References
Adnane Zendaoui, Dominic Lachance, Elise Roussel, Jacques Couet, and
Marie Arsenault (2012). Effects of spironolactone treatment on an
experimental model of chronic aortic valve regurgitation - PubMed.21 : 478–486.
Agarwal, R., Kolkhof, P., Bakris, G., Bauersachs, J., Haller, H., Wada,
T., et al. (2021). Steroidal and non-steroidal mineralocorticoid
receptor antagonists in cardiorenal medicine. Eur. Heart J. 42 :
152–161.
Amador, C.A., Barrientos, V., Peña, J., Herrada, A.A., González, M.,
Valdés, S., et al. (2014). Spironolactone decreases DOCA-salt-induced
organ damage by blocking the activation of T helper 17 and the
downregulation of regulatory T lymphocytes. Hypertension 63 :
797–803.
Asakura, M., Ito, S., Yamada, T., Saito, Y., Kimura, K., Yamashina, A.,
et al. (2020). Efficacy and Safety of Early Initiation of Eplerenone
Treatment in Patients with Acute Heart Failure (EARLIER trial): a
multicentre, randomized, double-blind, placebo-controlled trial. Eur.
Hear. J. - Cardiovasc. Pharmacother. 11;pvaa132.
Bakris, G.L., Agarwal, R., Anker, S.D., Pitt, B., Ruilope, L.M.,
Rossing, P., et al. (2020). Effect of Finerenone on Chronic Kidney
Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 383 :
2219–2229.
Bauersachs, J., Jaisser, F., and Toto, R. (2015). Mineralocorticoid
receptor activation and mineralocorticoid receptor antagonist treatment
in cardiac and renal diseases. Hypertension 65 : 257–263.
Berliner, D., Hänselmann, A., and Bauersachs, J. (2020). The treatment
of heart failure with reduced ejection fraction. Dtsch. Arztebl. Int.117 : 376–386.
Bernay, F., Bland, J.M., Häggström, J., Baduel, L., Combes, B., Lopez,
A., et al. (2010). Efficacy of spironolactone on survival in dogs with
naturally occurring mitral regurgitation caused by myxomatous mitral
valve disease. J. Vet. Intern. Med. 24 : 331–341.
Beygui, F., Belle, E. Van, Ecollan, P., Machecourt, J., Hamm, C.W.,
Lopez De Sa, E., et al. (2018). Individual participant data analysis of
two trials on aldosterone blockade in myocardial infarction. Heart104 :1843-1849.
Beygui, F., Cayla, G., Roule, V., Roubille, F., Delarche, N., Silvain,
J., et al. (2016). Early Aldosterone Blockade in Acute Myocardial
Infarction the ALBATROSS Randomized Clinical Trial. J. Am. Coll.
Cardiol. 67 : 1917–1927.
Bienvenu, L.A., Morgan, J., Rickard, A.J., Tesch, G.H., Cranston, G.A.,
Fletcher, E.K., et al. (2012). Macrophage mineralocorticoid receptor
signaling plays a key role in aldosterone-independent cardiac fibrosis.
Endocrinology 153 : 3416–3425.
Bozkurt, B., Hershberger, R.E., Butler, J., Grady, K.L., Heidenreich,
P.A., Isler, M.L., et al. (2021). 2021 ACC/AHA Key Data Elements and
Definitions for Heart Failure: A Report of the American College of
Cardiology/American Heart Association Task Force on Clinical Data
Standards (Writing Committee to Develop Clinical Data Standards for
Heart Failure). Circ. Cardiovasc. Qual. Outcomes 77 : 2053–2150.
Brilla, C.G., Zhou, G., Matsubara, L., and Weber, K.T. (1994). Collagen
metabolism in cultured adult rat cardiac fibroblasts: Response to
angiotensin II and aldosterone. J. Mol. Cell. Cardiol. 26 :
809–820.
Bulluck, H., Fröhlich, G.M., Nicholas, J.M., Mohdnazri, S., Gamma, R.,
Davies, J., et al. (2019). Mineralocorticoid receptor antagonist
pre-treatment and early post-treatment to minimize reperfusion injury
after ST-elevation myocardial infarction: The MINIMIZE STEMI trial. Am.
Heart J. 211 : 60–67.
Butler, J., Anstrom, K.J., Felker, G.M., Givertz, M.M., Kalogeropoulos,
A.P., Konstam, M.A., et al. (2017). Efficacy and safety of
spironolactone in acute heart failure: The ATHENA-HF randomized clinical
trial. JAMA Cardiol. 2 : 950–958.
