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Abstract

In this paper, we formulate a generalized hepatitis B virus (HBV) infection model
with two modes of infection transmission and adaptive immunity, and investigate its
dynamical properties. Both the virus-to-cell and cell-to-cell infection transmissions are
modeled by general functions which satisfy some biologically motivated assumptions.
Furthermore, the model incorporates three distributed time delays for the production
of active infected hepatocytes, mature capsids and virions. The well-posedness of the
proposed model is established by showing the non-negativity and boundedness of solu-
tions. Five equilibria of the model are identified in terms of five threshold parameters
R0, R1, R2, R3 and R4. Further, the global stability analysis of each equilibrium under
certain conditions is carried out by employing suitable Lyapunov function and LaSalle’s
invariance principle. Finally, we present an example with numerical simulations to il-
lustrate the applicability of our study. Nonetheless, the results obtained in this study
are valid for a wide class of HBV infection models.

Keywords: HBV infection; General incidence function; Adaptive immunity; Distributed
delay; Global stability; Lyapunov function

1 Introduction

Hepatitis B is a dangerous viral infection caused by the hepatitis B virus (HBV) that at-
tacks and injures liver cells called hepatocytes. It can cause both the acute and chronic
illness, and it also represents a major global health problem during the last few years. For
instance, the World Health Organization (WHO) estimated that 296 million people were
living with chronic hepatitis B infection, and 820 000 people died in 2019 mainly due to cir-
rhosis and hepatocellular carcinoma (primary liver cancer) [1]. Chronic hepatitis B infection
can be treated with medicines including oral antiviral agents. However, there is no specific
treatment for acute hepatitis B.

Adaptive immunity plays a substantial role in the defense against HBV infection by using
two fundamental arms, which are humoral and cellular immune responses [2, 3]. The first
one is based on the antibodies that are produced by the B-cells and they are programmed to
neutralize the HBV [2, 3]. Whereas, the second arm is mediated by cytotoxic T lymphocyte
(CTL) cells in order to kill the infected hepatocytes [2, 3].

Modeling the role of adaptive immunity in HBV infection has attracted the attention of
many researchers. One of the first models was introduced in [2] to explain mathematically
the dysfunction of the adaptive immune response in patients infected with HBV, which was
observed by Boni et al. [4] in 2007. Hattaf et al. [5, 6] extended the model of [2] in order to
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describe the dynamics of other viral infections such as human immunodeficiency virus (HIV)
that often causes acquired immunodeficiency syndrome (AIDS). More recently, Manna and
Hattaf [3] proposed an immunological model that incorporates the intracellular HBV DNA-
containing capsids, three delays, adaptive immunity and general incidence rate that covers
the bilinear incidence rate, the standard incidence, the Beddington-DeAngelis functional
response, the Crowley-Martin functional response and the Hattaf-Yousfi functional response.

On the other hand, HBV infection in liver can spread via two different modes, one by
virus-to-cell transmission and the other by cell-to-cell transmission through direct contact
[7, 8, 9]. However, most of the mathematical models considered only the first classical mode
of transmission of HBV [2, 10, 11, 12]. Furthermore, an experimental study in [13] showed
that the direct cell-to-cell transmission can contributes to the viral persistence. Based on
these biological reasons, Hattaf [14] proposed a class of immunological models with both
modes of transmission but he did not consider the HBV DNA-containing capsids. However,
both these components of HBV infection have been considered in [15], but the first arm of
immunity mediated by antibodies was neglected. This paper aims to develop a generalized
mathematical model that better describes the dynamics of HBV infection in presence of
capsids, both arms of adaptive immunity, two modes of transmission, and three distributed
delays.

Primary goal of this study is to provide dynamical properties of the generalized HBV
infection model which is an amalgamation of several commonly used specific models. The or-
ganization of the rest of this paper is as follows. We introduce our generalized HBV infection
model incorporating both modes of infection transmission and multiple distributed delays
in the next section with a brief description. In Section 3, we establish the non-negativity
and boundedness of solutions as well as the existence of possible equilibria depending upon
the conditions in terms of threshold parameters. Global stability of all equilibria and associ-
ated conditions are obtained in Section 4. Further, in Section 5, we present an appropriate
application of our study with numerical simulations. Finally, we end this paper with brief
concluding remarks.

2 Model formulation

In this section, we propose and describe a generalized HBV infection model with two modes
of infection transmission process (that is, virus-to-cell and cell-to-cell infection processes),
adaptive immunity (that is, antibody B cell and CTL mediated immune responses), and
multiple distributed delays. Our generalized model is the following system comprising of six
delay differential equations:

dH

dt
= s− µH(t)− f

(
H(t), I(t), V (t)

)
V (t)− g

(
H(t), I(t)

)
I(t),

dI

dt
=

∫ ∞

0

f1(τ)e
−α1τ

[
f
(
H(t− τ), I(t − τ), V (t− τ)

)
V (t− τ) +

g
(
H(t− τ), I(t− τ)

)
I(t− τ)

]
dτ − δI(t)− pI(t)Z(t),

dD

dt
= κ

∫ ∞

0

f2(τ)e
−α2τI(t− τ)dτ − (β + δ)D(t), (1)

dV

dt
= β

∫ ∞

0

f3(τ)e
−α3τD(t− τ)dτ − νV (t)− qV (t)W (t),

dW

dt
= aV (t)W (t) − σW (t),

dZ

dt
= bI(t)Z(t)− ηZ(t),
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where H(t), I(t), D(t), V (t), W (t) and Z(t) are the densities of the uninfected hepatocytes,
infected hepatocytes, capsids, virions, antibodies and CTL cells at time t, respectively.
The parameters s and µ represent the constant production and natural death rates of the
uninfected hepatocytes, respectively. The infected hepatocytes are assumed to die naturally
at a rate δ and to get neutralized by CTL immune responses at a rate p. On the other
hand, capsids replicate at a rate κ and get converted to virions at a rate β. The effective
decay rate of capsids is thus represented by (β + δ). The natural and antibody-induced
death rates of virions are denoted by ν and q, respectively. Both the antibody and CTL
immune responses are respectively activated at rates a and b, while the parameters σ and
η stand for the respective decay rates. In model (1), both the virus-to-cell and cell-to-cell
infection processes in their general forms are characterized by the terms f(H, I, V )V and
g(H, I)I, respectively. In this case, the incidence functions f(H, I, V ) and g(H, I) for both
these modes of infection are assumed to be continuously differentiable and to satisfy the
following biologically feasible hypotheses [3, 15, 16, 17]:

(A1) f(0, I, V ) = 0 for all I ≥ 0 and V ≥ 0.

(A2) f(H, I, V ) is a strictly increasing function with respect to H for fixed I ≥ 0 and V ≥ 0
(i.e., ∂f

∂H
> 0).

(A3) f(H, I, V ) is a monotone decreasing function with respect to I and V (i.e, ∂f
∂I

≤ 0 and
∂f
∂V

≤ 0).

(A4) g(0, I) = 0 for all I ≥ 0; ∂g
∂H

> 0 and ∂g
∂I

≤ 0 for all H, I ≥ 0.

We can explain the above hypotheses within the periphery of biology as follows. The first
hypothesis (A1) indicates that the incidence rate for the virus-to-cell infection transmission
becomes zero in the absence of uninfected hepatocytes. The next two hypotheses (A2)
and (A3) mean that the incidence rate for this mode of transmission increases with the
increasing density of uninfected hepatocytes, while it decreases with the increasing densities
of both the infected hepatocytes and virions. Similarly, the last hypothesis (A4) indicates
that the incidence rate for the cell-to-cell infection transmission becomes zero in the absence
of uninfected hepatocytes, becomes increasing with the increasing density of uninfected
hepatocytes, and decreases with the increasing density of infected hepatocytes. Overall, the
higher density of uninfected hepatocytes puts the infection process in fast-track, however,
the higher densities of infected hepatocytes and/or virions cause to decline the infection
rate. It should be noted that several commonly used incidence rates in the literature follow
the above-mentioned hypotheses. We will exhibit one such example in Section 5.

In model (1), the term
∫∞

0 f1(τ1)e
−α1τ1

[
f
(
H(t − τ1), I(t − τ1), V (t − τ1)

)
V (t − τ1) +

g
(
H(t − τ1), I(t − τ1)

)
I(t − τ1)

]
dτ1 describes the newly activated infected hepatocytes at

time t which are infected through at least one of the two modes of transmission τ1 time
ago [15]. In this case, e−α1τ1 represents the survival rate of latently infected hepatocytes
during time period [t − τ1, t] with a probability distribution f1(τ1). Similarly, the terms
κ
∫∞

0 f2(τ2)e
−α2τ2I(t − τ2)dτ2 and β

∫∞

0 f3(τ3)e
−α3τ3D(t − τ3)dτ3 respectively account for

the mature capsids and virions produced at time t [15]. Here, e−α2τ2 and e−α3τ3 respectively
indicate the survival rates of immature capsids during time period [t − τ2, t] and mature
capsids during time period [t− τ3, t] with corresponding probability distributions f2(τ2) and
f3(τ3). Without any loss of generality, we have denoted τ1, τ2 and τ3 by τ in model (1) as
they are all integration dummy variables. Also, the probability distributions fi(τ) : [0,∞) →
[0,∞) are assumed to have compact supports, fi(τ) ≥ 0, and

∫∞

0
fi(τ)dτ = 1 for i = 1, 2, 3.

