References
Aarabi,
F., Kusajima, M., Tohge, T., et al. (2016) Sulfur Deficiency–Induced
Repressor Proteins Optimize Glucosinolate Biosynthesis in Plants.Sci. Adv. , 2 , e1601087.
Agassi, S.F.T., Yeh, T.-M., Chang, C.-D., Hsu, J.-L. and Shih,
W.-L. (2020) Potentiation of Differentiation and Apoptosis in a Human
Promyelocytic Leukemia Cell Line by Garlic Essential Oil and Its
Organosulfur Compounds. Anticancer Res. , 40 , 6345–6354.
Aghajanzadeh, T., Hawkesford, M.J. and De Kok, L.J. (2014) The
Significance of Glucosinolates for Sulfur Storage in Brassicaceae
Seedlings. Front. Plant Sci. , 5 , 704.
Ausma, T. and De Kok, L.J. (2019) Atmospheric H2S: Impact on
Plant Functioning. Front. Plant Sci. , 10 , 743.
Bains, P.S. and Tewari, J.P. (1987) Purification, Chemical
Characterization and Host-Specificity of the Toxin Produced by
Alternaria brassicae. Physiol. Mol. Plant Pathol. , 30 ,
259–271.
Bakhtiari, M. and Rasmann, S. (2020) Variation in Below-to
Aboveground Systemic Induction of Glucosinolates Mediates Plant Fitness
Consequences under Herbivore Attack. J. Chem. Ecol. , 46 ,
317–329.
Baum, C. and Hrynkiewicz, K. (2006) Clonal and Seasonal Shifts
in Communities of Saprotrophic Microfungi and Soil Enzyme Activities in
the Mycorrhizosphere of Salix spp. J. Plant Nutr. Soil Sci. ,169 , 481–487.
Beijerinck, M.W. (1904) Phenomenes de Reduction Produits par
les Microbes. Arch. Néerlandaises Sci. Exactes Nat. (Section 2) ,9 , 131–157.
Birkinshaw, J.H. and Chaplen, P. (1955) Biochemistry of the
Wood-Rotting Fungi. 8. Volatile Metabolic Products of Daedalea
juniperina Murr. Biochem. J. , 60 , 255–261.
Bolton, S.G., Cerda, M.M., Gilbert, A.K. and Pluth, M.D. (2019)
Effects of Sulfane Sulfur Content in Benzyl Polysulfides on
Thiol-Triggered H2S Release and Cell Proliferation. Free Radic.
Biol. Med. , 131 , 393–398.
Borpatragohain, P., Rose, T.J. and King, G.J. (2016) Fire and
Brimstone: Molecular Interactions between Sulfur and Glucosinolate
Biosynthesis in Model and Crop Brassicaceae. Front. Plant Sci. ,7 , 1735.
Brock, N.L., Tudzynski, B. and Dickschat, J.S. (2011)
Biosynthesis of Sesqui- and Diterpenes by the Gibberellin Producer
Fusarium fujikuroi. Chembiochem Eur. J. Chem. Biol. , 12 ,
2667–2676.
Brown, P.D., Tokuhisa, J.G., Reichelt, M. and Gershenzon, J.(2003) Variation of Glucosinolate Accumulation Among Different Organs
and Developmental Stages of Arabidopsis thaliana. Phytochemistry ,62 , 471–481.
Burow, M., Müller, R., Gershenzon, J. and Wittstock, U. (2006)
Altered Glucosinolate Hydrolysis in Genetically Engineered Arabidopsis
thaliana and Its Influence on the Larval Development of Spodoptera
littoralis. J. Chem. Ecol. , 32 , 2333–2349.
Cai, Y.-R. and Hu, C.-H. (2017) Computational Study of H2 S Release in Reactions of Diallyl Polysulfides with
Thiols. J. Phys. Chem. B , 121 , 6359–6366.
Cavagnaro, T.R., Jackson, L.E., Six, J., Ferris, H., Goyal, S.,
Asami, D. and Scow, K.M. (2006) Arbuscular Mycorrhizas, Microbial
Communities, Nutrient Availability, and Soil Aggregates in Organic
Tomato Production. Plant Soil , 282 , 209–225.
Cheng, F., Ali, M., Liu, C., Deng, R. and Cheng, Z. (2020)
Garlic Allelochemical Diallyl Disulfide Alleviates Autotoxicity in the
Root Exudates Caused by Long-Term Continuous Cropping of Tomato.J. Agric. Food Chem. , 68 , 11684–11693.