Cai, W., Qiu, C., Zhang, H., Chen, X., Zhang, X., Meng, Q., et al.
(2017). Detection of circulating natural antibodies to inflammatory
cytokines in type-2 diabetes and clinical significance. J. Inflamm.
(United Kingdom) 14 :24.
Caillon, A., Paradis, P., and Schiffrin, E.L. (2019). Role of immune
cells in hypertension. Br. J. Pharmacol. 176 : 1818–1828.
Callera, G.E., Montezano, A.C.I., Yogi, A., Tostes, R.C., He, Y.,
Schiffrin, E.L., et al. (2005a). c-Src-dependent nongenomic signaling
responses to aldosterone are increased in vascular myocytes from
spontaneously hypertensive rats. Hypertension 46 : 1032–1038.
Callera, G.E., Touyz, R.M., Tostes, R.C., Yogi, A., He, Y., Malkinson,
S., et al. (2005b). Aldosterone activates vascular p38MAP kinase and
NADPH oxidase via c-Src. In Hypertension, (Hypertension), pp 773–779.
Calvier, L., Miana, M., Reboul, P., Cachofeiro, V., Martinez-Martinez,
E., Boer, R.A. De, et al. (2013). Galectin-3 mediates
aldosterone-induced vascular fibrosis. Arterioscler. Thromb. Vasc. Biol.33 : 67–75.
Cannavo, A., Bencivenga, L., Liccardo, D., Elia, A., Marzano, F.,
Gambino, G., et al. (2018). Aldosterone and mineralocorticoid receptor
system in cardiovascular physiology and pathophysiology. Oxid. Med.
Cell. Longev. 2018 : 1204598.
Caprio, M., Newfell, B.G., Sala, A. La, Baur, W., Fabbri, A., Rosano,
G., et al. (2008). Functional mineralocorticoid receptors in human
vascular endothelial cells regulate intercellular adhesion molecule-1
expression and promote leukocyte adhesion. Circ. Res. 102 :
1359–1367.
Cat, A.N.D., Griol-Charhbili, V., Loufrani, L., Labat, C., Benjamin, L.,
Farman, N., et al. (2010). The endothelial mineralocorticoid receptor
regulates vasoconstrictor tone and blood pressure. FASEB J. 24 :
2454–2463.
Cezar, M.D.M., Damatto, R.L., Pagan, L.U., Lima, A.R.R., Martinez, P.F.,
Bonomo, C., et al. (2015). Early Spironolactone Treatment Attenuates
Heart Failure Development by Improving Myocardial Function and Reducing
Fibrosis in Spontaneously Hypertensive Rats. Cell. Physiol. Biochem.36 : 1453–1466.
Chen, Y., Wang, H., Lu, Y., Huang, X., Liao, Y., and Bin, J. (2015).
Effects of mineralocorticoid receptor antagonists in patients with
preserved ejection fraction: A meta-analysis of randomized clinical
trials. BMC Med. 13 :10.
Davel, A.P., Lu, Q., Moss, M.E., Rao, S., Anwar, I.J., DuPont, J.J., et
al. (2018). Sex-specific mechanisms of resistance vessel endothelial
dysfunction induced by cardiometabolic risk factors. J. Am. Heart Assoc.7 : e007675.
Denus, S. de, Leclair, G., Dubé, M.P., St-Jean, I., Zada, Y.F., Oussaïd,
E., et al. (2020). Spironolactone metabolite concentrations in
decompensated heart failure: insights from the ATHENA-HF trial. Eur. J.
Heart Fail. 22 : 1451–1461.
Denus, S. de, O’Meara, E., Desai, A.S., Claggett, B., Lewis, E.F.,
Leclair, G., et al. (2017). Spironolactone Metabolites in TOPCAT — New
Insights into Regional Variation. N. Engl. J. Med. 376 :
1690–1692.
Derosa, G., Maffioli, P., Scelsi, L., Bestetti, A., Vanasia, M., Cicero,
A.F.G., et al. (2019). Canrenone on cardiovascular mortality in
congestive heart failure: CanrenOne eFFects on cardiovascular mortality
in patiEnts with congEstIve hearT failure: The COFFEE-IT study.
Pharmacol. Res. 141 : 46–52.
Edelmann, F., Wachter, R., Schmidt, A.G., Kraigher-Krainer, E.,
Colantonio, C., Kamke, W., et al. (2013). Effect of spironolactone on
diastolic function and exercise capacity in patients with heart failure
with preserved ejection fraction: The Aldo-DHF randomized controlled
trial. JAMA - J. Am. Med. Assoc. 309 : 781–791.