The model (1) is supplemented with the following non-negative initial conditions:

H(θ) = φ1(θ) ≥ 0, I(θ) = φ2(θ) ≥ 0, D(θ) = φ3(θ) ≥ 0, V (θ) = φ4(θ) ≥ 0,
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W (θ) = φ5(θ) ≥ 0, Z(θ) = φ6(θ) ≥ 0, for θ ∈ (−∞, 0]. (2)

Now, we define the Banach space of fading memory type as follows [18, 19, 20]:

C :=
{
ϕ ∈ C((−∞, 0],R)|ϕ(θ)erθ is uniformly continuous for θ ∈ (−∞, 0] and ‖ϕ‖ < ∞

}
,

where the norm ‖ϕ‖ = supθ≤0 |ϕ(θ)|e
rθ with r being a positive constant. The corresponding

non-negative cone of C is defined by C+ = C((−∞, 0],R+). We also define ϕt ∈ C+ as
ϕt(θ) = ϕ(t + θ) for θ ∈ (−∞, 0] and ϕ ∈ C+. In this case, the initial conditions for model
(1), φ = (φ1, φ2, φ3, φ4, φ5, φ6) ∈ C6

+ := C+ × C+ × C+ × C+ × C+ × C+. All the model
parameters are assumed to be positive from their biological considerations.

3 Preliminaries

The model (1) along with an initial condition of the type (2) admits a unique solution for
t > 0 and it can be easily proved by the standard theory of functional differential equations
[20, 21]. In what follows, we prove the non-negativity and boundedness of solutions of the
system (1)-(2). Further, we find the possible biologically feasible equilibria of the model (1)
and their existential criteria.

Theorem 3.1. All solutions of the model (1) along with initial conditions (2) are non-negative
and ultimately uniformly bounded for t ≥ 0.

Proof. First, we show that H(t) > 0 for all t ≥ 0 by the method of contradiction. Let us
consider H(t1) = 0 for some t1 > 0 and H(t) > 0 for t ∈ [0, t1). Then the first equation

of the model (1) implies that dH(t1)
dt

= s > 0. Thus, H(t) < 0 for t ∈ (t1 − ε, t1) with
sufficiently small ε > 0. This contradicts the fact that H(t) > 0 for t ∈ [0, t1), and it follows
that H(t) > 0 for all t ≥ 0. Also from the last two equations of the model (1), we have
dW
dt

∣∣
W=0

= 0 and dZ
dt

∣∣
Z=0

= 0. This implies that W (t) ≥ 0 and Z(t) ≥ 0 for all t ≥ 0. From
the remaining three equations of the model (1), we obtain

I(t) = φ2(0)e
−

∫
t

0
(δ+pZ(ξ))dξ +

∫ t

0

e−
∫

t

ζ
(δ+pZ(ξ))dξ

∫ ∞

0

f1(τ)e
−α1τ

[
f
(
H(ζ − τ), I(ζ − τ), V (ζ − τ)

)
V (ζ − τ) + g

(
H(ζ − τ), I(ζ − τ)

)
I(ζ − τ)

]
dτdζ,

D(t) =

[
φ3(0) + κ

∫ t

0

e(β+δ)ζ

∫ ∞

0

f2(τ)e
−α2τ I(ζ − τ)dτdζ

]
e−(β+δ)t,

V (t) = φ4(0)e
−

∫
t

0
(ν+qW (ξ))dξ + β

∫ t

0

e−
∫

t

ζ
(ν+qW (ξ))dξ

∫ ∞

0

f3(τ)e
−α3τD(ζ − τ)dτdζ,

which imply that I(t) ≥ 0, D(t) ≥ 0 and V (t) ≥ 0 for small t > 0. If possible, we assume
that t2 > 0 is the first time such that min{I(t2), D(t2), V (t2)} < 0. If I(t2) < 0, I(t) ≥ 0
for 0 ≤ t < t2, and D(t) ≥ 0 and V (t) ≥ 0 for 0 ≤ t ≤ t2, then we obtain

dI(t2)

dt
=

∫ ∞

0

f1(τ)e
−α1τ

[
f
(
H(t2 − τ), I(t2 − τ), V (t2 − τ)

)
V (t2 − τ) +

g
(
H(t2 − τ), I(t2 − τ)

)
I(t2 − τ)

]
dτ − δI(t2)− pI(t2)Z(t2) > 0.

This contradicts the fact that I(t2) < 0 and I(t) ≥ 0 for 0 ≤ t < t2. Also if D(t2) < 0,
D(t) ≥ 0 for 0 ≤ t < t2, and I(t) ≥ 0 and V (t) ≥ 0 for 0 ≤ t ≤ t2, then we have

dD(t2)

dt
= κ

∫ ∞

0

f2(τ)e
−α2τI(t2 − τ)dτ − (β + δ)D(t2) > 0,
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which amounts to another contradiction. Finally, if V (t2) < 0, V (t) ≥ 0 for 0 ≤ t < t2, and
I(t) ≥ 0 and D(t) ≥ 0 for 0 ≤ t ≤ t2, then we have

dV (t2)

dt
= β

∫ ∞

0

f3(τ)e
−α3τD(t2 − τ)dτ − νV (t2)− qV (t2)W (t2) > 0,

which is again a contradiction. Therefore, we obtain I(t) ≥ 0, D(t) ≥ 0 and V (t) ≥ 0 for all
t ≥ 0.

Now, we prove the boundedness of solutions. From the first equation of the model (1),
we obtain dH

dt
≤ s− µH(t) and this implies lim supt→∞ H(t) ≤ s

µ
. Let us define

X(t) =

∫ ∞

0

f1(τ)e
−α1τH(t− τ)dτ + I(t) +

p

b
Z(t).

Then, we have

dX

dt
= s

∫ ∞

0

f1(τ)e
−α1τdτ − µ

∫ ∞

0

f1(τ)e
−α1τH(t− τ)dτ − δI(t)−

pη

b
Z(t)

≤ s

∫ ∞

0

f1(τ)e
−α1τdτ −mX(t),

where m = min{µ, δ, η}. Hence, it follows that lim supt→∞ X(t) ≤ s
m

∫∞

0
f1(τ)e

−α1τdτ :=
M1. As a consequence, we obtain lim supt→∞ I(t) ≤ M1 and lim supt→∞ Z(t) ≤ M1. Now
using the bound for I(t) in the third equation of model (1), we have

dD

dt
≤ κM1

∫ ∞

0

f2(τ)e
−α2τdτ − (β + δ)D(t).

This implies that lim supt→∞ D(t) ≤ κM1

(β+δ)

∫∞

0 f2(τ)e
−α2τdτ := M2. Further, we define

Y (t) = V (t) + q
a
W (t). Thus, we have

dY

dt
= β

∫ ∞

0

f3(τ)e
−α3τD(t− τ)dτ − νV (t)−

qσ

a
W (t)

≤ βM2

∫ ∞

0

f3(τ)e
−α3τdτ − νV (t)−

qσ

a
W (t)

≤ βM2

∫ ∞

0

f3(τ)e
−α3τdτ − nY (t),

where n = min{ν, σ}. Hence, it follows that lim supt→∞ Y (t) ≤ βM2

n

∫∞

0
f3(τ)e

−α3τdτ :=
M3. As a result, we have lim supt→∞ V (t) ≤ M3 and lim supt→∞ W (t) ≤ M3. Therefore,
H(t), I(t), D(t), V (t), W (t) and Z(t) are ultimately uniformly bounded.

