. Engl. J. Med. 376 : 1690–1692.
Derosa, G., Maffioli, P., Scelsi, L., Bestetti, A., Vanasia, M., Cicero, A.F.G., et al. (2019). Canrenone on cardiovascular mortality in congestive heart failure: CanrenOne eFFects on cardiovascular mortality in patiEnts with congEstIve hearT failure: The COFFEE-IT study. Pharmacol. Res. 141 : 46–52.
Edelmann, F., Wachter, R., Schmidt, A.G., Kraigher-Krainer, E., Colantonio, C., Kamke, W., et al. (2013). Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: The Aldo-DHF randomized controlled trial. JAMA - J. Am. Med. Assoc. 309 : 781–791.
Ferreira, J.P., Barros, A., Pitt, B., Montalescot, G., Sa, E.L. de, Hamm, C.W., et al. (2018). Collagen biomarker bioprofiles predicting the antifibrotic response to eplerenone in myocardial infarction: findings from the REMINDER trial. Clin. Res. Cardiol. 107 : 1192–1195.
Filippatos, G., Anker, S.D., Böhm, M., Gheorghiade, M., Køber, L., Krum, H., et al. (2016). A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur. Heart J. 37 : 2105–2114.
Fraccarollo, D., Berger, S., Galuppo, P., Kneitz, S., Hein, L., Schütz, G., et al. (2011). Deletion of cardiomyocyte mineralocorticoid receptor ameliorates adverse remodeling after myocardial infarction. Circulation123 : 400–408.
Fraccarollo, D., Galuppo, P., Hildemann, S., Christ, M., Ertl, G., and Bauersachs, J. (2003). Additive Improvement of Left Ventricular Remodeling and Neurohormonal Activation by Aldosterone Receptor Blockade with Eplerenone and ACE Inhibition in Rats with Myocardial Infarction. J. Am. Coll. Cardiol. 42 : 1666–1673.
Fraccarollo, D., Galuppo, P., Schraut, S., Kneitz, S., Rooijen, N. Van, Ertl, G., et al. (2008). Immediate mineralocorticoid receptor blockade improves myocardial infarct healing by modulation of the inflammatory response. Hypertension 51 : 905–914.
Fraccarollo, D., Galuppo, P., Sieweke, J.T., Napp, L.C., Grobbecker, P., and Bauersachs, J. (2015). Efficacy of mineralocorticoid receptor antagonism in the acute myocardial infarction phase: eplerenone versus spironolactone. ESC Hear. Fail. 2 : 150–158.
Fraccarollo, D., Thomas, S., Scholz, C.J., Hilfiker-Kleiner, D., Galuppo, P., and Bauersachs, J. (2019). Macrophage Mineralocorticoid Receptor Is a Pleiotropic Modulator of Myocardial Infarct Healing. Hypertension 73 : 102–111.
Frieler, R.A., Ray, J.J., Meng, H., Ramnarayanan, S.P., Usher, M.G., Su, E.J., et al. (2012). Myeloid mineralocorticoid receptor during experimental ischemic stroke: effects of model and sex. J. Am. Heart Assoc. 1 : e002584.
Galmiche, G., Pizard, A., Gueret, A., Moghrabi, S. El, Ouvrard-Pascaud, A., Berger, S., et al. (2014). Smooth muscle cell mineralocorticoid receptors are mandatory for aldosterone-salt to induce vascular stiffness. Hypertension 63 : 520–526.
Gueret, A., Harouki, N., Favre, J., Galmiche, G., Nicol, L., Henry, J.P., et al. (2016). Vascular smooth muscle mineralocorticoid receptor contributes to coronary and left ventricular dysfunction after myocardial infarction. Hypertension 67 : 717–723.
Guzik, T.J., Hoch, N.E., Brown, K.A., McCann, L.A., Rahman, A., Dikalov, S., et al. (2007). Role of the T cell in the genesis of angiotensin II-induced hypertension and vascular dysfunction. J. Exp. Med.204 : 2449–2460.
Harada, E., Yoshimura, M., Yasue, H., Nakagawa, O., Nakagawa, M., Harada, M., et al. (2001). Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 104 : 137–139.