Ferreira, J.P., Barros, A., Pitt, B., Montalescot, G., Sa, E.L. de,
Hamm, C.W., et al. (2018). Collagen biomarker bioprofiles predicting the
antifibrotic response to eplerenone in myocardial infarction: findings
from the REMINDER trial. Clin. Res. Cardiol. 107 : 1192–1195.
Filippatos, G., Anker, S.D., Böhm, M., Gheorghiade, M., Køber, L., Krum,
H., et al. (2016). A randomized controlled study of finerenone vs.
eplerenone in patients with worsening chronic heart failure and diabetes
mellitus and/or chronic kidney disease. Eur. Heart J. 37 :
2105–2114.
Fraccarollo, D., Berger, S., Galuppo, P., Kneitz, S., Hein, L., Schütz,
G., et al. (2011). Deletion of cardiomyocyte mineralocorticoid receptor
ameliorates adverse remodeling after myocardial infarction. Circulation123 : 400–408.
Fraccarollo, D., Galuppo, P., Hildemann, S., Christ, M., Ertl, G., and
Bauersachs, J. (2003). Additive Improvement of Left Ventricular
Remodeling and Neurohormonal Activation by Aldosterone Receptor Blockade
with Eplerenone and ACE Inhibition in Rats with Myocardial Infarction.
J. Am. Coll. Cardiol. 42 : 1666–1673.
Fraccarollo, D., Galuppo, P., Schraut, S., Kneitz, S., Rooijen, N. Van,
Ertl, G., et al. (2008). Immediate mineralocorticoid receptor blockade
improves myocardial infarct healing by modulation of the inflammatory
response. Hypertension 51 : 905–914.
Fraccarollo, D., Galuppo, P., Sieweke, J.T., Napp, L.C., Grobbecker, P.,
and Bauersachs, J. (2015). Efficacy of mineralocorticoid receptor
antagonism in the acute myocardial infarction phase: eplerenone versus
spironolactone. ESC Hear. Fail. 2 : 150–158.
Fraccarollo, D., Thomas, S., Scholz, C.J., Hilfiker-Kleiner, D.,
Galuppo, P., and Bauersachs, J. (2019). Macrophage Mineralocorticoid
Receptor Is a Pleiotropic Modulator of Myocardial Infarct Healing.
Hypertension 73 : 102–111.
Frieler, R.A., Ray, J.J., Meng, H., Ramnarayanan, S.P., Usher, M.G., Su,
E.J., et al. (2012). Myeloid mineralocorticoid receptor during
experimental ischemic stroke: effects of model and sex. J. Am. Heart
Assoc. 1 : e002584.
Galmiche, G., Pizard, A., Gueret, A., Moghrabi, S. El, Ouvrard-Pascaud,
A., Berger, S., et al. (2014). Smooth muscle cell mineralocorticoid
receptors are mandatory for aldosterone-salt to induce vascular
stiffness. Hypertension 63 : 520–526.
Gueret, A., Harouki, N., Favre, J., Galmiche, G., Nicol, L., Henry,
J.P., et al. (2016). Vascular smooth muscle mineralocorticoid receptor
contributes to coronary and left ventricular dysfunction after
myocardial infarction. Hypertension 67 : 717–723.
Guzik, T.J., Hoch, N.E., Brown, K.A., McCann, L.A., Rahman, A., Dikalov,
S., et al. (2007). Role of the T cell in the genesis of angiotensin
II-induced hypertension and vascular dysfunction. J. Exp. Med.204 : 2449–2460.
Harada, E., Yoshimura, M., Yasue, H., Nakagawa, O., Nakagawa, M.,
Harada, M., et al. (2001). Aldosterone induces
angiotensin-converting-enzyme gene expression in cultured neonatal rat
cardiocytes. Circulation 104 : 137–139.
Herrada, A.A., Contreras, F.J., Marini, N.P., Amador, C.A., González,
P.A., Cortés, C.M., et al. (2010). Aldosterone Promotes Autoimmune
Damage by Enhancing Th17-Mediated Immunity. J. Immunol. 184 :
191–202.
Hillebrand, U., Schillers, H., Riethmüller, C., Stock, C., Wilhelmi, M.,
Oberleithner, H., et al. (2007). Dose-dependent endothelial cell growth
and stiffening by aldosterone: Endothelial protection by eplerenone. J.