Cheng, F., Cheng, Z.-H. and Meng, H.-W. (2016) Transcriptomic
Insights into the Allelopathic Effects of the Garlic Allelochemical
Diallyl Disulfide on Tomato Roots. Sci. Rep. , 6 , 38902.
Citron, C.A., Wickel, S.M., Schulz, B., Draeger, S. and
Dickschat, J.S. (2012) A Diels–Alder/Retro-Diels–Alder Approach for
the Enantioselective Synthesis of Microbial Butenolides. Eur. J.
Org. Chem. , 2012 , 6636–6646.
Demeule, M., Brossard, M., Turcotte, S., Regina, A., Jodoin, J.
and Béliveau, R. (2004) Diallyl Disulfide, a Chemopreventive Agent in
Garlic, Induces Multidrug Resistance-Associated Protein 2 Expression.Biochem. Biophys. Res. Commun. , 324 , 937–945.
Deng, S.P. and Tabatabai, M.A. (1997) Effect of Tillage and
Residue Management on Enzyme Activities in Soils: III. Phosphatases and
Arylsulfatase. Biol. Fertil. Soils , 24 , 141–146.
Dickschat, J.S. (2017) Fungal Volatiles – A Survey from Edible
Mushrooms to Moulds. Nat. Prod. Rep. , 34 , 310–328.
Falk, K.L., Tokuhisa, J.G. and Gershenzon, J. (2007) The Effect
of Sulfur Nutrition on Plant Glucosinolate Content: Physiology and
Molecular Mechanisms. Plant Biol. , 9 , 573–581.
Fitzgerald, J.W. (1976) Sulfate Ester Formation and Hydrolysis:
A Potentially Important Yet Often Ignored Aspect of the Sulfur Cycle of
Aerobic Soils. Bacteriol. Rev. , 40 , 698–721.
Frerigmann, H. and Gigolashvili, T. (2014) Update on the role
of R2R3-MYBs in the regulation of glucosinolates upon sulfur deficiency.Front. Plant Sci. , 5 , 626.
Fujiwara, T., Hirai, M.Y., Chino, M., Komeda, Y. and Naito, S.(1992) Effects of Sulfur Nutrition on Expression of the Soybean Seed
Storage Protein Genes in Transgenic Petunia. Plant Physiol. ,99 , 263–268.
Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C. and
Flügge, U.-I. (2007) The R2R3-MYB Transcription Factor HAG1/MYB28 is a
Regulator of Methionine-Derived Glucosinolate Biosynthesis in
Arabidopsis thaliana. Plant J. , 51 , 247–261.
Giovannetti, M., Tolosano, M., Volpe, V., Kopriva, S. and
Bonfante, P. (2014) Identification and Functional Characterization of a
Sulfate Transporter Induced by Both Sulfur Starvation and Mycorrhiza
Formation in Lotus japonicus. New Phytol. , 204 ,
609–619.
Gray, L.E. and Gerdemann, J.W. (1973) Uptake of Sulphur-35 by
Vesicular-Arbuscular Mycorrhizae. Plant Soil , 39 ,
687–689.
Halkier, B.A. and Gershenzon, J. (2006) Biology and
Biochemistry of Glucosinolates. Annu. Rev. Plant Biol. ,57 , 303–333.
Hassanein, E.H.M., Mohamed, W.R., Khalaf, M.M., Shalkami,
A.-G.S., Sayed, A.M. and Hemeida, R.A.M. (2021) Diallyl Disulfide
Ameliorates Methotrexate-Induced Nephropathy in Rats: Molecular Studies
and Network Pharmacology Analysis. J. Food Biochem. , e13765.
Hill, T. and Käfer, E. (2001) Improved Protocols for
Aspergillus Minimal Medium: Trace Element and Minimal Medium Salt Stock
Solutions. Fungal Genet Newsl , 48 , 20–21.
Hirai, M.Y., Sugiyama, K., Sawada, Y., et al. (2007)
Omics-Based Identification of Arabidopsis Myb Transcription Factors
Regulating Aliphatic Glucosinolate Biosynthesis. Proc. Natl. Acad.
Sci. U. S. A. , 104 , 6478–6483.
Hochmuth, D. (2010) Massfinder v. 4.21 , Hamburg,
Germany: Hochmuth Scientific Consulting.