Now, we derive all possible equilibria of the model (1). A typical equilibrium point

E =
(
H̃, Ĩ, D̃, Ṽ , W̃ , Z̃

)
of the model (1) satisfies the following system of algebraic equations:

s− µH̃ − f
(
H̃, Ĩ, Ṽ

)
Ṽ − g

(
H̃, Ĩ

)
Ĩ = 0,

Γ1

[
f
(
H̃, Ĩ, Ṽ

)
Ṽ + g

(
H̃, Ĩ

)
Ĩ
]
− δĨ − pĨZ̃ = 0,

κΓ2Ĩ − (β + δ)D̃ = 0, (3)

βΓ3D̃ − νṼ − qṼ W̃ = 0,

aṼ W̃ − σW̃ = 0,

bĨZ̃ − ηZ̃ = 0,
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where

Γi :=

∫ ∞

0

fi(τ)e
−αiτdτ for i = 1, 2, 3. (4)

We can easily deduce from the above system (3) that the model (1) always admits a unique
infection-free equilibrium point E0 =

(
H0, 0, 0, 0, 0, 0

)
with H0 = s

µ
. This equilibrium point

E0 basically indicates that either an infected individual is completely cured from the HBV
infection or an individual without any exposure to the infection. Now, we define the basic
reproduction number of the model (1) by

R0 :=
κβΓ1Γ2Γ3

νδ(β + δ)
f
(
H0, 0, 0

)
+

Γ1

δ
g
(
H0, 0

)
. (5)

The basic reproduction number, R0, provides a measure for the average number of sec-
ondary infections and it has been represented as a sum of two quantities due to two modes
of transmission of the infection process. To be specific, the term κβΓ1Γ2Γ3

νδ(β+δ) f
(
H0, 0, 0

)
:=

R
(1)
0 represents the basic reproduction number for virus-to-cell transmission and the term

Γ1

δ
g
(
H0, 0

)
:= R

(2)
0 represents the same for cell-to-cell transmission.

If we take W̃ = 0 and Z̃ = 0, then we have Ĩ = Γ1

δ

(
s − µH̃

)
, D̃ = κΓ1Γ2

δ(β+δ)

(
s − µH̃

)
,

Ṽ = κβΓ1Γ2Γ3

νδ(β+δ)

(
s− µH̃

)
and

κβΓ1Γ2Γ3f

(
H̃,

Γ1

δ

(
s− µH̃

)
,
κβΓ1Γ2Γ3

νδ(β + δ)

(
s− µH̃

))
+ ν(β + δ)Γ1g

(
H̃,

Γ1

δ

(
s− µH̃

))

= νδ(β + δ).

Of course Ĩ is biologically feasible if and only if Ĩ ≥ 0 and it implies H̃ ≤ s
µ
. Let us define

a function Φ1 on the closed interval [0, s/µ] as follows

Φ1(H) = κβΓ1Γ2Γ3f

(
H,

Γ1

δ

(
s− µH

)
,
κβΓ1Γ2Γ3

νδ(β + δ)

(
s− µH

))

+ν(β + δ)Γ1g

(
H,

Γ1

δ

(
s− µH

))
− νδ(β + δ).

Then, we obtain Φ1(0) = −νδ(β + δ) < 0, Φ1

(
s
µ

)
= νδ(β + δ)

(
R0 − 1

)
> 0 for R0 > 1, and

Φ′
1(H) = κβΓ1Γ2Γ3

[
∂f

∂H
−

µΓ1

δ

∂f

∂I
−

κβµΓ1Γ2Γ3

νδ(β + δ)

∂f

∂V

]

+ν(β + δ)Γ1

[
∂g

∂H
−

µΓ1

δ

∂g

∂I

]
.

Using the hypotheses (A2)-(A4), we have Φ′
1(H) > 0 and this implies that Φ1 is a strictly

increasing function of H . Therefore, there exists a unique immune-free equilibrium point

E1 =
(
H1, I1, D1, V1, 0, 0

)
with H1 ∈

(
0, s

µ

)
, I1 = Γ1

δ

(
s− µH1

)
, D1 = κΓ1Γ2

δ(β+δ)

(
s− µH1

)
and

V1 = κβΓ1Γ2Γ3

νδ(β+δ)

(
s − µH1

)
whenever R0 > 1. On the other hand, the consideration R0 < 1

leads to Φ1

(
s
µ

)
< 0, and hence, the equilibrium point E1 does not exist in this case.

Further, if we consider W̃ 6= 0 and Z̃ = 0, then we have Ṽ = σ
a
, Ĩ = Γ1

δ

(
s − µH̃

)
,

D̃ = κΓ1Γ2

δ(β+δ)

(
s− µH̃

)
and W̃ = aκβΓ1Γ2Γ3

qδσ(β+δ)

(
s− µH̃

)
− ν

q
. Similarly, W̃ is biologically feasible

if and only if W̃ ≥ 0 and it implies H̃ ≤ s
µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3
. Also, we obtain

δσf

(
H̃,

Γ1

δ

(
s− µH̃

)
,
σ

a

)
+ aΓ1

(
s− µH̃

)
g

(
H̃,

Γ1

δ

(
s− µH̃

))
= aδ

(
s− µH̃

)
.
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In this case, let us define a function Φ2 on the closed interval
[
0, s

µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3

]
as follows

Φ2(H) = δσf

(
H,

Γ1

δ

(
s− µH

)
,
σ

a

)
+ aΓ1

(
s− µH

)
g

(
H,

Γ1

δ

(
s− µH

))
− aδ

(
s− µH

)
.

We can easily observe that Φ2(0) = −aδs < 0 and

Φ′
2(H) = δσ

[
∂f

∂H
−

µΓ1

δ

∂f

∂I

]
+ aΓ1(s− µH)

[
∂g

∂H
−

µΓ1

δ

∂g

∂I

]

+aµ

[
δ − Γ1g

(
H,

Γ1

δ
(s− µH)

)]
.

Using the hypotheses (A1)-(A4), we have Φ′
2(H) > 0 which implies that Φ2 is a strictly

increasing function of H . Now, we define the reproduction number for antibody immune
response by

R1 :=
a

σ
V1, (6)

which provides a measure of the average number of antibodies activated by virus when CTL
immune response has not been activated [3, 6]. Here, V1 represents the density of virions at
the immune-free equilibrium level, while other parameters a and 1

σ
respectively indicate the

activation rate of antibody immune response and the average life expectancy of antibody

immune cells. If R1 > 1, then we have V1 > σ
a
and H1 < s

µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3

. Thus, we obtain

Φ2

(
s

µ
−

δνσ(β + δ)

aκβµΓ1Γ2Γ3

)
>

δσ

κβΓ1Γ2Γ3

[
κβΓ1Γ2Γ3f

(
H1, I1, V1

)
+ ν(β + δ)Γ1g

(
H1, I1

)

−νδ(β + δ)
]
=

δσ

κβΓ1Γ2Γ3
Φ1(H1) = 0.

Therefore, there exists a unique infection equilibrium point with only antibody immune

response E2 =
(
H2, I2, D2, V2,W2, 0

)
with H2 ∈

(
0, s

µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3

)
, I2 = Γ1

δ

(
s − µH2

)
,

D2 = κΓ1Γ2

δ(β+δ)

(
s − µH2

)
, V2 = σ

a
and W2 = aκβΓ1Γ2Γ3

qδσ(β+δ)

(
s − µH2

)
− ν

q
whenever R1 > 1.

However, the condition R1 < 1 implies that V1 < σ
a
and H1 > s

µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3
. Hence, we

have

Φ2

(
s

µ
−

δνσ(β + δ)

aκβµΓ1Γ2Γ3

)
<

δσ

κβΓ1Γ2Γ3
Φ1(H1) = 0.

Thus, the equilibrium point E2 does not exist for R1 < 1.
Now, we consider W̃ = 0 and Z̃ 6= 0. In this case, we obtain Ĩ = η

b
, D̃ = κηΓ2

b(β+δ) ,

Ṽ = κβηΓ2Γ3

bν(β+δ) and Z̃ = bΓ1

pη

(
s−µH̃

)
− δ

p
. Since Z̃ is biologically feasible if and only if Z̃ ≥ 0,

then we have H̃ ≤ s
µ
− δη

bµΓ1

. Also, we have

κβηΓ2Γ3f

(
H̃,

η

b
,
κβηΓ2Γ3

bν(β + δ)

)
+ ην(β + δ)g

(
H̃,

η

b

)
= bν(β + δ)

(
s− µH̃

)
.

Let us define a function Φ3 on the closed interval
[
0, s

µ
− δη

bµΓ1

]
as follows

Φ3(H) = κβηΓ2Γ3f

(
H,

η

b
,
κβηΓ2Γ3

bν(β + δ)

)
+ ην(β + δ)g

(
H,

η

b

)
− bν(β + δ)

(
s− µH

)
.
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Then, we can easily obtain that Φ3(0) = −bsν(β + δ) < 0 and

Φ′
3(H) = κβηΓ2Γ3

∂f

∂H
+ ην(β + δ)

∂g

∂H
+ bµν(β + δ).

Using the hypotheses (A2) and (A4), we deduce that Φ
′
3(H) > 0 which indicates that Φ3 is a

strictly increasing function of H . Now, we define the reproduction number for CTL immune
response by

R2 :=
b

η
I1, (7)

which provides a measure of the average number of CTL cells stimulated by infected hep-
atocytes when antibody immune response has not been activated [3, 6]. In this case, I1
represents the density of infected hepatocytes at the immune-free equilibrium level, while
other parameters b and 1

η
respectively describe the activation rate of CTL immune response

and the average life expectancy of CTL cells. Now, if R2 > 1, then we have I1 > η
b
and

H1 < s
µ
− δη

bµΓ1
. Thus, we obtain

Φ3

(
s

µ
−

δη

bµΓ1

)
>

η

Γ1

[
κβΓ1Γ2Γ3f

(
H1, I1, V1

)
+ ν(β + δ)Γ1g

(
H1, I1

)
− νδ(β + δ)

]

=
η

Γ1
Φ3

(
H1

)
= 0.