Hypertens. 25 : 639–647.
HM, C., JL, C., MD, M., DD, H., BS, E., WD, E., et al. (1997). Valvular
heart disease associated with fenfluramine and phentermine. WHO Drug
Inf. 11 : 141.
Hung, C.S., Chou, C.H., Liao, C.W., Lin, Y.T., Wu, X.M., Chang, Y.Y., et
al. (2016). Aldosterone induces tissue inhibitor of metalloproteinases-1
expression and further contributes to collagen accumulation: From
clinical to bench studies. Hypertension 67 : 1309–1320.
Ibarrola, J., Garaikoetxea, M., Garcia-Peña, A., Matilla, L., Jover, E.,
Bonnard, B., et al. (2020a). Beneficial effects of mineralocorticoid
receptor antagonism on myocardial fibrosis in an experimental model of
the myxomatous degeneration of the mitral valve. Int. J. Mol. Sci.21 : 1–13.
Ibarrola, J., Garcia-Peña, A., Matilla, L., Bonnard, B., Sádaba, R.,
Arrieta, V., et al. (2020b). A New Role for the
Aldosterone/Mineralocorticoid Receptor Pathway in the Development of
Mitral Valve Prolapse. Circ. Res. CIRCRESAHA.119.316427.
Ibarrola, J., Sadaba, R., Martinez-Martinez, E., Garcia-Peña, A.,
Arrieta, V., Alvarez, V., et al. (2018). Aldosterone Impairs
Mitochondrial Function in Human Cardiac Fibroblasts via A-Kinase Anchor
Protein. Sci. Rep. 8 :6801.
Iwashima, F., Yoshimoto, T., Minami, I., Sakurada, M., Hirono, Y., and
Hirata, Y. (2008). Aldosterone induces superoxide generation via Rac1
activation in endothelial cells. Endocrinology 149 : 1009–1014.
Johar, S., Cave, A.C., Narayanapanicker, A., Grieve, D.J., Shah, A.M.,
Johar, S., et al. (2006). Aldosterone mediates angiotensin II‐induced
interstitial cardiac fibrosis via a Nox2‐containing NADPH oxidase. FASEB
J. 20 : 1546–1548.
Kasal, D.A., Barhoumi, T., Li, M.W., Yamamoto, N., Zdanovich, E.,
Rehman, A., et al. (2012). T regulatory lymphocytes prevent
aldosterone-induced vascular injury. Hypertension 59 : 324–330.
Khosla, N., Kalaitzidis, R., and Bakris, G.L. (2009). Predictors of
hyperkalemia risk following hypertension control with aldosterone
blockade. Am. J. Nephrol. 30 : 418–424.
Kim, S.K., Biwer, L.A., Moss, M.E., Man, J.J., Aronovitz, M.J., Martin,
G.L., et al. (2021). Mineralocorticoid Receptor in Smooth Muscle
Contributes to Pressure Overload-Induced Heart Failure. Circ. Heart
Fail. 14 : e007279.
Kim, S.K., McCurley, A.T., DuPont, J.J., Aronovitz, M., Moss, M.E.,
Stillman, I.E., et al. (2018). Smooth muscle cell–mineralocorticoid
receptor as a mediator of cardiovascular stiffness with aging.
Hypertension 71 : 609–621.
Kolkhof, P., and Bärfacker, L. (2017). Mineralocorticoid receptor
antagonists: 60 years of research and development. J. Endocrinol.234 : T125–T140.
Kosmala, W., Rojek, A., Przewlocka-Kosmala, M., Wright, L., Mysiak, A.,
and Marwick, T.H. (2016). Effect of Aldosterone Antagonism on Exercise
Tolerance in Heart Failure With Preserved Ejection Fraction. J. Am.
Coll. Cardiol. 68 : 1823–1834.
Kowalski, J., Deng, L., Suennen, C., Koca, D., Meral, D., Bode, C., et
al. (2021). Eplerenone Improves Pulmonary Vascular Remodeling and
Hypertension by Inhibition of the Mineralocorticoid Receptor in
Endothelial Cells. Hypertension HYPERTENSIONAHA.120.16196.
Kuster, G.M., Kotlyar, E., Rude, M.K., Siwik, D.A., Liao, R., Colucci,
W.S., et al. (2005). Mineralocorticoid receptor inhibition ameliorates
the transition to myocardial failure and decreases oxidative stress and
inflammation in mice with chronic pressure overload. Circulation111 : 420–427.