Jobe, T.O., Zenzen, I., Rahimzadeh Karvansara, P. and Kopriva,
S. (2019) Integration of Sulfate Assimilation with Carbon and Nitrogen
Metabolism in Transition from C3 to C4 Photosynthesis. J. Exp.
Bot. , 70 , 4211–4221.
Johnson, J.M., Ludwig, A., Furch, A.C.U., Mithöfer, A., Scholz,
S., Reichelt, M. and Oelmüller, R. (2019) The Beneficial
Root-Colonizing Fungus Mortierella hyalina Promotes the Aerial
Growth of Arabidopsis and Activates Calcium-Dependent Responses
That Restrict Alternaria brassicae –Induced Disease Development
in Roots. Mol. Plant. Microbe Interact. , 32 , 351–363.
Kai, M., Crespo, E., Cristescu, S.M., Harren, F.J.M., Francke,
W. and Piechulla, B. (2010) Serratia odorifera: Analysis of Volatile
Emission and Biological Impact of Volatile Compounds on Arabidopsis
thaliana. Appl. Microbiol. Biotechnol. , 88 , 965–976.
Kataoka, T., Hayashi, N., Yamaya, T. and Takahashi, H. (2004)
Root-to-Shoot Transport of Sulfate in Arabidopsis. Evidence for the Role
of SULTR3;5 as a Component of Low-Affinity Sulfate Transport System in
the Root Vasculature. Plant Physiol. , 136 , 4198–4204.
Kertesz, M.A. (2000) Riding the Sulfur Cycle–Metabolism of
Sulfonates and Sulfate Esters in Gram-Negative Bacteria. FEMS
Microbiol. Rev. , 24 , 135–175.
Kim, T.J., Lee, Y.J., Ahn, Y.J. and Lee, G.-J. (2019)
Characterization of H2S Releasing Properties of Various H2S Donors
Utilizing Microplate Cover-Based Colorimetric Assay. Anal.
Biochem. , 574 , 57–65.
Krueger, R.J. and Siegel, L.M. (1982) Evidence for
Siroheme-Fe4S4 Interaction in Spinach Ferredoxin-Sulfite Reductase.Biochemistry , 21 , 2905–2909.
Lancaster, J.R., Vega, J.M., Kamin, H., Orme-Johnson, N.R.,
Orme-Johnson, W.H., Krueger, R.J. and Siegel, L.M. (1979)
Identification of the Iron-Sulfur Center of Spinach Ferredoxin-Nitrite
Reductase as a Tetranuclear Center, and Preliminary EPR Studies of
Mechanism. J. Biol. Chem. , 254 , 1268–1272.
Larsen, T.O. (1998) Volatile Flavour Production by Penicillium
caseifulvum. Int. Dairy J. , 8 , 883–887.
Lee, H.K., Khaine, I., Kwak, M.J., et al. (2017) The
Relationship Between SO2 Exposure and Plant Physiology: A Mini Review.Hortic. Environ. Biotechnol. , 58 , 523–529.
Lewandowska, M. and Sirko, A. (2008) Recent Advances in
Understanding Plant Response to Sulfur-Deficiency Stress. Acta
Biochim. Pol. , 55 , 457–471.
Li, Y., Wang, Z., Li, J. and Sang, X. (2018) Diallyl Disulfide
Suppresses FOXM1-Mediated Proliferation and Invasion in Osteosarcoma by
Upregulating miR-134. J. Cell. Biochem.
Liang, D., Wu, H., Wong, M.W. and Huang, D. (2015) Diallyl
Trisulfide Is a Fast H 2 S Donor, but Diallyl Disulfide
Is a Slow One: The Reaction Pathways and Intermediates of Glutathione
with Polysulfides. Org. Lett. , 17 , 4196–4199.
Lipman, J.G., Mclean, H.C. and Lint, H.C. (1916) Sulfur
Oxidation in Soils and Its Effect on the Availability of Mineral
Phosphates. Soil Sci. , 2 , 499–538.
Lobet, G., Pagès, L. and Draye, X. (2011) A Novel
Image-Analysis Toolbox Enabling Quantitative Analysis of Root System
Architecture. Plant Physiol. , 157 , 29–39.
Lunde, C., Zygadlo, A., Simonsen, H.T., Nielsen, P.L., Blennow,
A. and Haldrup, A. (2008) Sulfur Starvation in Rice: The Effect on
Photosynthesis, Carbohydrate Metabolism, and Oxidative Stress Protective
Pathways. Physiol. Plant. , 134 , 508–521.
Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K. and
Takahashi, H. (2006) Arabidopsis SLIM1 Is a Central Transcriptional
Regulator of Plant Sulfur Response and Metabolism. Plant Cell ,18 , 3235–3251.
Marzluf, G.A. (1997) Molecular Genetics of Sulfur Assimilation
in Filamentous Fungi and Yeast. Annu. Rev. Microbiol. ,51 , 73–96.
Meldau, D.G., Meldau, S., Hoang, L.H., Underberg, S., Wunsche,
H. and Baldwin, I.T. (2013) Dimethyl Disulfide Produced by the
Naturally Associated Bacterium Bacillus sp B55 Promotes Nicotiana
attenuata Growth by Enhancing Sulfur Nutrition. Plant Cell ,25 , 2731–2747.
Mugford, S.G., Lee, B.-R., Koprivova, A., Matthewman, C. and
Kopriva, S. (2011) Control of Sulfur Partitioning Between Primary and
Secondary Metabolism. Plant J. , 65 , 96–105.
Mugford, S.G., Yoshimoto, N., Reichelt, M., et al. (2009)
Disruption of Adenosine-5′-Phosphosulfate Kinase in ArabidopsisReduces Levels of Sulfated Secondary Metabolites. Plant Cell ,21 , 910–927.
Murashige, T. and Skoog, F. (1962) A Revised Medium for Rapid
Growth and Bio Assays with Tobacco Tissue Cultures. Physiol.
Plant. , 15 , 473–497.
National Institute of Standards and Technology (2014)NIST/EPA/NIH Mass Spectral & Retention Index Library ,
Gaithersburg.
Naznin, H.A., Kimura, M., Miyazawa, M. and Hyakumachi, M.(2013) Analysis of Volatile Organic Compounds Emitted by Plant
Growth-Promoting Fungus Phoma sp. GS8-3 for Growth Promotion Effects on
Tobacco. Microbes Environ. , 28 , 42–49.
Nemcovic, M., Jakubíková, L., Víden, I. and Farkas, V. (2008)
Induction of Conidiation by Endogenous Volatile Compounds in Trichoderma
spp. FEMS Microbiol. Lett. , 284 , 231–236.
Omar, S.A. and Abd-Alla, M.H. (2000) Physiological Aspects of
Fungi Isolated from Root Nodules of Faba Bean (Vicia faba L.).Microbiol. Res. , 154 , 339–347.
Pfanz, H., Martinoia, E., Lange, O.-L. and Heber, U. (1987)
Mesophyll Resistances to SO2 Fluxes into Leaves. Plant Physiol. ,85 , 922–927.
Piechulla, B., Lemfack, M.C. and Kai, M. (2017) Effects of
Discrete Bioactive Microbial Volatiles on Plants and Fungi. Plant
Cell Environ. , 40 , 2042–2067.
Randewig, D., Hamisch, D., Herschbach, C., et al. (2012)
Sulfite Oxidase Controls Sulfur Metabolism Under SO2 Exposure in
Arabidopsis thaliana. Plant Cell Environ. , 35 , 100–115.
Raven, J.A., Evans, M.C.W. and Korb, R.E. (1999) The Role of
Trace Metals in Photosynthetic Electron Transport in O2-Evolving
Organisms. Photosynth. Res. , 60 , 111–150.
Rennenberg, H. and Polle, A. (1994) Metabolic Consequences of
Atmospheric Sulphur Influx into Plants. In R. G. Alscher and A. R.
Wellburn, eds. Plant Responses to the Gaseous Environment:
Molecular, metabolic and physiological aspects . Dordrecht: Springer
Netherlands, pp. 165–180.
Schalchli, H., Hormazabal, E., Becerra, J., Birkett, M., Alvear,
M., Vidal, J. and Quiroz, A. (2011) Antifungal Activity of Volatile
Metabolites Emitted by Mycelial Cultures of Saprophytic Fungi.Chem. Ecol. , 27 , 503–513.
Schindelin, J., Arganda-Carreras, I., Frise, E., et al. (2012)
Fiji: An Open-Source Platform for Biological-Image Analysis. Nat.
Methods , 9 , 676–682.
Seifert, R.M. and King, A.D. (1982) Identification of Some
Volatile Constituents of Aspergillus clavatus. J. Agric. Food
Chem. , 30 , 786–790.
