References
Aarabi, F., Kusajima, M., Tohge, T., et al. (2016) Sulfur Deficiency–Induced Repressor Proteins Optimize Glucosinolate Biosynthesis in Plants.Sci. Adv. , 2 , e1601087.
Agassi, S.F.T., Yeh, T.-M., Chang, C.-D., Hsu, J.-L. and Shih, W.-L. (2020) Potentiation of Differentiation and Apoptosis in a Human Promyelocytic Leukemia Cell Line by Garlic Essential Oil and Its Organosulfur Compounds. Anticancer Res. , 40 , 6345–6354.
Aghajanzadeh, T., Hawkesford, M.J. and De Kok, L.J. (2014) The Significance of Glucosinolates for Sulfur Storage in Brassicaceae Seedlings. Front. Plant Sci. , 5 , 704.
Ausma, T. and De Kok, L.J. (2019) Atmospheric H2S: Impact on Plant Functioning. Front. Plant Sci. , 10 , 743.
Bains, P.S. and Tewari, J.P. (1987) Purification, Chemical Characterization and Host-Specificity of the Toxin Produced by Alternaria brassicae. Physiol. Mol. Plant Pathol. , 30 , 259–271.
Bakhtiari, M. and Rasmann, S. (2020) Variation in Below-to Aboveground Systemic Induction of Glucosinolates Mediates Plant Fitness Consequences under Herbivore Attack. J. Chem. Ecol. , 46 , 317–329.
Baum, C. and Hrynkiewicz, K. (2006) Clonal and Seasonal Shifts in Communities of Saprotrophic Microfungi and Soil Enzyme Activities in the Mycorrhizosphere of Salix spp. J. Plant Nutr. Soil Sci. ,169 , 481–487.
Beijerinck, M.W. (1904) Phenomenes de Reduction Produits par les Microbes. Arch. Néerlandaises Sci. Exactes Nat. (Section 2) ,9 , 131–157.
Birkinshaw, J.H. and Chaplen, P. (1955) Biochemistry of the Wood-Rotting Fungi. 8. Volatile Metabolic Products of Daedalea juniperina Murr. Biochem. J. , 60 , 255–261.
Bolton, S.G., Cerda, M.M., Gilbert, A.K. and Pluth, M.D. (2019) Effects of Sulfane Sulfur Content in Benzyl Polysulfides on Thiol-Triggered H2S Release and Cell Proliferation. Free Radic. Biol. Med. , 131 , 393–398.
Borpatragohain, P., Rose, T.J. and King, G.J. (2016) Fire and Brimstone: Molecular Interactions between Sulfur and Glucosinolate Biosynthesis in Model and Crop Brassicaceae. Front. Plant Sci. ,7 , 1735.
Brock, N.L., Tudzynski, B. and Dickschat, J.S. (2011) Biosynthesis of Sesqui- and Diterpenes by the Gibberellin Producer Fusarium fujikuroi. Chembiochem Eur. J. Chem. Biol. , 12 , 2667–2676.
Brown, P.D., Tokuhisa, J.G., Reichelt, M. and Gershenzon, J.(2003) Variation of Glucosinolate Accumulation Among Different Organs and Developmental Stages of Arabidopsis thaliana. Phytochemistry ,62 , 471–481.
Burow, M., Müller, R., Gershenzon, J. and Wittstock, U. (2006) Altered Glucosinolate Hydrolysis in Genetically Engineered Arabidopsis thaliana and Its Influence on the Larval Development of Spodoptera littoralis. J. Chem. Ecol. , 32 , 2333–2349.
Cai, Y.-R. and Hu, C.-H. (2017) Computational Study of H2 S Release in Reactions of Diallyl Polysulfides with Thiols. J. Phys. Chem. B , 121 , 6359–6366.
Cavagnaro, T.R., Jackson, L.E., Six, J., Ferris, H., Goyal, S., Asami, D. and Scow, K.M. (2006) Arbuscular Mycorrhizas, Microbial Communities, Nutrient Availability, and Soil Aggregates in Organic Tomato Production. Plant Soil , 282 , 209–225.