Herrada, A.A., Contreras, F.J., Marini, N.P., Amador, C.A., González, P.A., Cortés, C.M., et al. (2010). Aldosterone Promotes Autoimmune Damage by Enhancing Th17-Mediated Immunity. J. Immunol. 184 : 191–202.
Hillebrand, U., Schillers, H., Riethmüller, C., Stock, C., Wilhelmi, M., Oberleithner, H., et al. (2007). Dose-dependent endothelial cell growth and stiffening by aldosterone: Endothelial protection by eplerenone. J. Hypertens. 25 : 639–647.
HM, C., JL, C., MD, M., DD, H., BS, E., WD, E., et al. (1997). Valvular heart disease associated with fenfluramine and phentermine. WHO Drug Inf. 11 : 141.
Hung, C.S., Chou, C.H., Liao, C.W., Lin, Y.T., Wu, X.M., Chang, Y.Y., et al. (2016). Aldosterone induces tissue inhibitor of metalloproteinases-1 expression and further contributes to collagen accumulation: From clinical to bench studies. Hypertension 67 : 1309–1320.
Ibarrola, J., Garaikoetxea, M., Garcia-Peña, A., Matilla, L., Jover, E., Bonnard, B., et al. (2020a). Beneficial effects of mineralocorticoid receptor antagonism on myocardial fibrosis in an experimental model of the myxomatous degeneration of the mitral valve. Int. J. Mol. Sci.21 : 1–13.
Ibarrola, J., Garcia-Peña, A., Matilla, L., Bonnard, B., Sádaba, R., Arrieta, V., et al. (2020b). A New Role for the Aldosterone/Mineralocorticoid Receptor Pathway in the Development of Mitral Valve Prolapse. Circ. Res. CIRCRESAHA.119.316427.
Ibarrola, J., Sadaba, R., Martinez-Martinez, E., Garcia-Peña, A., Arrieta, V., Alvarez, V., et al. (2018). Aldosterone Impairs Mitochondrial Function in Human Cardiac Fibroblasts via A-Kinase Anchor Protein. Sci. Rep. 8 :6801.
Iwashima, F., Yoshimoto, T., Minami, I., Sakurada, M., Hirono, Y., and Hirata, Y. (2008). Aldosterone induces superoxide generation via Rac1 activation in endothelial cells. Endocrinology 149 : 1009–1014.
Johar, S., Cave, A.C., Narayanapanicker, A., Grieve, D.J., Shah, A.M., Johar, S., et al. (2006). Aldosterone mediates angiotensin II‐induced interstitial cardiac fibrosis via a Nox2‐containing NADPH oxidase. FASEB J. 20 : 1546–1548.
Kasal, D.A., Barhoumi, T., Li, M.W., Yamamoto, N., Zdanovich, E., Rehman, A., et al. (2012). T regulatory lymphocytes prevent aldosterone-induced vascular injury. Hypertension 59 : 324–330.
Khosla, N., Kalaitzidis, R., and Bakris, G.L. (2009). Predictors of hyperkalemia risk following hypertension control with aldosterone blockade. Am. J. Nephrol. 30 : 418–424.
Kim, S.K., Biwer, L.A., Moss, M.E., Man, J.J., Aronovitz, M.J., Martin, G.L., et al. (2021). Mineralocorticoid Receptor in Smooth Muscle Contributes to Pressure Overload-Induced Heart Failure. Circ. Heart Fail. 14 : e007279.
Kim, S.K., McCurley, A.T., DuPont, J.J., Aronovitz, M., Moss, M.E., Stillman, I.E., et al. (2018). Smooth muscle cell–mineralocorticoid receptor as a mediator of cardiovascular stiffness with aging. Hypertension 71 : 609–621.
Kolkhof, P., and Bärfacker, L. (2017). Mineralocorticoid receptor antagonists: 60 years of research and development. J. Endocrinol.234 : T125–T140.
Kosmala, W., Rojek, A., Przewlocka-Kosmala, M., Wright, L., Mysiak, A., and Marwick, T.H. (2016). Effect of Aldosterone Antagonism on Exercise Tolerance in Heart Failure With Preserved Ejection Fraction. J. Am. Coll. Cardiol. 68 : 1823–1834.