Shibagaki, N., Rose, A., McDermott, J.P., Fujiwara, T., Hayashi,
H., Yoneyama, T. and Davies, J.P. (2002) Selenate-Resistant Mutants of
Arabidopsis thaliana Identify Sultr1;2, a Sulfate Transporter Required
for Efficient Transport of Sulfate into Roots. Plant J. ,29 , 475–486.
Splivallo, R., Novero, M., Bertea, C.M., Bossi, S. and Bonfante,
P. (2007) Truffle Volatiles Inhibit Growth and Induce an Oxidative
Burst in Arabidopsis thaliana. New Phytol. , 175 ,
417–424.
Sugiyama, R., Li, R., Kuwahara, A., et al. (2021) Retrograde
Sulfur Flow from Glucosinolates to Cysteine in Arabidopsis thaliana.Proc. Natl. Acad. Sci. , 118(22), e2017890118.
Takahashi, H., Kopriva, S., Giordano, M., Saito, K. and Hell,
R. (2011) Sulfur Assimilation in Photosynthetic Organisms: Molecular
Functions and Regulations of Transporters and Assimilatory Enzymes.Annu. Rev. Plant Biol. , 62 , 157–184.
Takahashi, H., Yamazaki, M., Sasakura, N., Watanabe, A.,
Leustek, T., Engler, J. de A., Engler, G., Montagu, M.V. and Saito, K.(1997) Regulation of Sulfur Assimilation in Higher Plants: A Sulfate
Transporter Induced in Sulfate-Starved Roots Plays a Central Role in
Arabidopsis thaliana. Proc. Natl. Acad. Sci. , 94 ,
11102–11107.
Ting, H.-M., Cheah, B.H., Chen, Y.-C., et al. (2020) The Role
of a Glucosinolate-Derived Nitrile in Plant Immune Responses.Front. Plant Sci. , 11 , 257.
Vandendool, H. and Kratz, P.D. (1963) A Generalization of the
Retention Index System Including Linear Temperature Programmed
Gas-Liquid Partition Chromatography. J. Chromatogr. , 11 ,
463–471.
Waksman, S.A. and Joffe, J.S. (1922) Microörganisms Concerned
in the Oxidation of Sulfur in the Soil: II. Thiobacillus Thiooxidans, a
New Sulfur-oxidizing Organism Isolated from the Soil. J.
Bacteriol. , 7 , 239–256.
Wei, X., Ma, Y., Li, F., et al. (2021) Acute Diallyl Disulfide
Administration Prevents and Reveres Lipopolysaccharide-Induced
Depression-Like Behaviors in Mice via Regulating Neuroinflammation and
Oxido-Nitrosative Stress. Inflammation .
Wittstock, U., Kurzbach, E., Herfurth, A.-M. and Stauber, E.J.(2016) Chapter Six - Glucosinolate Breakdown. In S. Kopriva, ed.Advances in Botanical Research . Glucosinolates. Academic Press,
pp. 125–169.
Xiong, T., Liu, X.-W., Huang, X.-L., Xu, X.-F., Xie, W.-Q.,
Zhang, S.-J. and Tu, J. (2018) Tristetraprolin: A Novel Target of
Diallyl Disulfide That Inhibits the Progression of Breast Cancer.Oncol. Lett. , 15 , 7817–7827.
Yang, F., Liu, X., Wang, H., Deng, R., Yu, H. and Cheng, Z.(2019) Identification and Allelopathy of Green Garlic (Allium sativum
L.) Volatiles on Scavenging of Cucumber (Cucumis sativus L.) Reactive
Oxygen Species. Mol. Basel Switz. , 24 .
Yi, L. and Su, Q. (2013) Molecular Mechanisms for the
Anti-Cancer Effects of Diallyl Disulfide. Food Chem. Toxicol. Int.
J. Publ. Br. Ind. Biol. Res. Assoc. , 57 , 362–370.
Yoshimoto, N., Takahashi, H., Smith, F.W., Yamaya, T. and Saito,
K. (2002) Two Distinct High-Affinity Sulfate Transporters with
Different Inducibilities Mediate Uptake of Sulfate in Arabidopsis Roots.Plant J. , 29 , 465–473.
Zhao, F., Hawkesford, M. and McGrath, S. (1999) Sulphur
Assimilation and Effects on Yield and Quality of Wheat. J. Cereal
Sci. , 30 ,
1–17.