Cheng, F., Ali, M., Liu, C., Deng, R. and Cheng, Z. (2020) Garlic Allelochemical Diallyl Disulfide Alleviates Autotoxicity in the Root Exudates Caused by Long-Term Continuous Cropping of Tomato.J. Agric. Food Chem. , 68 , 11684–11693.
Cheng, F., Cheng, Z.-H. and Meng, H.-W. (2016) Transcriptomic Insights into the Allelopathic Effects of the Garlic Allelochemical Diallyl Disulfide on Tomato Roots. Sci. Rep. , 6 , 38902.
Citron, C.A., Wickel, S.M., Schulz, B., Draeger, S. and Dickschat, J.S. (2012) A Diels–Alder/Retro-Diels–Alder Approach for the Enantioselective Synthesis of Microbial Butenolides. Eur. J. Org. Chem. , 2012 , 6636–6646.
Demeule, M., Brossard, M., Turcotte, S., Regina, A., Jodoin, J. and Béliveau, R. (2004) Diallyl Disulfide, a Chemopreventive Agent in Garlic, Induces Multidrug Resistance-Associated Protein 2 Expression.Biochem. Biophys. Res. Commun. , 324 , 937–945.
Deng, S.P. and Tabatabai, M.A. (1997) Effect of Tillage and Residue Management on Enzyme Activities in Soils: III. Phosphatases and Arylsulfatase. Biol. Fertil. Soils , 24 , 141–146.
Dickschat, J.S. (2017) Fungal Volatiles – A Survey from Edible Mushrooms to Moulds. Nat. Prod. Rep. , 34 , 310–328.
Falk, K.L., Tokuhisa, J.G. and Gershenzon, J. (2007) The Effect of Sulfur Nutrition on Plant Glucosinolate Content: Physiology and Molecular Mechanisms. Plant Biol. , 9 , 573–581.
Fitzgerald, J.W. (1976) Sulfate Ester Formation and Hydrolysis: A Potentially Important Yet Often Ignored Aspect of the Sulfur Cycle of Aerobic Soils. Bacteriol. Rev. , 40 , 698–721.
Frerigmann, H. and Gigolashvili, T. (2014) Update on the role of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency.Front. Plant Sci. , 5 , 626.
Fujiwara, T., Hirai, M.Y., Chino, M., Komeda, Y. and Naito, S.(1992) Effects of Sulfur Nutrition on Expression of the Soybean Seed Storage Protein Genes in Transgenic Petunia. Plant Physiol. ,99 , 263–268.
Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C. and Flügge, U.-I. (2007) The R2R3-MYB Transcription Factor HAG1/MYB28 is a Regulator of Methionine-Derived Glucosinolate Biosynthesis in Arabidopsis thaliana. Plant J. , 51 , 247–261.
Giovannetti, M., Tolosano, M., Volpe, V., Kopriva, S. and Bonfante, P. (2014) Identification and Functional Characterization of a Sulfate Transporter Induced by Both Sulfur Starvation and Mycorrhiza Formation in Lotus japonicus. New Phytol. , 204 , 609–619.
Gray, L.E. and Gerdemann, J.W. (1973) Uptake of Sulphur-35 by Vesicular-Arbuscular Mycorrhizae. Plant Soil , 39 , 687–689.
Halkier, B.A. and Gershenzon, J. (2006) Biology and Biochemistry of Glucosinolates. Annu. Rev. Plant Biol. ,57 , 303–333.
Hassanein, E.H.M., Mohamed, W.R., Khalaf, M.M., Shalkami, A.-G.S., Sayed, A.M. and Hemeida, R.A.M. (2021) Diallyl Disulfide Ameliorates Methotrexate-Induced Nephropathy in Rats: Molecular Studies and Network Pharmacology Analysis. J. Food Biochem. , e13765.
Hill, T. and Käfer, E. (2001) Improved Protocols for Aspergillus Minimal Medium: Trace Element and Minimal Medium Salt Stock Solutions. Fungal Genet Newsl , 48 , 20–21.
Hirai, M.Y., Sugiyama, K., Sawada, Y., et al. (2007) Omics-Based Identification of Arabidopsis Myb Transcription Factors Regulating Aliphatic Glucosinolate Biosynthesis. Proc. Natl. Acad. Sci. U. S. A. , 104 , 6478–6483.