Therefore, there exists a unique infection equilibrium point with only CTL immune response

E3 =
(
H3, I3, D3, V3, 0, Z3

)
with H3 ∈

(
0, s

µ
− δη

bµΓ1

)
, I3 = η

b
, D3 = κηΓ2

b(β+δ) , V3 = κβηΓ2Γ3

bν(β+δ)

and Z3 = bΓ1

pη

(
s−µH3

)
− δ

p
whenever R2 > 1. On the other hand, the consideration R2 < 1

leads to I1 < η
b
and H1 > s

µ
− δη

bµΓ1

, and hence, we obtain

Φ3

(
s

µ
−

δη

bµΓ1

)
<

η

Γ1
Φ3

(
H1

)
= 0.

Thus, the equilibrium point E3 does not exist for R2 < 1.
Finally, we consider W̃ 6= 0 and Z̃ 6= 0. Then, we have Ĩ = η

b
, D̃ = κηΓ2

b(β+δ) , Ṽ = σ
a
,

W̃ = aκβηΓ2Γ3

bqσ(β+δ) − ν
q
, Z̃ = bΓ1

pη

(
s− µH̃

)
− δ

p
and

bσf
(
H̃,

η

b
,
σ

a

)
+ aηg

(
H̃,

η

b

)
= ab

(
s− µH̃

)
.

Since the condition Z̃ ≥ 0 is required for biologically feasible Z̃, then we obtain H̃ ≤ s
µ
− δη

bµΓ1

.

In this case, let us define a function Φ4 on the closed interval
[
0, s

µ
− δη

bµΓ1

]
by

Φ4(H) = bσf
(
H,

η

b
,
σ

a

)
+ aηg

(
H,

η

b

)
− ab

(
s− µH

)
.

It is easy to notice that Φ4(0) = −abs < 0, and Φ′
4(H) = bσ ∂f

∂H
+ aη ∂g

∂H
+ abµ > 0 due to

the hypotheses (A2) and (A4). Now, we define two reproduction numbers for competitive
CTL and antibody immune responses as

R3 :=
b

η
I2 and R4 :=

a

σ
V3, (8)

respectively. From the biological perspective, R3 provides a measure for the average number
of CTL cells activated by infected hepatocytes when the antibody immune response is already
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at work, and R4 describes the same for antibody immune cells activated by virions when
the CTL immune response is already at work [3, 6]. Of course, R4 > 1 implies that W̃ =
aκβηΓ2Γ3

bqσ(β+δ) − ν
q

= ν
q

(
R4 − 1

)
> 0. On the other hand, R3 > 1 implies that I2 > η

b
and

H2 < s
µ
− δη

bµΓ1

. Then, we have

Φ4

(
s

µ
−

δη

bµΓ1

)
=

b

δ
Φ2

(
s

µ
−

δη

bµΓ1

)
>

b

δ
Φ2

(
H2

)
= 0.

Therefore, there exists a unique infection equilibrium point with adaptive immune responses

E4 =
(
H4, I4, D4, V4,W4, Z4

)
with H4 ∈

(
0, s

µ
− δη

bµΓ1

)
, I4 = η

b
, D4 = κηΓ2

b(β+δ) , V4 = σ
a
,

W4 = aκβηΓ2Γ3

bqσ(β+δ) − ν
q
and Z4 = bΓ1

pη

(
s − µH4

)
− δ

p
whenever R3 > 1 and R4 > 1. However,

the equilibrium point E4 does not exist if any one of R3 and R4 becomes less than unity.
Above discussions regarding the existence of possible equilibria of the model (1) can be

summarized as the following result.

Theorem 3.2. If R0 ≤ 1, then the infection-free equilibrium E0 =
(
H0, 0, 0, 0, 0, 0

)
is the only

equilibrium of the model (1) with H0 = s
µ
. If R0 > 1, then the model (1) admits another

four equilibria along with E0 and they are the following:

(a) The model (1) admits an immune-free equilibrium E1 =
(
H1, I1, D1, V1, 0, 0

)
with H1 ∈(

0, s
µ

)
, I1 = Γ1

δ

(
s− µH1

)
, D1 = κΓ1Γ2

δ(β+δ)

(
s− µH1

)
and V1 = κβΓ1Γ2Γ3

νδ(β+δ)

(
s− µH1

)
.

(b) If R1 > 1, then the model (1) admits an infection equilibrium point with only antibody

immune response E2 =
(
H2, I2, D2, V2,W2, 0

)
with H2 ∈

(
0, s

µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3

)
, I2 =

Γ1

δ

(
s− µH2

)
, D2 = κΓ1Γ2

δ(β+δ)

(
s− µH2

)
, V2 = σ

a
and W2 = aκβΓ1Γ2Γ3

qδσ(β+δ)

(
s− µH2

)
− ν

q
.

(c) If R2 > 1, then the model (1) admits an infection equilibrium point with only CTL

immune response E3 =
(
H3, I3, D3, V3, 0, Z3

)
with H3 ∈

(
0, s

µ
− δη

bµΓ1

)
, I3 = η

b
, D3 =

κηΓ2

b(β+δ) , V3 = κβηΓ2Γ3

bν(β+δ) and Z3 = bΓ1

pη

(
s− µH3

)
− δ

p
.

(d) If R1 > 1, R2 > 1, R3 > 1 and R4 > 1 hold simultaneously, then the model (1) admits
an infection equilibrium point with adaptive immune responses E4 =

(
H4, I4, D4, V4,W4, Z4

)

with H4 ∈
(
0, s

µ
− δη

bµΓ1

)
, I4 = η

b
, D4 = κηΓ2

b(β+δ) , V4 = σ
a
, W4 = aκβηΓ2Γ3

bqσ(β+δ) − ν
q
and

Z4 = bΓ1

pη

(
s− µH4

)
− δ

p
.

4 Stability analysis of equilibria

In this section, we investigate the conditions for global stability and instability of all five
equilibria of the generalized model (1) using suitable Lyapunov functions and linearization
technique.

Theorem 4.1. The infection-free equilibrium E0 =
(
H0, 0, 0, 0, 0, 0

)
is globally asymptotically

stable when R0 ≤ 1 and it becomes unstable when R0 > 1.

Proof. We first define a Lyapunov function L0(t) as follows

L0(t) =
1

Γ1
I(t) +

βΓ3f
(
H0, 0, 0

)

ν(β + δ)
D(t) +

f
(
H0, 0, 0

)

ν
V (t) +

qf
(
H0, 0, 0

)

aν
W (t) +

p

bΓ1
Z(t)

+
1

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

[f(H(θ), I(θ), V (θ))V (θ) + g(H(θ), I(θ))I(θ)] dθdτ
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+
κβΓ3f

(
H0, 0, 0

)

ν(β + δ)

∫ ∞

0

f2(τ)e
−α2τ

∫ t

t−τ

I(θ)dθdτ +

βf
(
H0, 0, 0

)

ν

∫ ∞

0

f3(τ)e
−α3τ

∫ t

t−τ

D(θ)dθdτ.

For the sake of convenience, we denote N = N(t) and Nτ = N(t − τ) for any N ∈
{H, I,D, V,W,Z}. Then, the time derivative of L0(t) along solutions of the model (1)
gives

dL0(t)

dt
=

1

Γ1

[∫ ∞

0

f1(τ)e
−α1τ {f(Hτ , Iτ , Vτ )Vτ + g(Hτ , Iτ )Iτ} dτ − δI − pIZ

]
+

βΓ3f
(
H0, 0, 0

)

ν(β + δ)

[
κ

∫ ∞

0

f2(τ)e
−α2τIτdτ − (β + δ)D

]
+

f
(
H0, 0, 0

)

ν
[
β

∫ ∞

0

f3(τ)e
−α3τDτdτ − νD − qV W

]
+

qf
(
H0, 0, 0

)

aν
[aVW − σW ] +

p

bΓ1
[bIZ − ηZ] +

[
f(H, I, V )V + g(H, I)I −

1

Γ1

∫ ∞

0

f1(τ)e
−α1τ

{
f
(
Hτ , Iτ , Vτ

)
Vτ + g

(
Hτ , Iτ

)
Iτ
}
dτ
]
+

κβΓ3f
(
H0, 0, 0

)

ν(β + δ)
[Γ2I−

∫ ∞

0

f2(τ)e
−α2τ Iτdτ

]
+

βf
(
H0, 0, 0

)

ν

[
Γ3D −

∫ ∞

0

f3(τ)e
−α3τDτdτ

]

=
(
f(H, I, V )− f(H0, 0, 0)

)
V +

δ

Γ1

[
κβΓ1Γ2Γ3

δν(β + δ)
f(H0, 0, 0) +

Γ1

δ
g(H, I)− 1

]
I

−
qσf(H0, 0, 0)

aν
W −

pη

bΓ1
Z.