Lacolley, P., Challande, P., Osborne-Pellegrin, M., and Regnault, V.
(2009). Genetics and pathophysiology of arterial stiffness. Cardiovasc.
Res. 81 : 637–648.
Lacolley, P., Labat, C., Pujol, A., Delcayre, C., Benetos, A., and
Safar, M. (2002). Increased carotid wall elastic modulus and fibronectin
in aldosterone-salt-treated rats: Effects of eplerenone. Circulation106 : 2848–2853.
Lagrange, J., Li, Z., Fassot, C., Bourhim, M., Louis, H., Nguyen Dinh
Cat, A., et al. (2014). Endothelial mineralocorticoid receptor
activation enhances endothelial protein C receptor and decreases
vascular thrombosis in mice. FASEB J. 28 : 2062–2072.
Latouche, C., Moghrabi, S. El, Messaoudi, S., Cat, A.N.D.,
Hernandez-Diaz, I., La Rosa, D.A. De, et al. (2012). Neutrophil
gelatinase-associated lipocalin is a novel mineralocorticoid target in
the cardiovascular system. Hypertension 59 : 966–972.
Lin, Y.H., Chou, C.H., Wu, X.M., Chang, Y.Y., Hung, C.S., Chen, Y.H., et
al. (2014). Aldosterone induced galectin-3 secretion in vitro and in
vivo: From cells to humans. PLoS One 9 : e95254.
López-Andrés, N., Iñigo, C., Gallego, I., Díez, J., and Fortuño, M.A.
(2008). Aldosterone induces cardiotrophin-1 expression in HL-1 adult
cardiomyocytes. Endocrinology 149 : 4970–4978.
Lother, A., Bergemann, S., Kowalski, J., Huck, M., Gilsbach, R., Bode,
C., et al. (2018a). Inhibition of the cardiac myocyte mineralocorticoid
receptor ameliorates doxorubicin-induced cardiotoxicity. Cardiovasc.
Res. 114 : 282–290.
Lother, A., Berger, S., Gilsbach, R., Rösner, S., Ecke, A., Barreto, F.,
et al. (2011). Ablation of mineralocorticoid receptors in myocytes but
not in fibroblasts preserves cardiac function. Hypertension 57 :
746–754.
Lother, A., Deng, L., Huck, M., Fürst, D., Kowalski, J., Esser, J.S., et
al. (2018b). Endothelial cell mineralocorticoid receptors oppose
VEGF-induced gene expression and angiogenesis. J. Endocrinol.240 : 15–26.
Mannic, T., Satta, N., Pagano, S., Python, M., Virzi, J., Montecucco,
F., et al. (2015). CD14 as a mediator of the mineralocorticoid
receptor-dependent anti-apolipoprotein a-1 IgG chronotropic effect on
cardiomyocytes. Endocrinology 156 : 4707–4719.
Marco, V.G. De, Habibi, J., Jia, G., Aroor, A.R., Ramirez-Perez, F.I.,
Martinez-Lemus, L.A., et al. (2015). Low-dose mineralocorticoid receptor
blockade prevents western diet-induced arterial stiffening in female
mice. Hypertension 66 : 99–107.
Martínez-Martínez, E., Buonafine, M., Boukhalfa, I., Ibarrola, J.,
Fernández-Celis, A., Kolkhof, P., et al. (2017a). Aldosterone target
NGAL (Neutrophil gelatinase-associated lipocalin) is involved in cardiac
remodeling after myocardial infarction through NFκB pathway.
Hypertension 70 :1148-1156.
Martínez-Martínez, E., Calvier, L., Fernández-Celis, A., Rousseau, E.,
Jurado-López, R., Rossoni, L.V., et al. (2015). Galectin-3 blockade
inhibits cardiac inflammation and fibrosis in experimental
hyperaldosteronism and hypertension. Hypertension 66 :767-775.
Martínez-Martínez, E., Ibarrola, J., Lachén-Montes, M., Fernández-Celis,
A., Jaisser, F., Santamaría, E., et al. (2017b). Differential proteomics
reveals S100-A11 as a key factor in aldosterone-induced collagen
expression in human cardiac fibroblasts. J. Proteomics 166 :
93-100.
Mazak, I., Fiebeler, A., Muller, D.N., Park, J.K., Shagdarsuren, E.,
Lindschau, C., et al. (2004). Aldosterone potentiates angiotensin
II-induced signaling in vascular smooth muscle cells. Circulation109 : 2792–2800.