Hochmuth, D. (2010) Massfinder v. 4.21 , Hamburg, Germany: Hochmuth Scientific Consulting.
Jobe, T.O., Zenzen, I., Rahimzadeh Karvansara, P. and Kopriva, S. (2019) Integration of Sulfate Assimilation with Carbon and Nitrogen Metabolism in Transition from C3 to C4 Photosynthesis. J. Exp. Bot. , 70 , 4211–4221.
Johnson, J.M., Ludwig, A., Furch, A.C.U., Mithöfer, A., Scholz, S., Reichelt, M. and Oelmüller, R. (2019) The Beneficial Root-Colonizing Fungus Mortierella hyalina Promotes the Aerial Growth of Arabidopsis and Activates Calcium-Dependent Responses That Restrict Alternaria brassicae –Induced Disease Development in Roots. Mol. Plant. Microbe Interact. , 32 , 351–363.
Kai, M., Crespo, E., Cristescu, S.M., Harren, F.J.M., Francke, W. and Piechulla, B. (2010) Serratia odorifera: Analysis of Volatile Emission and Biological Impact of Volatile Compounds on Arabidopsis thaliana. Appl. Microbiol. Biotechnol. , 88 , 965–976.
Kataoka, T., Hayashi, N., Yamaya, T. and Takahashi, H. (2004) Root-to-Shoot Transport of Sulfate in Arabidopsis. Evidence for the Role of SULTR3;5 as a Component of Low-Affinity Sulfate Transport System in the Root Vasculature. Plant Physiol. , 136 , 4198–4204.
Kertesz, M.A. (2000) Riding the Sulfur Cycle–Metabolism of Sulfonates and Sulfate Esters in Gram-Negative Bacteria. FEMS Microbiol. Rev. , 24 , 135–175.
Kim, T.J., Lee, Y.J., Ahn, Y.J. and Lee, G.-J. (2019) Characterization of H2S Releasing Properties of Various H2S Donors Utilizing Microplate Cover-Based Colorimetric Assay. Anal. Biochem. , 574 , 57–65.
Krueger, R.J. and Siegel, L.M. (1982) Evidence for Siroheme-Fe4S4 Interaction in Spinach Ferredoxin-Sulfite Reductase.Biochemistry , 21 , 2905–2909.
Lancaster, J.R., Vega, J.M., Kamin, H., Orme-Johnson, N.R., Orme-Johnson, W.H., Krueger, R.J. and Siegel, L.M. (1979) Identification of the Iron-Sulfur Center of Spinach Ferredoxin-Nitrite Reductase as a Tetranuclear Center, and Preliminary EPR Studies of Mechanism. J. Biol. Chem. , 254 , 1268–1272.
Larsen, T.O. (1998) Volatile Flavour Production by Penicillium caseifulvum. Int. Dairy J. , 8 , 883–887.
Lee, H.K., Khaine, I., Kwak, M.J., et al. (2017) The Relationship Between SO2 Exposure and Plant Physiology: A Mini Review.Hortic. Environ. Biotechnol. , 58 , 523–529.
Lewandowska, M. and Sirko, A. (2008) Recent Advances in Understanding Plant Response to Sulfur-Deficiency Stress. Acta Biochim. Pol. , 55 , 457–471.
Li, Y., Wang, Z., Li, J. and Sang, X. (2018) Diallyl Disulfide Suppresses FOXM1-Mediated Proliferation and Invasion in Osteosarcoma by Upregulating miR-134. J. Cell. Biochem.
Liang, D., Wu, H., Wong, M.W. and Huang, D. (2015) Diallyl Trisulfide Is a Fast H 2 S Donor, but Diallyl Disulfide Is a Slow One: The Reaction Pathways and Intermediates of Glutathione with Polysulfides. Org. Lett. , 17 , 4196–4199.
Lipman, J.G., Mclean, H.C. and Lint, H.C. (1916) Sulfur Oxidation in Soils and Its Effect on the Availability of Mineral Phosphates. Soil Sci. , 2 , 499–538.
Lobet, G., Pagès, L. and Draye, X. (2011) A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture. Plant Physiol. , 157 , 29–39.