As we have already shown in the previous section that lim supt→∞ H(t) ≤ s
µ
≡ H0, then it

is sufficient to consider H(t) ≤ H0. Then, using the hypotheses (A1)-(A4) we can write

dL0(t)

dt
≤ (f(H, 0, 0)− f(H0, 0, 0))V +

δ

Γ1

[
κβΓ1Γ2Γ3

δν(β + δ)
f(H0, 0, 0) +

Γ1

δ
g(H0, 0)− 1

]
I

−
qσf(H0, 0, 0)

aν
W −

pη

bΓ1
Z

= (f(H, 0, 0)− f(H0, 0, 0))V +
δ

Γ1

(
R0 − 1

)
I −

qσf(H0, 0, 0)

aν
W −

pη

bΓ1
Z.

Thus, the condition R0 ≤ 1 obviously leads to dL0(t)
dt

≤ 0. Further, we can observe that
dL0(t)

dt
= 0 if and only if (f(H, 0, 0) − f(H0, 0, 0))V = 0,

(
R0 − 1

)
I = 0, W = 0 and

Z = 0. First, we assume H = H0, and in this case, we obtain I = 0 and V = 0 from
the first equation of model (1). Then, the fourth equation of model (1) yields D = 0.
On the other hand, the assumption H 6= H0 implies V = 0. In this case, the fourth
and third equations of model (1) respectively yield D = 0 and I = 0. Then, the first
equation of model (1) results in dH

dt
= s − µH which implies H(t) → s

µ
≡ H0 as t →

∞. Hence, the singleton set
{
E0 = (H0, 0, 0, 0, 0, 0)

}
is the largest invariant subset of{

(H, I,D, V,W,Z) ∈ R
6
+ | dL0

dt
= 0
}
. Therefore, the infection-free equilibrium E0 is globally

asymptotically stable when R0 ≤ 1 due to the LaSalle invariance principle [20, 21].
However, it remains to establish the instability of the infection-free equilibrium E0 for

R0 > 1. The characteristic equation for the model (1) at the infection-free equilibrium E0
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is given by

(λ+ µ)(λ + σ)(λ + η)F0(λ) = 0, (9)

where

F0(λ) = λ3 +
[
β + 2δ + ν − Γ̃1(λ)g

(
H0, 0

)]
λ2 +

[
(β + δ)(δ + ν) + δν − Γ̃1(λ)(β + δ

+ν)g
(
H0, 0

)]
λ+ δν(β + δ)

[
1−

κβΓ̃1(λ)Γ̃2(λ)Γ̃3(λ)

δν(β + δ)
f
(
H0, 0, 0

)
−

Γ̃1(λ)

δ
g
(
H0, 0

)
]
.

Note that

Γ̃i(λ) =

∫ ∞

0

fi(τ)e
−(αi+λ)τdτ ≤

∫ ∞

0

fi(τ)dτ = 1, (10)

and Γ̃i(0) = Γi for i = 1, 2, 3. We can easily observe that the characteristic equation (9) ad-
mits three negative real roots−µ, −σ and −η. On the other hand, we have limλ→+∞ F0(λ) =
+∞ and

F0(0) = δν(β + δ)

[
1−

κβΓ1Γ2Γ3

δν(β + δ)
f
(
H0, 0, 0

)
−

Γ1

δ
g
(
H0, 0

)]
= δν(β + δ)

(
1−R0

)
,

which becomes less than zero if R0 > 1. Thus, the characteristic equation (9) possesses at
least one positive real root when R0 > 1 and this implies that the infection-free equilibrium
E0 becomes unstable in this case.

Before going into the detailed results regarding stability of remaining equilibria of the
model (1), we define a function G(U) = U − 1− ln(U) for U > 0. Then, it is easy to observe
that G(U) ≥ 0 for all U > 0 and the equality occurs if and only if U = 1. Further, we assume
that the incidence functions f and g satisfy the following hypotheses with H, I, V > 0:

(A5)
(
1− f(H,I,V )

f(H,Ii,Vi)

)(
f(H,Ii,Vi)
f(H,I,V ) − V

Vi

)
≤ 0,

(A6)
(
1− f(Hi,Ii,Vi)g(H,I)

f(H,Ii,Vi)g(Hi,Ii)

)(
f(H,Ii,Vi)g(Hi,Ii)
f(Hi,Ii,Vi)g(H,I) − I

Ii

)
≤ 0,

where Hi, Ii and Vi denote the densities of uninfected hepatocyte, infected hepatocyte and
virus at the equilibrium level Ei for i = 1, 2, 3, 4.

Theorem 4.2. Let us consider R0 > 1 and let the hypotheses (A5)-(A6) hold for equilibrium
E1. Then, the immune-free equilibrium E1 =

(
H1, I1, D1, V1, 0, 0

)
is globally asymptotically

stable if both the conditions R1 ≤ 1 and R2 ≤ 1 are satisfied simultaneously. However, it
becomes unstable if at least one of R1 and R2 is greater than unity.

Proof. We define a Lyapunov function L1(t) as follows

L1(t) =

(
H(t)−H1 −

∫ H(t)

H1

f(H1, I1, V1)

f(U, I1, V1)
dU

)
+

I1
Γ1

G

(
I(t)

I1

)
+

f(H1, I1, V1)V1D1

κΓ2I1
G

(
D(t)

D1

)
+

(β + δ)f(H1, I1, V1)V
2
1

κβΓ2Γ3I1
G

(
V (t)

V1

)
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+
(β + δ)qf(H1, I1, V1)V1

aκβΓ2Γ3I1
W (t) +

p

bΓ1
Z(t) +

f(H1, I1, V1)V1

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
f(H(θ), I(θ), V (θ))V (θ)

f(H1, I1, V1)V1

)
dθdτ

+
g(H1, I1)I1

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
g(H(θ), I(θ))I(θ)

g(H1, I1)I1

)
dθdτ +

f(H1, I1, V1)V1

Γ2

∫ ∞

0

f2(τ)e
−α2τ

∫ t

t−τ

G

(
I(θ)

I1

)
dθdτ +

f(H1, I1, V1)V1

Γ3

∫ ∞

0

f3(τ)e
−α3τ

∫ t

t−τ

G

(
D(θ)

D1

)
dθdτ.

Then, the time derivative of L1(t) along solutions of the model (1) yields

dL1(t)

dt
= µH1

(
1−

H

H1

)(
1−

f(H1, I1, V1)

f(H, I1, V1)

)
+ f(H1, I1, V1)V1

[
−1−

V

V1
+

f(H, I1, V1)

f(H, I, V )

+
f(H, I, V )V

f(H, I1, V1)V1

]
+ g(H1, I1)I1

[
−1−

I

I1
+

f(H, I1, V1)g(H1, I1)

f(H1, I1, V1)g(H, I)
+

f(H1, I1, V1)g(H, I)I

f(H, I1, V1)g(H1, I1)I1

]
+

q(β + δ)σf(H1, I1, V1)V1

aκβΓ2Γ3I1
(R1 − 1)W +

pη

bΓ1
(R2 − 1)Z

−
f(H1, I1, V1)V1

Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H1, I1, V1)

f(H, I1, V1)

)
+G

(
f(H, I1, V1)

f(H, I, V )

)
+

G

(
f(Hτ , Iτ , Vτ )Vτ I1
f(H1, I1, V1)V1I

)]
dτ −

g(H1, I1)I1
Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H1, I1, V1)

f(H, I1, V1)

)

+G

(
g(Hτ , Iτ )Iτ
g(H1, I1)I

)
+G

(
f(H, I1, V1)g(H1, I1)

f(H1, I1, V1)g(H, I)

)]
dτ −

f(H1, I1, V1)V1

Γ2∫ ∞

0

f2(τ)e
−α2τG

(
D1Iτ
DI1

)
dτ −

f(H1, I1, V1)V1

Γ3

∫ ∞

0

f3(τ)e
−α3τG

(
V1Dτ

V D1

)
dτ.

As the incidence function f is strictly increasing with respect to H (see hypothesis (A2)),

then we have
(
1− H

H1

)(
1− f(H1,I1,V1)

f(H,I1,V1)

)
≤ 0. Further, simple calculations and hypotheses

(A5)-(A6) lead to
[
−1−

V

V1
+

f(H, I1, V1)

f(H, I, V )
+

f(H, I, V )V

f(H, I1, V1)V1

]
=

(
1−

f(H, I, V )

f(H, I1, V1)

)(
f(H, I1, V1)

f(H, I, V )
−

V

V1

)
≤ 0,

[
−1−

I

I1
+

f(H, I1, V1)g(H1, I1)

f(H1, I1, V1)g(H, I)
+

f(H1, I1, V1)g(H, I)I

f(H, I1, V1)g(H1, I1)I1

]

=

(
1−

f(H1, I1, V1)g(H, I)

f(H, I1, V1)g(H1, I1)

)(
f(H, I1, V1)g(H1, I1)

f(H1, I1, V1)g(H, I)
−

I

I1

)
≤ 0.