McCurley, A., Pires, P.W., Bender, S.B., Aronovitz, M., Zhao, M.J.,
Metzger, D., et al. (2012). Direct regulation of blood pressure by
smooth muscle cell mineralocorticoid receptors. Nat. Med. 18 :
1429–1433.
Menuet, D. Le, Isnard, R., Bichara, M., Viengchareun, S., Muffat-Joly,
M., Walker, F., et al. (2001). Alteration of Cardiac and Renal Functions
in Transgenic Mice Overexpressing Human Mineralocorticoid Receptor. J.
Biol. Chem. 276 : 38911–38920.
Merrill, M., Sweitzer, N.K., Lindenfeld, J.A., and Kao, D.P. (2019). Sex
Differences in Outcomes and Responses to Spironolactone in Heart Failure
With Preserved Ejection Fraction: A Secondary Analysis of TOPCAT Trial.
JACC Hear. Fail. 7 : 228–238.
Messaoudi, S., Azibani, F., Delcayre, C., and Jaisser, F. (2012).
Aldosterone, mineralocorticoid receptor, and heart failure. Mol. Cell.
Endocrinol. 350 : 266–272.
Messaoudi, S., Gravez, B., Tarjus, A., Pelloux, V., Ouvrard-Pascaud, A.,
Delcayre, C., et al. (2013). Aldosterone-specific activation of
cardiomyocyte mineralocorticoid receptor in vivo. Hypertension61 : 361–367.
Miyata, K., Hitomi, H., Guo, P., Zhang, G.X., Kimura, S., Kiyomoto, H.,
et al. (2008). Possible involvement of rho-kinase in aldosterone-induced
vascular smooth muscle cell remodeling. Hypertens. Res. 31 :
1407–1413.
Montalescot, G., Pitt, B., Lopez De Sa, E., Hamm, C.W., Flather, M.,
Verheugt, F., et al. (2014). Early eplerenone treatment in patients with
acute ST-elevation myocardial infarction without heart failure: The
Randomized Double-Blind Reminder Study. Eur. Heart J. 35 :
2295–2302.
Nakano, S., Kobayashi, N., Yoshida, K., Ohno, T., and Matsuoka, H.
(2005). Cardioprotective mechanisms of spironolactone associated with
the angiotensin-converting enzyme/epidermal growth factor
receptor/extracellular signal-regulated kinases, NAD(P)H
oxidase/lectin-like oxidized low-density lipoprotein receptor-1, and
Rho-kinase pathways in aldosterone/salt-induced hypertensive rats.
Hypertens. Res. 28 : 925–936.
Nebme, J., Mercier, N., Labat, C., Benetos, A., Safar, M.E., Delcayre,
C., et al. (2006). Differences between cardiac and arterial fibrosis and
stiffness in aldosterone-salt rats: Effect of eplerenone. JRAAS - J.
Renin-Angiotensin-Aldosterone Syst. 7 : 31–39.
Oberleithner, H., Riethmüller, C., Ludwig, T., Hausberg, M., and
Schillers, H. (2006). Aldosterone remodels human endothelium. In Acta
Physiologica, (Acta Physiol (Oxf)), pp 305–312.
Oberleithner, H., Riethmüller, C., Schillers, H., MacGregor, G.A.,
Wardener, H.E. De, and Hausberg, M. (2007). Plasma sodium stiffens
vascular endothelium and reduces nitric oxide release. Proc. Natl. Acad.
Sci. U. S. A. 104 : 16281–16286.
Oberleithner, H., Schneider, S.W., Albermann, L., Hillebrand, U.,
Ludwig, T., Riethmüller, C., et al. (2003). Endothelial Cell Swelling by
Aldosterone. J. Membr. Biol. 196 : 163–172.
Okoshi, M.P., Cezar, M.D.M., Iyomasa, R.M., Silva, M.B., Costa, L.C.O.,
Martinez, P.F., et al. (2016). Effects of early aldosterone antagonism
on cardiac remodeling in rats with aortic stenosis-induced pressure
overload. Int. J. Cardiol. 222 : 569–575.
Ouvrard-Pascaud, A., Sainte-Marie, Y., Bénitah, J.P., Perrier, R.,
Soukaseum, C., Cat, A.N.D., et al. (2005). Conditional mineralocorticoid
receptor expression in the heart leads to life-threatening arrhythmias.
Circulation 111 : 3025–3033.