Kowalski, J., Deng, L., Suennen, C., Koca, D., Meral, D., Bode, C., et al. (2021). Eplerenone Improves Pulmonary Vascular Remodeling and Hypertension by Inhibition of the Mineralocorticoid Receptor in Endothelial Cells. Hypertension HYPERTENSIONAHA.120.16196.
Kuster, G.M., Kotlyar, E., Rude, M.K., Siwik, D.A., Liao, R., Colucci, W.S., et al. (2005). Mineralocorticoid receptor inhibition ameliorates the transition to myocardial failure and decreases oxidative stress and inflammation in mice with chronic pressure overload. Circulation111 : 420–427.
Lacolley, P., Challande, P., Osborne-Pellegrin, M., and Regnault, V. (2009). Genetics and pathophysiology of arterial stiffness. Cardiovasc. Res. 81 : 637–648.
Lacolley, P., Labat, C., Pujol, A., Delcayre, C., Benetos, A., and Safar, M. (2002). Increased carotid wall elastic modulus and fibronectin in aldosterone-salt-treated rats: Effects of eplerenone. Circulation106 : 2848–2853.
Lagrange, J., Li, Z., Fassot, C., Bourhim, M., Louis, H., Nguyen Dinh Cat, A., et al. (2014). Endothelial mineralocorticoid receptor activation enhances endothelial protein C receptor and decreases vascular thrombosis in mice. FASEB J. 28 : 2062–2072.
Latouche, C., Moghrabi, S. El, Messaoudi, S., Cat, A.N.D., Hernandez-Diaz, I., La Rosa, D.A. De, et al. (2012). Neutrophil gelatinase-associated lipocalin is a novel mineralocorticoid target in the cardiovascular system. Hypertension 59 : 966–972.
Lin, Y.H., Chou, C.H., Wu, X.M., Chang, Y.Y., Hung, C.S., Chen, Y.H., et al. (2014). Aldosterone induced galectin-3 secretion in vitro and in vivo: From cells to humans. PLoS One 9 : e95254.
López-Andrés, N., Iñigo, C., Gallego, I., Díez, J., and Fortuño, M.A. (2008). Aldosterone induces cardiotrophin-1 expression in HL-1 adult cardiomyocytes. Endocrinology 149 : 4970–4978.
Lother, A., Bergemann, S., Kowalski, J., Huck, M., Gilsbach, R., Bode, C., et al. (2018a). Inhibition of the cardiac myocyte mineralocorticoid receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc. Res. 114 : 282–290.
Lother, A., Berger, S., Gilsbach, R., Rösner, S., Ecke, A., Barreto, F., et al. (2011). Ablation of mineralocorticoid receptors in myocytes but not in fibroblasts preserves cardiac function. Hypertension 57 : 746–754.
Lother, A., Deng, L., Huck, M., Fürst, D., Kowalski, J., Esser, J.S., et al. (2018b). Endothelial cell mineralocorticoid receptors oppose VEGF-induced gene expression and angiogenesis. J. Endocrinol.240 : 15–26.
Mannic, T., Satta, N., Pagano, S., Python, M., Virzi, J., Montecucco, F., et al. (2015). CD14 as a mediator of the mineralocorticoid receptor-dependent anti-apolipoprotein a-1 IgG chronotropic effect on cardiomyocytes. Endocrinology 156 : 4707–4719.
Marco, V.G. De, Habibi, J., Jia, G., Aroor, A.R., Ramirez-Perez, F.I., Martinez-Lemus, L.A., et al. (2015). Low-dose mineralocorticoid receptor blockade prevents western diet-induced arterial stiffening in female mice. Hypertension 66 : 99–107.
Martínez-Martínez, E., Buonafine, M., Boukhalfa, I., Ibarrola, J., Fernández-Celis, A., Kolkhof, P., et al. (2017a). Aldosterone target NGAL (Neutrophil gelatinase-associated lipocalin) is involved in cardiac remodeling after myocardial infarction through NFκB pathway. Hypertension 70 :1148-1156.
Martínez-Martínez, E., Calvier, L., Fernández-Celis, A., Rousseau, E., Jurado-López, R., Rossoni, L.V., et al. (2015). Galectin-3 blockade inhibits cardiac inflammation and fibrosis in experimental hyperaldosteronism and hypertension. Hypertension 66 :767-775.