Thus, the conditions R1 ≤ 1 and R2 ≤ 1 yield dL1(t)
dt

≤ 0. In this case, we can easily prove
that the singleton set {E1 = (H1, I1, D1, V1, 0, 0)} becomes the largest invariant subset of{
(H, I,D, V,W,Z) ∈ R6

+ | dL1

dt
= 0
}
, and therefore, the LaSalle invariance principle [20, 21]

guarantees the global asymptotic stability of the immune-free equilibrium E1 when R1 ≤ 1
and R2 ≤ 1.

It still remains to investigate the stability of the immune-free equilibrium E1 if at least
one of R1 and R2 becomes greater than unity. The characteristic equation for the model (1)
at the immune-free equilibrium E1 is given by

(
λ+ σ − aV1

)(
λ+ η − bI1

)
F1(λ) = 0, (11)
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where

F1(λ) =

∣∣∣∣∣∣∣∣

λ+ µ+ C1 C2 0 C3

−Γ̃1(λ)C1 λ+ δ − Γ̃1(λ)C2 0 −Γ̃1(λ)C3

0 −κΓ̃2(λ) λ+ β + δ 0

0 0 −βΓ̃3(λ) λ+ ν

∣∣∣∣∣∣∣∣

with C1 =
(

∂f
∂H

V + ∂g
∂H

I
)∣∣∣

E1

, C2 =
(

∂f
∂I

V + ∂g
∂I
I + g

)∣∣∣
E1

and C3 =
(

∂f
∂V

V + f
)∣∣∣

E1

. Then,

we can easily observe that the characteristic equation (11) admits positive roots λ = aV1−σ
and λ = bI1 − η if R1 > 1 and R2 > 1, respectively. Therefore, the immune-free equilibrium
E1 is unstable whenever at least one of R1 and R2 becomes greater than unity.

Theorem 4.3. Let us consider R0 > 1 and R1 > 1, and let the hypotheses (A5)-(A6) hold
for equilibrium E2. Then, the infection equilibrium with only antibody immune response
E2 =

(
H2, I2, D2, V2,W2, 0

)
is globally asymptotically stable if R3 ≤ 1. However, it becomes

unstable whenever R3 > 1.

Proof. We define a Lyapunov function L2(t) as follows

L2(t) =

(
H(t)−H2 −

∫ H(t)

H2

f(H2, I2, V2)

f(U, I2, V2)
dU

)
+

I2
Γ1

G

(
I(t)

I2

)
+

f(H2, I2, V2)V2D2

κΓ2I2
G

(
D(t)

D2

)
+

(β + δ)f(H2, I2, V2)V
2
2

κβΓ2Γ3I2
G

(
V (t)

V2

)

+
(β + δ)qf(H2, I2, V2)V2W2

aκβΓ2Γ3I2
G

(
W (t)

W2

)
+

p

bΓ1
Z(t) +

f(H2, I2, V2)V2

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
f(H(θ), I(θ), V (θ))V (θ)

f(H2, I2, V2)V2

)
dθdτ

+
g(H2, I2)I2

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
g(H(θ), I(θ))I(θ)

g(H2, I2)I2

)
dθdτ +

f(H2, I2, V2)V2

Γ2

∫ ∞

0

f2(τ)e
−α2τ

∫ t

t−τ

G

(
I(θ)

I2

)
dθdτ +

f(H2, I2, V2)V2

Γ3

∫ ∞

0

f3(τ)e
−α3τ

∫ t

t−τ

G

(
D(θ)

D2

)
dθdτ.

Then, the time derivative of L2(t) along solutions of the model (1) yields

dL2(t)

dt
= µH2

(
1−

H

H2

)(
1−

f(H2, I2, V2)

f(H, I2, V2)

)
+ f(H2, I2, V2)V2

[
−1−

V

V2
+

f(H, I2, V2)

f(H, I, V )
+

f(H, I, V )V

f(H, I2, V2)V2

]
+ g(H2, I2)I2

[
−1−

I

I2
+

f(H, I2, V2)g(H2, I2)

f(H2, I2, V2)g(H, I)
+

f(H2, I2, V2)g(H, I)I

f(H, I2, V2)g(H2, I2)I2

]
+

pη

bΓ1
(R3 − 1)Z −

f(H2, I2, V2)V2

Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H2, I2, V2)

f(H, I2, V2)

)
+G

(
f(H, I2, V2)

f(H, I, V )

)
+

G

(
f(Hτ , Iτ , Vτ )Vτ I2
f(H2, I2, V2)V2I

)]
dτ −

g(H2, I2)I2
Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H2, I2, V2)

f(H, I2, V2)

)

+G

(
g(Hτ , Iτ )Iτ
g(H2, I2)I

)
+G

(
f(H, I2, V2)g(H2, I2)

f(H2, I2, V2)g(H, I)

)]
dτ −

f(H2, I2, V2)V2

Γ2
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∫ ∞

0

f2(τ)e
−α2τG

(
D2Iτ
DI2

)
dτ −

f(H2, I2, V2)V2

Γ3

∫ ∞

0

f3(τ)e
−α3τG

(
V2Dτ

V D2

)
dτ.

As discussed in the proof of the Theorem 4.2, the hypotheses (A2), (A5) and (A6) lead to
dL2(t)

dt
≤ 0 for R3 ≤ 1. In this case, the singleton set {E2 = (H2, I2, D2, V2,W2, 0)} becomes

the largest invariant subset of
{
(H, I,D, V,W,Z) ∈ R6

+ | dL2

dt
= 0
}
. Therefore, the global

asymptotic stability of the infection equilibrium with only antibody immune response E2

for R3 ≤ 1 is guaranteed by the LaSalle invariance principle [20, 21].

Now, we investigate the stability of the infection equilibrium with only antibody immune
response E2 for R3 > 1. The characteristic equation for the model (1) at the equilibrium
E2 is given by

(
λ+ η − bI2

)
F2(λ) = 0, (12)

where

F2(λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ+ µ+ C̃1 C̃2 0 C̃3 0

−Γ̃1(λ)C̃1 λ+ δ − Γ̃1(λ)C̃2 0 −Γ̃1(λ)C̃3 0

0 −κΓ̃2(λ) λ+ β + δ 0 0

0 0 −βΓ̃3(λ) λ+ ν + qW2 qV2

0 0 0 −aW2 λ+ σ − aV2

∣∣∣∣∣∣∣∣∣∣∣

with C̃1 =
(

∂f
∂H

V + ∂g
∂H

I
)∣∣∣

E2

, C̃2 =
(

∂f
∂I

V + ∂g
∂I

I + g
)∣∣∣

E2

and C̃3 =
(

∂f
∂V

V + f
)∣∣∣

E2

.

Clearly, the characteristic equation (12) admits a positive root λ = bI2 − η when R3 > 1.
Therefore, the infection equilibrium with only antibody immune response E2 is unstable
whenever R3 > 1.

Theorem 4.4. Let us consider R0 > 1 and R2 > 1, and let the hypotheses (A5)-(A6)
hold for equilibrium E3. Then, the infection equilibrium with only CTL immune response
E3 =

(
H3, I3, D3, V3, 0, Z3

)
is globally asymptotically stable if R4 ≤ 1. However, it becomes

unstable whenever R4 > 1.

Proof. We define a Lyapunov function L3(t) as follows

L3(t) =

(
H(t)−H3 −

∫ H(t)

H3

f(H3, I3, V3)

f(U, I3, V3)
dU

)
+

I3
Γ1

G

(
I(t)

I3

)
+

f(H3, I3, V3)V3D3

κΓ2I3
G

(
D(t)

D3

)
+

(β + δ)f(H3, I3, V3)V
2
3

κβΓ2Γ3I3
G

(
V (t)

V3

)

+
(β + δ)qf(H3, I3, V3)V3

aκβΓ2Γ3I3
W (t) +

pZ3

bΓ1
G

(
Z(t)

Z3

)
+

f(H3, I3, V3)V3

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
f(H(θ), I(θ), V (θ))V (θ)

f(H3, I3, V3)V3

)
dθdτ

+
g(H3, I3)I3

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
g(H(θ), I(θ))I(θ)

g(H3, I3)I3

)
dθdτ +

f(H3, I3, V3)V3

Γ2

∫ ∞

0

f2(τ)e
−α2τ

∫ t

t−τ

G

(
I(θ)

I3

)
dθdτ +

f(H3, I3, V3)V3

Γ3

∫ ∞

0

f3(τ)e
−α3τ

∫ t

t−τ

G

(
D(θ)

D3

)
dθdτ.
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Then, the time derivative of L3(t) along solutions of the model (1) yields

dL3(t)

dt
= µH3

(
1−

H

H3

)(
1−

f(H3, I3, V3)

f(H, I3, V3)