Lunde, C., Zygadlo, A., Simonsen, H.T., Nielsen, P.L., Blennow, A. and Haldrup, A. (2008) Sulfur Starvation in Rice: The Effect on Photosynthesis, Carbohydrate Metabolism, and Oxidative Stress Protective Pathways. Physiol. Plant. , 134 , 508–521.
Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K. and Takahashi, H. (2006) Arabidopsis SLIM1 Is a Central Transcriptional Regulator of Plant Sulfur Response and Metabolism. Plant Cell ,18 , 3235–3251.
Marzluf, G.A. (1997) Molecular Genetics of Sulfur Assimilation in Filamentous Fungi and Yeast. Annu. Rev. Microbiol. ,51 , 73–96.
Meldau, D.G., Meldau, S., Hoang, L.H., Underberg, S., Wunsche, H. and Baldwin, I.T. (2013) Dimethyl Disulfide Produced by the Naturally Associated Bacterium Bacillus sp B55 Promotes Nicotiana attenuata Growth by Enhancing Sulfur Nutrition. Plant Cell ,25 , 2731–2747.
Mugford, S.G., Lee, B.-R., Koprivova, A., Matthewman, C. and Kopriva, S. (2011) Control of Sulfur Partitioning Between Primary and Secondary Metabolism. Plant J. , 65 , 96–105.
Mugford, S.G., Yoshimoto, N., Reichelt, M., et al. (2009) Disruption of Adenosine-5′-Phosphosulfate Kinase in ArabidopsisReduces Levels of Sulfated Secondary Metabolites. Plant Cell ,21 , 910–927.
Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. , 15 , 473–497.
National Institute of Standards and Technology (2014)NIST/EPA/NIH Mass Spectral & Retention Index Library , Gaithersburg.
Naznin, H.A., Kimura, M., Miyazawa, M. and Hyakumachi, M.(2013) Analysis of Volatile Organic Compounds Emitted by Plant Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on Tobacco. Microbes Environ. , 28 , 42–49.
Nemcovic, M., Jakubíková, L., Víden, I. and Farkas, V. (2008) Induction of Conidiation by Endogenous Volatile Compounds in Trichoderma spp. FEMS Microbiol. Lett. , 284 , 231–236.
Omar, S.A. and Abd-Alla, M.H. (2000) Physiological Aspects of Fungi Isolated from Root Nodules of Faba Bean (Vicia faba L.).Microbiol. Res. , 154 , 339–347.
Pfanz, H., Martinoia, E., Lange, O.-L. and Heber, U. (1987) Mesophyll Resistances to SO2 Fluxes into Leaves. Plant Physiol. ,85 , 922–927.
Piechulla, B., Lemfack, M.C. and Kai, M. (2017) Effects of Discrete Bioactive Microbial Volatiles on Plants and Fungi. Plant Cell Environ. , 40 , 2042–2067.
Randewig, D., Hamisch, D., Herschbach, C., et al. (2012) Sulfite Oxidase Controls Sulfur Metabolism Under SO2 Exposure in Arabidopsis thaliana. Plant Cell Environ. , 35 , 100–115.
Raven, J.A., Evans, M.C.W. and Korb, R.E. (1999) The Role of Trace Metals in Photosynthetic Electron Transport in O2-Evolving Organisms. Photosynth. Res. , 60 , 111–150.
Rennenberg, H. and Polle, A. (1994) Metabolic Consequences of Atmospheric Sulphur Influx into Plants. In R. G. Alscher and A. R. Wellburn, eds. Plant Responses to the Gaseous Environment: Molecular, metabolic and physiological aspects . Dordrecht: Springer Netherlands, pp. 165–180.
Schalchli, H., Hormazabal, E., Becerra, J., Birkett, M., Alvear, M., Vidal, J. and Quiroz, A. (2011) Antifungal Activity of Volatile Metabolites Emitted by Mycelial Cultures of Saprophytic Fungi.Chem. Ecol. , 27 , 503–513.
Schindelin, J., Arganda-Carreras, I., Frise, E., et al. (2012) Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods , 9 , 676–682.