Pandey, A., Garg, S., Matulevicius, S.A., Shah, A.M., Garg, J., Drazner,
M.H., et al. (2015). Effect of mineralocorticoid receptor antagonists on
cardiac structure and function in patients with diastolic dysfunction
and heart failure with preserved ejection fraction: A meta-analysis and
systematic review. J. Am. Heart Assoc. 4 :e002137.
Pei, H., Wang, W., Zhao, D., Wang, L., Su, G.H., and Zhao, Z. (2018).
The use of a novel non-steroidal mineralocorticoid receptor antagonist
finerenone for the treatment of chronic heart failure: A systematic
review and meta-analysis. Med. (United States) 97 : e0254.
Pieronne-Deperrois, M., Guéret, A., Djerada, Z., Crochemore, C.,
Harouki, N., Henry, J.P., et al. (2021). Mineralocorticoid receptor
blockade with finerenone improves heart function and exercise capacity
in ovariectomized mice. ESC Hear. Fail. 8 :1933-1943.
Pitt, B., Pfeffer, M.A., Assmann, S.F., Boineau, R., Anand, I.S.,
Claggett, B., et al. (2014). Spironolactone for heart failure with
preserved ejection fraction. N. Engl. J. Med. 370 : 1383–92.
Pitt, B., Remme, W., Zannad, F., Neaton, J., Martinez, F., Roniker, B.,
et al. (2003). Eplerenone, a Selective Aldosterone Blocker, in Patients
with Left Ventricular Dysfunction after Myocardial Infarction. N. Engl.
J. Med. 348 : 1309–1321.
Pitt, B., Zannad, F., Remme, W.J., Cody, R., Castaigne, A., Perez, A.,
et al. (1999). The Effect of Spironolactone on Morbidity and Mortality
in Patients with Severe Heart Failure. N. Engl. J. Med. 341 :
709–717.
Ponikowski, P., Voors, A.A., Anker, S.D., Bueno, H., Cleland, J.G.F.,
Coats, A.J.S., et al. (2016). 2016 ESC Guidelines for the diagnosis and
treatment of acute and chronic heart failure: The Task Force for the
diagnosis and treatment of acute and chronic heart failure of the
European Society of Cardiology (ESC). Developed with the special
contribution of the Heart Failure Association (HFA) of the ESC. Eur. J.
Heart Fail. 18 : 891–975.
Pruthi, D., Mccurley, A., Aronovitz, M., Galayda, C., Karumanchi, S.A.,
and Jaffe, I.Z. (2014). Aldosterone promotes vascular remodeling by
direct effects on smooth muscle cell mineralocorticoid receptors.
Arterioscler. Thromb. Vasc. Biol. 34 : 355–364.
Rickard, A.J., Morgan, J., Bienvenu, L.A., Fletcher, E.K., Cranston,
G.A., Shen, J.Z., et al. (2012). Cardiomyocyte mineralocorticoid
receptors are essential for deoxycorticosterone/salt-mediated
inflammation and cardiac fibrosis. Hypertension 60 : 1443–1450.
Rickard, A.J., Morgan, J., Chrissobolis, S., Miller, A.A., Sobey, C.G.,
and Young, M.J. (2014). Endothelial cell mineralocorticoid receptors
regulate deoxycorticosterone/ salt-mediated cardiac remodeling and
vascular reactivity but not blood pressure. Hypertension 63 :
1033–1040.
Rickard, A.J., Morgan, J., Tesch, G., Funder, J.W., Fuller, P.J., and
Young, M.J. (2009). Deletion of mineralocorticoid receptors from
macrophages protects against deoxycorticosterone/salt-induced cardiac
fibrosis and increased blood pressure. Hypertension 54 : 537–543.
Rickard, A.J., and Young, M.J. (2009). Corticosteroid receptors,
macrophages and cardiovascular disease. J. Mol. Endocrinol. 42 :
449–459.
Riehle, C., and Bauersachs, J. (2019). Small animal models of heart
failure. Cardiovasc. Res. 115 : 1838–1849.
Sakurabayashi-Kitade, S., Aoka, Y., Nagashima, H., Kasanuki, H.,
Hagiwara, N., and Kawana, M. (2009). Aldosterone blockade by
Spironolactone improves the hypertensive vascular hypertrophy and
remodeling in angiotensin II overproducing transgenic mice.
Atherosclerosis 206 : 54–60.
Salvador, A.M., Moss, M.E., Aronovitz, M., Mueller, K.B., Blanton, R.M.,
Jaffe, I.Z., et al. (2017). Endothelial mineralocorticoid receptor
contributes to systolic dysfunction induced by pressure overload without
modulating cardiac hypertrophy or inflammation. Physiol. Rep.5 :e13313.