)
+ f(H3, I3, V3)V3

[
−1−

V

V3
+

f(H, I3, V3)

f(H, I, V )
+

f(H, I, V )V

f(H, I3, V3)V3

]
+ g(H3, I3)I3

[
−1−

I

I3
+

f(H, I3, V3)g(H3, I3)

f(H3, I3, V3)g(H, I)

+
f(H3, I3, V3)g(H, I)I

f(H, I3, V3)g(H3, I3)I3

]
+

q(β + δ)σf(H3, I3, V3)V3

aκβΓ2Γ3I3
(R4 − 1)W −

f(H3, I3, V3)V3

Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H3, I3, V3)

f(H, I3, V3)

)
+G

(
f(H, I3, V3)

f(H, I, V )

)
+

G

(
f(Hτ , Iτ , Vτ )Vτ I3
f(H3, I3, V3)V3I

)]
dτ −

g(H3, I3)I3
Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H3, I3, V3)

f(H, I3, V3)

)

+G

(
g(Hτ , Iτ )Iτ
g(H3, I3)I

)
+G

(
f(H, I3, V3)g(H3, I3)

f(H3, I3, V3)g(H, I)

)]
dτ −

f(H3, I3, V3)V3

Γ2∫ ∞

0

f2(τ)e
−α2τG

(
D3Iτ
DI3

)
dτ −

f(H3, I3, V3)V3

Γ3

∫ ∞

0

f3(τ)e
−α3τG

(
V3Dτ

V D3

)
dτ.

As discussed earlier, the hypotheses (A2), (A5) and (A6) imply dL3(t)
dt

≤ 0 for R4 ≤ 1.
In this case, the singleton set {E3 = (H3, I3, D3, V3, 0, Z3)} becomes the largest invariant
subset of

{
(H, I,D, V,W,Z) ∈ R6

+ | dL3

dt
= 0
}
. Therefore, the global asymptotic stability of

the infection equilibrium with only CTL immune response E3 for R4 ≤ 1 is guaranteed by
the LaSalle invariance principle [20, 21].

Now, we investigate the stability of the infection equilibrium with only CTL immune
response E3 for R4 > 1. The characteristic equation for the model (1) at the equilibrium
E3 is given by

(
λ+ σ − aV3

)
F3(λ) = 0, (13)

where

F3(λ) =

∣∣∣∣∣∣∣∣∣∣∣

λ+ µ+ C1 C2 0 C3 0

−Γ̃1(λ)C1 λ+ δ + pZ3 − Γ̃1(λ)C2 0 −Γ̃1(λ)C3 pI3
0 −κΓ̃2(λ) λ+ β + δ 0 0

0 0 −βΓ̃3(λ) λ+ ν 0
0 −bZ3 0 0 λ+ η − bI3

∣∣∣∣∣∣∣∣∣∣∣

with C1 =
(

∂f
∂H

V + ∂g
∂H

I
)∣∣∣

E3

, C2 =
(

∂f
∂I

V + ∂g
∂I

I + g
)∣∣∣

E3

and C3 =
(

∂f
∂V

V + f
)∣∣∣

E3

.

Clearly, the characteristic equation (13) admits a positive root λ = aV3 − σ when R4 > 1.
Therefore, the infection equilibrium with only CTL immune response E3 is unstable when-
ever R4 > 1.

Theorem 4.5. Let us consider R0 > 1, R1 > 1, R2 > 1, R3 > 1 and R4 > 1. Also, we assume
that the hypotheses (A5)-(A6) hold for equilibrium E4. Then, the infection equilibrium with
adaptive immune responses E4 =

(
H4, I4, D4, V4,W4, Z4

)
is globally asymptotically stable.

Proof. We define a Lyapunov function L4(t) as follows

L4(t) =

(
H(t)−H4 −

∫ H(t)

H4

f(H4, I4, V4)

f(U, I4, V4)
dU

)
+

I4
Γ1

G

(
I(t)

I4

)
+
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f(H4, I4, V4)V4D4

κΓ2I4
G

(
D(t)

D4

)
+

(β + δ)f(H4, I4, V4)V
2
4

κβΓ2Γ3I4
G

(
V (t)

V4

)

+
(β + δ)qf(H4, I4, V4)V4W4

aκβΓ2Γ3I4
G

(
W (t)

W4

)
+

pZ4

bΓ1
G

(
Z(t)

Z4

)
+

f(H4, I4, V4)V4

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
f(H(θ), I(θ), V (θ))V (θ)

f(H4, I4, V4)V4

)
dθdτ

+
g(H4, I4)I4

Γ1

∫ ∞

0

f1(τ)e
−α1τ

∫ t

t−τ

G

(
g(H(θ), I(θ))I(θ)

g(H4, I4)I4

)
dθdτ +

f(H4, I4, V4)V4

Γ2

∫ ∞

0

f2(τ)e
−α2τ

∫ t

t−τ

G

(
I(θ)

I4

)
dθdτ +

f(H4, I4, V4)V4

Γ3

∫ ∞

0

f3(τ)e
−α3τ

∫ t

t−τ

G

(
D(θ)

D4

)
dθdτ.

Then, the time derivative of L4(t) along solutions of the model (1) yields

dL4(t)

dt
= µH4

(
1−

H

H4

)(
1−

f(H4, I4, V4)

f(H, I4, V4)

)
+ f(H4, I4, V4)V4

[
−1−

V

V4

+
f(H, I4, V4)

f(H, I, V )
+

f(H, I, V )V

f(H, I4, V4)V4

]
+ g(H4, I4)I4

[
−1−

I

I4

+
f(H, I4, V4)g(H4, I4)

f(H4, I4, V4)g(H, I)
+

f(H4, I4, V4)g(H, I)I

f(H, I4, V4)g(H4, I4)I4

]
−

f(H4, I4, V4)V4

Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H4, I4, V4)

f(H, I4, V4)

)
+G

(
f(H, I4, V4)

f(H, I, V )

)
+

G

(
f(Hτ , Iτ , Vτ )Vτ I4
f(H4, I4, V4)V4I

)]
dτ −

g(H4, I4)I4
Γ1

∫ ∞

0

f1(τ)e
−α1τ

[
G

(
f(H4, I4, V4)

f(H, I4, V4)

)

+G

(
g(Hτ , Iτ )Iτ
g(H4, I4)I

)
+G

(
f(H, I4, V4)g(H4, I4)

f(H4, I4, V4)g(H, I)

)]
dτ −

f(H4, I4, V4)V4

Γ2∫ ∞

0

f2(τ)e
−α2τG

(
D4Iτ
DI4

)
dτ −

f(H4, I4, V4)V4

Γ3

∫ ∞

0

f3(τ)e
−α3τG

(
V4Dτ

V D4

)
dτ.

As discussed earlier, the hypotheses (A2), (A5) and (A6) imply dL4(t)
dt

≤ 0. In this case,
the singleton set {E4 = (H4, I4, D4, V4,W4, Z4)} becomes the largest invariant subset of{
(H, I,D, V,W,Z) ∈ R

6
+ | dL4

dt
= 0
}
. Therefore, the global asymptotic stability of the infec-

tion equilibrium with adaptive immune responses E4 is guaranteed by the LaSalle invariance
principle [20, 21]. This completes the proof.

At this point, one might wonder about possible dynamics of the system (1) when the
conditions R0 > 1, R1 > 1, R2 > 1, R3 ≤ 1 and R4 ≤ 1 are satisfied simultaneously. We can

observe that H2 ∈
(
0, s

µ
− δνσ(β+δ)

aκβµΓ1Γ2Γ3

)
implies I2 = Γ1

δ
(s−µH2) >

νσ(β+δ)
aκβΓ2Γ3

. Thus, we have

R3 = b
η
I2 > bνσ(β+δ)

aκβηΓ2Γ3

. On the other hand, R4 = a
σ
V3 = aκβηΓ2Γ3

bνσ(β+δ) . Then, we obtain R3 > 1
R4

,

i.e., R3R4 > 1. However, the conditions R3 ≤ 1 and R4 ≤ 1 imply R3R4 ≤ 1. Hence, we
arrive at a contradiction. Therefore, the results presented in this section effectively capture
the complete dynamics of the system (1).