Seifert, R.M. and King, A.D. (1982) Identification of Some Volatile Constituents of Aspergillus clavatus. J. Agric. Food Chem. , 30 , 786–790.
Shibagaki, N., Rose, A., McDermott, J.P., Fujiwara, T., Hayashi, H., Yoneyama, T. and Davies, J.P. (2002) Selenate-Resistant Mutants of Arabidopsis thaliana Identify Sultr1;2, a Sulfate Transporter Required for Efficient Transport of Sulfate into Roots. Plant J. ,29 , 475–486.
Splivallo, R., Novero, M., Bertea, C.M., Bossi, S. and Bonfante, P. (2007) Truffle Volatiles Inhibit Growth and Induce an Oxidative Burst in Arabidopsis thaliana. New Phytol. , 175 , 417–424.
Sugiyama, R., Li, R., Kuwahara, A., et al. (2021) Retrograde Sulfur Flow from Glucosinolates to Cysteine in Arabidopsis thaliana.Proc. Natl. Acad. Sci. , 118(22), e2017890118.
Takahashi, H., Kopriva, S., Giordano, M., Saito, K. and Hell, R. (2011) Sulfur Assimilation in Photosynthetic Organisms: Molecular Functions and Regulations of Transporters and Assimilatory Enzymes.Annu. Rev. Plant Biol. , 62 , 157–184.
Takahashi, H., Yamazaki, M., Sasakura, N., Watanabe, A., Leustek, T., Engler, J. de A., Engler, G., Montagu, M.V. and Saito, K.(1997) Regulation of Sulfur Assimilation in Higher Plants: A Sulfate Transporter Induced in Sulfate-Starved Roots Plays a Central Role in Arabidopsis thaliana. Proc. Natl. Acad. Sci. , 94 , 11102–11107.
Ting, H.-M., Cheah, B.H., Chen, Y.-C., et al. (2020) The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses.Front. Plant Sci. , 11 , 257.
Vandendool, H. and Kratz, P.D. (1963) A Generalization of the Retention Index System Including Linear Temperature Programmed Gas-Liquid Partition Chromatography. J. Chromatogr. , 11 , 463–471.
Waksman, S.A. and Joffe, J.S. (1922) Microörganisms Concerned in the Oxidation of Sulfur in the Soil: II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil. J. Bacteriol. , 7 , 239–256.
Wei, X., Ma, Y., Li, F., et al. (2021) Acute Diallyl Disulfide Administration Prevents and Reveres Lipopolysaccharide-Induced Depression-Like Behaviors in Mice via Regulating Neuroinflammation and Oxido-Nitrosative Stress. Inflammation .
Wittstock, U., Kurzbach, E., Herfurth, A.-M. and Stauber, E.J.(2016) Chapter Six - Glucosinolate Breakdown. In S. Kopriva, ed.Advances in Botanical Research . Glucosinolates. Academic Press, pp. 125–169.
Xiong, T., Liu, X.-W., Huang, X.-L., Xu, X.-F., Xie, W.-Q., Zhang, S.-J. and Tu, J. (2018) Tristetraprolin: A Novel Target of Diallyl Disulfide That Inhibits the Progression of Breast Cancer.Oncol. Lett. , 15 , 7817–7827.
Yang, F., Liu, X., Wang, H., Deng, R., Yu, H. and Cheng, Z.(2019) Identification and Allelopathy of Green Garlic (Allium sativum L.) Volatiles on Scavenging of Cucumber (Cucumis sativus L.) Reactive Oxygen Species. Mol. Basel Switz. , 24 .
Yi, L. and Su, Q. (2013) Molecular Mechanisms for the Anti-Cancer Effects of Diallyl Disulfide. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. , 57 , 362–370.
Yoshimoto, N., Takahashi, H., Smith, F.W., Yamaya, T. and Saito, K. (2002) Two Distinct High-Affinity Sulfate Transporters with Different Inducibilities Mediate Uptake of Sulfate in Arabidopsis Roots.Plant J. , 29 , 465–473.
Zhao, F., Hawkesford, M. and McGrath, S. (1999) Sulphur Assimilation and Effects on Yield and Quality of Wheat. J. Cereal Sci. , 30 , 1–17.