Martínez-Martínez, E., Ibarrola, J., Lachén-Montes, M., Fernández-Celis, A., Jaisser, F., Santamaría, E., et al. (2017b). Differential proteomics reveals S100-A11 as a key factor in aldosterone-induced collagen expression in human cardiac fibroblasts. J. Proteomics 166 : 93-100.
Mazak, I., Fiebeler, A., Muller, D.N., Park, J.K., Shagdarsuren, E., Lindschau, C., et al. (2004). Aldosterone potentiates angiotensin II-induced signaling in vascular smooth muscle cells. Circulation109 : 2792–2800.
McCurley, A., Pires, P.W., Bender, S.B., Aronovitz, M., Zhao, M.J., Metzger, D., et al. (2012). Direct regulation of blood pressure by smooth muscle cell mineralocorticoid receptors. Nat. Med. 18 : 1429–1433.
Menuet, D. Le, Isnard, R., Bichara, M., Viengchareun, S., Muffat-Joly, M., Walker, F., et al. (2001). Alteration of Cardiac and Renal Functions in Transgenic Mice Overexpressing Human Mineralocorticoid Receptor. J. Biol. Chem. 276 : 38911–38920.
Merrill, M., Sweitzer, N.K., Lindenfeld, J.A., and Kao, D.P. (2019). Sex Differences in Outcomes and Responses to Spironolactone in Heart Failure With Preserved Ejection Fraction: A Secondary Analysis of TOPCAT Trial. JACC Hear. Fail. 7 : 228–238.
Messaoudi, S., Azibani, F., Delcayre, C., and Jaisser, F. (2012). Aldosterone, mineralocorticoid receptor, and heart failure. Mol. Cell. Endocrinol. 350 : 266–272.
Messaoudi, S., Gravez, B., Tarjus, A., Pelloux, V., Ouvrard-Pascaud, A., Delcayre, C., et al. (2013). Aldosterone-specific activation of cardiomyocyte mineralocorticoid receptor in vivo. Hypertension61 : 361–367.
Miyata, K., Hitomi, H., Guo, P., Zhang, G.X., Kimura, S., Kiyomoto, H., et al. (2008). Possible involvement of rho-kinase in aldosterone-induced vascular smooth muscle cell remodeling. Hypertens. Res. 31 : 1407–1413.
Montalescot, G., Pitt, B., Lopez De Sa, E., Hamm, C.W., Flather, M., Verheugt, F., et al. (2014). Early eplerenone treatment in patients with acute ST-elevation myocardial infarction without heart failure: The Randomized Double-Blind Reminder Study. Eur. Heart J. 35 : 2295–2302.
Nakano, S., Kobayashi, N., Yoshida, K., Ohno, T., and Matsuoka, H. (2005). Cardioprotective mechanisms of spironolactone associated with the angiotensin-converting enzyme/epidermal growth factor receptor/extracellular signal-regulated kinases, NAD(P)H oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and Rho-kinase pathways in aldosterone/salt-induced hypertensive rats. Hypertens. Res. 28 : 925–936.
Nebme, J., Mercier, N., Labat, C., Benetos, A., Safar, M.E., Delcayre, C., et al. (2006). Differences between cardiac and arterial fibrosis and stiffness in aldosterone-salt rats: Effect of eplerenone. JRAAS - J. Renin-Angiotensin-Aldosterone Syst. 7 : 31–39.
Oberleithner, H., Riethmüller, C., Ludwig, T., Hausberg, M., and Schillers, H. (2006). Aldosterone remodels human endothelium. In Acta Physiologica, (Acta Physiol (Oxf)), pp 305–312.
Oberleithner, H., Riethmüller, C., Schillers, H., MacGregor, G.A., Wardener, H.E. De, and Hausberg, M. (2007). Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proc. Natl. Acad. Sci. U. S. A. 104 : 16281–16286.
Oberleithner, H., Schneider, S.W., Albermann, L., Hillebrand, U., Ludwig, T., Riethmüller, C., et al. (2003). Endothelial Cell Swelling by Aldosterone. J. Membr. Biol. 196 : 163–172.