Schäfer, N., Lohmann, C., Winnik, S., Tits, L.J. Van, Miranda, M.X.,
Vergopoulos, A., et al. (2013). Endothelialmineralocorticoid receptor
activation mediates endothelial dysfunction in diet-induced obesity.
Eur. Heart J. 34 : 3515–3524.
Sun, Y., Zhang, J., Lu, L., Chen, S.S., Quinn, M.T., and Weber, K.T.
(2002). Aldosterone-induced inflammation in the rat heart: Role of
oxidative stress. Am. J. Pathol. 161 : 1773–1781.
Tarjus, A., Martínez-Martínez, E., Amador, C., Latouche, C., Moghrabi,
S. El, Berger, T., et al. (2015). Neutrophil gelatinase-associated
lipocalin, a novel mineralocorticoid biotarget, mediates vascular
profibrotic effects of mineralocorticoids. Hypertension 66 :
158–166.
Tsujimoto, T., and Kajio, H. (2020). Spironolactone Use and Improved
Outcomes in Patients With Heart Failure With Preserved Ejection Fraction
With Resistant Hypertension. J. Am. Heart Assoc. 9 : e018827.
Usher, M.G., Duan, S.Z., Ivaschenko, C.Y., Frieler, R.A., Berger, S.,
Schütz, G., et al. (2010). Myeloid mineralocorticoid receptor controls
macrophage polarization and cardiovascular hypertrophy and remodeling in
mice. J. Clin. Invest. 120 : 3350–3364.
Virdis, A., Neves, M.F., Amiri, F., Viel, E., Touyz, R.M., and
Schiffrin, E.L. (2002). Spironolactone improves angiotensin-induced
vascular changes and oxidative stress. Hypertension 40 : 504–510.
Wang, D., Liu, Y.H., Yang, X.P., Rhaleb, N.E., Xu, J., Peterson, E., et
al. (2004). Role of a selective aldosterone blocker in mice with chronic
heart failure. J. Card. Fail. 10 : 67–73.
Weinberger, T., and Schulz, C. (2015). Myocardial infarction: A critical
role of macrophages in cardiac remodeling. Front. Physiol. 6 :107.
Williams, B., Mancia, G., Spiering, W., Rosei, E.A., Azizi, M., Burnier,
M., et al. (2018). 2018 ESC/ESH Guidelines for themanagement of arterial
hypertension. Eur. Heart J. 39 : 3021–3104.
Xiang, Y., Shi, W., Li, Z., Yang, Y., Wang, S.Y., Xiang, R., et al.
(2019). Efficacy and safety of spironolactone in the heart failure with
mid-range ejection fraction and heart failure with preserved ejection
fraction: A meta-analysis of randomized clinical trials. Med. (United
States) 98 :e14967.
Yamamuro, M., Yoshimura, M., Nakayama, M., Abe, K., Shono, M., Suzuki,
S., et al. (2006). Direct effects of aldosterone on cardiomyocytes in
the presence of normal and elevated extracellular sodium. Endocrinology147 : 1314–1321.
Yanes, L.L., Romero, D.G., Iliescu, R., Zhang, H., Davis, D., and
Reckelhoff, J.F. (2010). Postmenopausal hypertension: Role of the
renin-angiotensin system. Hypertension 56 : 359–363.
Young, M.J., and Rickard, A.J. (2015). Mineralocorticoid receptors in
the heart: Lessons from cell-selective transgenic animals. J.
Endocrinol. 224 : R1–R13.
Zannad, F., Gattis Stough, W., Rossignol, P., Bauersachs, J., McMurray,
J.J.V., Swedberg, K., et al. (2012). Mineralocorticoid receptor
antagonists for heart failure with reduced ejection fraction:
Integrating evidence into clinical practice. Eur. Heart J. 33 :
2782–2795.
Zannad, F., McMurray, J.J.V., Krum, H., Veldhuisen, D.J. van, Swedberg,
K., Shi, H., et al. (2011). Eplerenone in Patients with Systolic Heart
Failure and Mild Symptoms. N. Engl. J. Med. 364 : 11–21.
Zhou, G., Kandala, J.C., Tyagi, S.C., Katwa, L.C., and Weber, K.T.
(1996). Effects of angiotensin II and aldosterone on collagen gene
expression and protein turnover in cardiac fibroblasts. Mol. Cell.
Biochem. 154 : 171–178.