5 An application with numerical simulations

System (1) is considered to be a generalized model describing HBV infection in vivo with
both modes of infection transmission and three distributed delay terms. Of course, the
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biologically relevant assumptions (A1)-(A4) on incidence functions are valid for a widely
variety of commonly used incidence functions [3, 15, 22]. Also, the probability distributions
used to describe distributed delays can take different forms such as gamma distribution and
Dirac delta functions [22, 23, 24]. In this section, we consider the specific forms of incidence
functions as f(H, I, V ) = γ1H

1+ρ1V
and g(H, I) = γ2H

1+ρ2I
, and probability distributions as

fi(τ) = ∆(τ − τi), the Dirac delta function, for i = 1, 2, 3. Then, the generalized model (1)
reduces to the following system:

dH

dt
= s− µH(t)−

γ1H(t)V (t)

1 + ρ1V (t)
−

γ2H(t)I(t)

1 + ρ2I(t)
,

dI

dt
= e−α1τ1

(
γ1H(t− τ1)V (t− τ1)

1 + ρ1V (t− τ1)
+

γ2H(t− τ1)I(t− τ1)

1 + ρ2I(t− τ1)

)
− δI(t) − pI(t)Z(t),

dD

dt
= κe−α2τ2I(t− τ2)− (β + δ)D(t), (14)

dV

dt
= βe−α3τ3D(t− τ3)− νV (t)− qV (t)W (t),

dW

dt
= aV (t)W (t) − σW (t),

dZ

dt
= bI(t)Z(t)− ηZ(t).

The above model (14) is obviously a discrete-delay model where τi (i = 1, 2, 3) represent
the respective time delays and it arises due to the consideration of Dirac delta functions
as probability distributions. Further, γi and ρi (i = 1, 2) respectively denote the infection
transmission and saturation rates for the corresponding mode of transmission.

The model (14) always admits the infection-free equilibrium E0 = (s/µ, 0, 0, 0, 0, 0) and
the basic reproduction number is given by

R0 =
sκβγ1

δµν(β + δ)
e−(α1τ1+α2τ2+α3τ3) +

sγ2
δµ

e−α1τ1 .

However, it is difficult to obtain analytical expressions for other four equilibria of the model
(14) and associated reproduction numbers. Hence, we rely on numerical computations to
get them. Also for the chosen incidence functions, simple calculations lead to

(
1−

f(H, I, V )

f(H, Ii, Vi)

)(
f(H, Ii, Vi)

f(H, I, V )
−

V

Vi

)
=

−ρ1(V − Vi)
2

(1 + ρ1V )(1 + ρ1Vi)Vi

≤ 0,

(
1−

f(Hi, Ii, Vi)g(H, I)

f(H, Ii, Vi)g(Hi, Ii)

)(
f(H, Ii, Vi)g(Hi, Ii)

f(Hi, Ii, Vi)g(H, I)
−

I

Ii

)
=

−ρ2(I − Ii)
2

(1 + ρ2I)(1 + ρ2Ii)Ii
≤ 0,

where i = 1, 2, 3, 4. Thus, the hypotheses (A5)-(A6) are automatically satisfied for our
chosen incidence functions. Therefore, stability properties for all the equilibria of the model
(14) can directly be inferred from Theorems 4.1-4.5.

Now, we illustrate some numerical simulations of the model (14) to corroborate our
analytical results regarding stability of equilibria. Note that the parameter values used
for a particular simulation are mentioned in the caption of corresponding figure. In this
regard, Figure 1 shows that the infection-free equilibrium E0 = (100, 0, 0, 0, 0, 0) is asymp-
totically stable when R0 = 0.83 < 1, whereas stability of the immune-free equilibrium
E1 = (47.82, 11.643, 4.017, 0.205, 0, 0) is encapsulated in Figure 2 for R0 = 22.706 > 1, R1 =
0.123 < 1 and R2 = 0.466 < 1. Further, Figures 3 and 4 respectively illustrate the stable in-
fection equilibria with only antibody immune responseE2 = (48.477, 11.496, 3.967, 0.167, 2.734, 0)
and with only CTL immune response E3 = (50.886, 2.5, 0.863, 0.335, 0, 1.692) for appropriate
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values of the threshold parametersR0, R1, R2, R3 and R4. Finally, Figure 5 encapsulates the
stable infection equilibrium with adaptive immune responseE4 = (53.165, 2.5, 0.863, 0.2, 1.275, 1.59)
when all the threshold parameters are greater than unity. We would like to mention that ob-
tained theoretical results have also been verified with other types of incidence functions and
probability distributions. However, we refrained ourselves from incorporating those results
in this paper for the sake of brevity.

6 Conclusions

Till date, a large class of mathematical models have been considered in literature to un-
derstand the within-host HBV infection. In this study, we have intended to provide results
regarding dynamical properties of a generalized HBV infection model which can directly
accommodate several models as special cases. Our model has six compartments such as
uninfected and infected hepatocytes, capsids, virions, antibody and CTL immune responses.
In order to model infection transmission process, we have considered both the virus-to-cell
and cell-to-cell transmissions which are incorporated in the model through general functions
constrained to some biologically feasible conditions (A1)-(A4). Further, we have considered
three distributed delays accounting for the time needed in latently infected hepatocytes to
become active, and capsids and virions to get matured. We have proved the non-negativity
and boundedness of solutions to guarantee the well-posedness of the proposed model. Also,
we have defined five reproduction numbers R0, R1, R2, R3 and R4 which act as threshold
parameters for the existence of all possible equilibria and take a crucial part in character-
izing the system dynamics. Depending upon the values of these threshold parameters, our
proposed model can admit at most five equilibria.

The conditions responsible for global stability of each equilibrium have been identified
by using a suitable Lyapunov function and LaSalle’s invariance principle. We have obtained
that the infection-free equilibrium E0 is globally asymptotically stable when R0 ≤ 1. This
means that infection cannot persist in an infected individual, and as a result, the individual
will become completely cured. Further, the immune-free equilibrium E1 is globally asymp-
totically stable under the assumptions (A5)-(A6) when R0 > 1, R1 ≤ 1 and R2 ≤ 1. In this
case, both the viral load and infected hepatocyte level within an infected individual are un-
able to activate any kind of adaptive immune responses. On the other hand, the conditions
R0 > 1, R1 > 1 and R3 ≤ 1 or R0 > 1, R2 > 1 and R4 ≤ 1 lead to the global stability
of E2 or E3 when both the assumptions (A5)-(A6) are satisfied. This indicates that either
viral load or infected hepatocyte level is such that only the corresponding arm of adaptive
immune responses will be activated. Finally, the infection equilibrium with adaptive im-
mune responses E4 is globally asymptotically stable whenever it exists and the assumptions
(A5)-(A6) are satisfied. In this case, both the arms of adaptive immunity will work together
against the infection. Overall, the HBV infection persists if R0 > 1 as one or both arms of
adaptive immunity fails to eradicate the virus in this case. However, the presence of adaptive
immunity is beneficial for an infected individual as it can effectively reduce the viral load
and infected hepatocyte level to a certain extent.

Also, we can observe from the expression of R0 (given in Section 3) that time delays
are inversely related to R0. Thus, sufficiently large time delays can effectively drive the
value of R0 below unity, and as a result, infection can be completely eliminated. Further,
R0 is defined to be a sum of basic reproduction numbers for both modes of transmission

(that is, R
(1)
0 and R

(2)
0 ) in this study. Thus, we have R0 = R

(1)
0 + R

(2)
0 > R

(1)
0 . On the

other hand, most of the existing HBV infection models in literature have ignored the cell-
to-cell transmission. This could potentially lead to under-estimation of R0. To this end, we
would like to emphasize on the fact that all the results obtained in this study are robust
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Temporal evolutions for components of the system (14) when R0 = 0.83 < 1. The
used parameter values are s = 10, µ = 0.1, δ = 1, p = 0.2, κ = 1.2, β = 0.87, ν = 4, q = 0.3,
a = 0.3, σ = 0.05, b = 0.2, η = 0.05, γ1 = γ2 = 0.05, ρ1 = ρ2 = 1, α1 = α2 = α3 = 0.3, and
τ1 = τ2 = τ3 = 6.

with respect to a wide class of incidence functions and several probability distributions for
distributed delays.
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(a) (b)

(c) (d)

(e) (f)

Figure 2: Temporal evolutions for components of the system (14) when R0 = 22.706 > 1,
R1 = 0.123 < 1 and R2 = 0.466 < 1. The used parameter values are s = 10, µ = 0.1,
δ = 0.1, p = 0.2, κ = 1.5, β = 0.87, ν = 3.8, q = 0.3, a = 0.3, σ = 0.5, b = 0.02, η = 0.5,
γ1 = γ2 = 0.1, ρ1 = ρ2 = 1, α1 = α2 = α3 = 0.3, and τ1 = τ2 = τ3 = 5.

Acknowledgements

The first author gratefully acknowledges the financial support provided by IIT Kanpur for
pursuing his post-doctoral research.



21

(a) (b)

(c) (d)

(e) (f)

Figure 3: Temporal evolutions for components of the system (14) when R0 = 22.706 > 1,
R1 = 1.231 > 1 and R3 = 0.46 < 1. The used parameter values are s = 10, µ = 0.1,
δ = 0.1, p = 0.2, κ = 1.5, β = 0.87, ν = 3.8, q = 0.3, a = 0.3, σ = 0.05, b = 0.02, η = 0.5,
γ1 = γ2 = 0.1, ρ1 = ρ2 = 1, α1 = α2 = α3 = 0.3, and τ1 = τ2 = τ3 = 5.
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