5- REFERENCES
Ainsworth, S., Petras, D., Engmark, M., Süssmuth, R.D., Whiteley, G.,
Albulescu, L., et al. (2017). The medical threat of mamba envenoming in
sub-Saharan Africa revealed by genus-wide analysis of venom composition,
toxicity and antivenomics profiling of available antivenoms. J.
Proteomics.
Andreev, Y. a., Kozlov, S. a., Koshelev, S.G., Ivanova, E. a.,
Monastyrnaya, M.M., Kozlovskaya, E.P., et al. (2008). Analgesic compound
from sea anemone Heteractis crispa is the first polypeptide inhibitor of
vanilloid receptor 1 (TRPV1). J. Biol. Chem. 283 : 23914–21.
Blanchet, G., Alili, D., Protte, A., Upert, G., Gilles, N., Tepshi, L.,
et al. (2017). Ancestral protein resurrection and engineering
opportunities of the mamba aminergic toxins. Sci. Rep. 7 : 2701.
Blanchet, G., Collet, G., Mourier, G., Gilles, N., Fruchart-Gaillard,
C., Marcon, E., et al. (2014). Polypharmacology profiles and
phylogenetic analysis of three-finger toxins from mamba venom: Case of
aminergic toxins. Biochimie 103 : 109–117.
Bohlen, C.J., Chesler, A.T., Sharif-Naeini, R., Medzihradszky, K.F.,
Zhou, S., King, D., et al. (2011). A heteromeric Texas coral snake toxin
targets acid-sensing ion channels to produce pain. Nature 479 :
410–4.
Bourne, Y., Taylor, P., and Marchot, P. (1995). Acetylcholinesterase
inhibition by fasciculin: Crystal structure of the complex. Cell83 : 503–512.
Ciolek, J., Reinfrank, H., Quinton, L., Viengchareun, S., Stura, E.A.,
Vera, L., et al. (2017). Green mamba peptide targets type-2 vasopressin
receptor against polycystic kidney disease. Proc. Natl. Acad. Sci. U. S.
A. 114 : 7154–7159.
Droctové, L., Lancien, M., Tran, V.L., Susset, M., Jego, B., Theodoro,
F., et al. (2020). A snake toxin as a theranostic agent for the type 2
vasopressin receptor. Theranostics 10 : 11580–11594.
Fruchart-Gaillard, C., Mourier, G., Blanchet, G., Vera, L., Gilles, N.,
Ménez, R., et al. (2012). Engineering of three-finger fold toxins
creates ligands with original pharmacological profiles for muscarinic
and adrenergic receptors. PLoS One 7 : e39166.
Gasparini, S., Danse, J.M., Lecoq, A., Pinkasfeld, S., Zinn-Justin, S.,
Young, L.C., et al. (1998). Delineation of the functional site of
α-dendrotoxin: The functional topographies of dendrotoxins are different
but share a conserved core with those of other Kv1 potassium
channel-blocking toxins. J. Biol. Chem. 273 : 25393–25403.
Harper, E., and Berger, A. (1967). On the size of the active site in
proteases: I. Papain. Biochem. Biophys. Res. Commun. 27 :
157–162.
Harvey, A.L. (2001). Twenty years of dendrotoxins. Toxicon 39 :
15–26.
Huber, R., Kukla, D., Rühlmann, A., Epp, O., and Formanek, H. (1970).
The basic trypsin inhibitor of bovine pancreas. I. Structure analysis
and conformation of the polypeptide chain. Naturwissenschaften57 : 389–92.
Juul, K.V., Bichet, D.G., Nielsen, S., and Nørgaard, J.P. (2014). The
physiological and pathophysiological functions of renal and extrarenal
vasopressin V2 receptors. Am. J. Physiol. Renal Physiol. 306 :
F931-40.
Kawamura, K., Yamada, T., Kurihara, K., Tamada, T., Kuroki, R., Tanaka,
I., et al. (2011). X-ray and neutron protein crystallographic analysis
of the trypsin-BPTI complex. Acta Crystallogr. D. Biol. Crystallogr.67 : 140–8.
Kessler, P., Marchot, P., Silva, M., and Servent, D. (2017). The
three-finger toxin fold: a multifunctional structural scaffold able to
modulate cholinergic functions. J. Neurochem. 142 Suppl : 7–18.
Kunitz, M., and Northrop, J.H. (1936). Isolation From Beef Pancreas of
Crystalline Trypsinogen, Trypsin, a Trypsin Inhibitor, and an
Inhibitor-Trypsin Compound. J. Gen. Physiol. 19 : 991–1007.
Maeda, S., Xu, J., N Kadji, F.M., Clark, M.J., Zhao, J., Tsutsumi, N.,
et al. (2020). Structure and selectivity engineering of the M1
muscarinic receptor toxin complex. Science 369 : 161–167.
Maïga, A., Mourier, G., Quinton, L., Rouget, C., Gales, C., Denis, C.,
et al. (2012). G protein-coupled receptors, an unexploited animal toxin
targets: Exploration of green mamba venom for novel drug candidates
active against adrenoceptors. Toxicon 59 : 487–96.
Otlewski, J., Jaskólski, M., Buczek, O., Cierpicki, T., Czapińska, H.,
Krowarsch, D., et al. (2001). Structure-function relationship of serine
protease-protein inhibitor interaction. Acta Biochim. Pol. 48 :
419–28.
Quinton, L., Girard, E., Maiga, A., Rekik, M., Lluel, P., Masuyer, G.,
et al. (2010). Isolation and pharmacological characterization of AdTx1,
a natural peptide displaying specific insurmountable antagonism of the
alpha1A-adrenoceptor. Br. J. Pharmacol. 159 : 316–25.
Rouget, C., Quinton, L., Maïga, A., Gales, C., Masuyer, G., Malosse, C.,
et al. (2010). Identification of a novel snake peptide toxin displaying
high affinity and antagonist behaviour for the α2-adrenoceptors. Br. J.
Pharmacol. 161 : 1361–74.
Schweitz, H., Heurteaux, C., Bois, P., Moinier, D., Romey, G., and
Lazdunski, M. (1994). Calcicludine, a venom peptide of the Kunitz-type
protease inhibitor family, is a potent blocker of high-threshold Ca2+
channels with a high affinity for L-type channels in cerebellar granule
neurons. Proc. Natl. Acad. Sci. 91 : 878–882.
Shafqat, J., Zaidi, Z.H., and Jörnvall, H. (1990). Purification and
characterization of a chymotrypsin Kunitz inhibitor type of polypeptide
from the venom of cobra (Naja naja naja). FEBS Lett. 275 : 6–8.
Strydom, D.J., and Joubert, F.J. (1981). The amino acid sequence of a
weak trypsin inhibitor B from Dendroaspis Polylepis polylepis (black
mamba) venom. Hoppe. Seylers. Z. Physiol. Chem. 362 : 1377–84.
Sun, D., Yu, Y., Xue, X., Pan, M., Wen, M., Li, S., et al. (2018).
Cryo-EM structure of the ASIC1a – mambalgin-1 complex reveals that the
peptide toxin mambalgin-1 inhibits acid-sensing ion channels through an
unusual allosteric effect. Cell Discov. 1–11.
Zhou, X.D., Jin, Y., Lu, Q.M., Li, D.S., Zhu, S.W., Wang, W.Y., et al.
(2004). Purification, characterization and primary structure of a
chymotrypsin inhibitor from Naja atra venom. Comp. Biochem. Physiol. - B
Biochem. Mol. Biol. 137 : 219–224.