Okoshi, M.P., Cezar, M.D.M., Iyomasa, R.M., Silva, M.B., Costa, L.C.O., Martinez, P.F., et al. (2016). Effects of early aldosterone antagonism on cardiac remodeling in rats with aortic stenosis-induced pressure overload. Int. J. Cardiol. 222 : 569–575.
Ouvrard-Pascaud, A., Sainte-Marie, Y., Bénitah, J.P., Perrier, R., Soukaseum, C., Cat, A.N.D., et al. (2005). Conditional mineralocorticoid receptor expression in the heart leads to life-threatening arrhythmias. Circulation 111 : 3025–3033.
Pandey, A., Garg, S., Matulevicius, S.A., Shah, A.M., Garg, J., Drazner, M.H., et al. (2015). Effect of mineralocorticoid receptor antagonists on cardiac structure and function in patients with diastolic dysfunction and heart failure with preserved ejection fraction: A meta-analysis and systematic review. J. Am. Heart Assoc. 4 :e002137.
Pei, H., Wang, W., Zhao, D., Wang, L., Su, G.H., and Zhao, Z. (2018). The use of a novel non-steroidal mineralocorticoid receptor antagonist finerenone for the treatment of chronic heart failure: A systematic review and meta-analysis. Med. (United States) 97 : e0254.
Pieronne-Deperrois, M., Guéret, A., Djerada, Z., Crochemore, C., Harouki, N., Henry, J.P., et al. (2021). Mineralocorticoid receptor blockade with finerenone improves heart function and exercise capacity in ovariectomized mice. ESC Hear. Fail. 8 :1933-1943.
Pitt, B., Pfeffer, M.A., Assmann, S.F., Boineau, R., Anand, I.S., Claggett, B., et al. (2014). Spironolactone for heart failure with preserved ejection fraction. N. Engl. J. Med. 370 : 1383–92.
Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B., et al. (2003). Eplerenone, a Selective Aldosterone Blocker, in Patients with Left Ventricular Dysfunction after Myocardial Infarction. N. Engl. J. Med. 348 : 1309–1321.
Pitt, B., Zannad, F., Remme, W.J., Cody, R., Castaigne, A., Perez, A., et al. (1999). The Effect of Spironolactone on Morbidity and Mortality in Patients with Severe Heart Failure. N. Engl. J. Med. 341 : 709–717.
Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F., Coats, A.J.S., et al. (2016). 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 18 : 891–975.
Pruthi, D., Mccurley, A., Aronovitz, M., Galayda, C., Karumanchi, S.A., and Jaffe, I.Z. (2014). Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler. Thromb. Vasc. Biol. 34 : 355–364.
Rickard, A.J., Morgan, J., Bienvenu, L.A., Fletcher, E.K., Cranston, G.A., Shen, J.Z., et al. (2012). Cardiomyocyte mineralocorticoid receptors are essential for deoxycorticosterone/salt-mediated inflammation and cardiac fibrosis. Hypertension 60 : 1443–1450.
Rickard, A.J., Morgan, J., Chrissobolis, S., Miller, A.A., Sobey, C.G., and Young, M.J. (2014). Endothelial cell mineralocorticoid receptors regulate deoxycorticosterone/ salt-mediated cardiac remodeling and vascular reactivity but not blood pressure. Hypertension 63 : 1033–1040.
Rickard, A.J., Morgan, J., Tesch, G., Funder, J.W., Fuller, P.J., and Young, M.J. (2009). Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension 54 : 537–543.
Rickard, A.J., and Young, M.J. (2009). Corticosteroid receptors, macrophages and cardiovascular disease. J. Mol. Endocrinol. 42 : 449–459.
Riehle, C., and Bauersachs, J. (2019). Small animal models of heart failure. Cardiovasc. Res. 115 : 1838–1849.
Sakurabayashi-Kitade, S., Aoka, Y., Nagashima, H., Kasanuki, H., Hagiwara, N., and Kawana, M. (2009). Aldosterone blockade by Spironolactone improves the hypertensive vascular hypertrophy and remodeling in angiotensin II overproducing transgenic mice. Atherosclerosis 206 : 54–60.
Salvador, A.M., Moss, M.E., Aronovitz, M., Mueller, K.B., Blanton, R.M., Jaffe, I.Z., et al. (2017). Endothelial mineralocorticoid receptor contributes to systolic dysfunction induced by pressure overload without modulating cardiac hypertrophy or inflammation. Physiol. Rep.5 :e13313.
Schäfer, N., Lohmann, C., Winnik, S., Tits, L.J. Van, Miranda, M.X., Vergopoulos, A., et al. (2013). Endothelialmineralocorticoid receptor activation mediates endothelial dysfunction in diet-induced obesity. Eur. Heart J. 34 : 3515–3524.
Sun, Y., Zhang, J., Lu, L., Chen, S.S., Quinn, M.T., and Weber, K.T. (2002). Aldosterone-induced inflammation in the rat heart: Role of oxidative stress. Am. J. Pathol. 161 : 1773–1781.
Tarjus, A., Martínez-Martínez, E., Amador, C., Latouche, C., Moghrabi, S. El, Berger, T., et al. (2015). Neutrophil gelatinase-associated lipocalin, a novel mineralocorticoid biotarget, mediates vascular profibrotic effects of mineralocorticoids. Hypertension 66 : 158–166.
Tsujimoto, T., and Kajio, H. (2020). Spironolactone Use and Improved Outcomes in Patients With Heart Failure With Preserved Ejection Fraction With Resistant Hypertension. J. Am. Heart Assoc. 9 : e018827.
Usher, M.G., Duan, S.Z., Ivaschenko, C.Y., Frieler, R.A., Berger, S., Schütz, G., et al. (2010). Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Invest. 120 : 3350–3364.
Virdis, A., Neves, M.F., Amiri, F., Viel, E., Touyz, R.M., and Schiffrin, E.L. (2002). Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40 : 504–510.
Wang, D., Liu, Y.H., Yang, X.P., Rhaleb, N.E., Xu, J., Peterson, E., et al. (2004). Role of a selective aldosterone blocker in mice with chronic heart failure. J. Card. Fail. 10 : 67–73.
Weinberger, T., and Schulz, C. (2015). Myocardial infarction: A critical role of macrophages in cardiac remodeling. Front. Physiol. 6 :107.
Williams, B., Mancia, G., Spiering, W., Rosei, E.A., Azizi, M., Burnier, M., et al. (2018). 2018 ESC/ESH Guidelines for themanagement of arterial hypertension. Eur. Heart J. 39 : 3021–3104.
Xiang, Y., Shi, W., Li, Z., Yang, Y., Wang, S.Y., Xiang, R., et al. (2019). Efficacy and safety of spironolactone in the heart failure with mid-range ejection fraction and heart failure with preserved ejection fraction: A meta-analysis of randomized clinical trials. Med. (United States) 98 :e14967.
Yamamuro, M., Yoshimura, M., Nakayama, M., Abe, K., Shono, M., Suzuki, S., et al. (2006). Direct effects of aldosterone on cardiomyocytes in the presence of normal and elevated extracellular sodium. Endocrinology147 : 1314–1321.
Yanes, L.L., Romero, D.G., Iliescu, R., Zhang, H., Davis, D., and Reckelhoff, J.F. (2010). Postmenopausal hypertension: Role of the renin-angiotensin system. Hypertension 56 : 359–363.
Young, M.J., and Rickard, A.J. (2015). Mineralocorticoid receptors in the heart: Lessons from cell-selective transgenic animals. J. Endocrinol. 224 : R1–R13.
Zannad, F., Gattis Stough, W., Rossignol, P., Bauersachs, J., McMurray, J.J.V., Swedberg, K., et al. (2012). Mineralocorticoid receptor antagonists for heart failure with reduced ejection fraction: Integrating evidence into clinical practice. Eur. Heart J. 33 : 2782–2795.
Zannad, F., McMurray, J.J.V., Krum, H., Veldhuisen, D.J. van, Swedberg, K., Shi, H., et al. (2011). Eplerenone in Patients with Systolic Heart Failure and Mild Symptoms. N. Engl. J. Med. 364 : 11–21.
Zhou, G., Kandala, J.C., Tyagi, S.C., Katwa, L.C., and Weber, K.T. (1996). Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibroblasts. Mol. Cell. Biochem. 154 : 171–178.