REFERENCES
Alowitz, M. J., & Scherer, M. M. (2002). Kinetics of nitrate, nitrite,
and Cr (VI) reduction by iron metal. Environ Sci Techno ,36 , 299-306.https://doi.org/10.1021/es011000h
Beese-Vasbender, P. F, Nayak, S., Erbe, A., Stratmann, M., & Mayrhofer.
K. J. J. (2015). Electrochemical characterization of direct electron
uptake in electrical microbially influenced corrosion of iron by the
lithoautotrophic SRB Desulfopila corrodens strain IS4.Electrochim Acta , 167 , 321–329.https://doi.org/10.1016/j.electacta.2015.03.184
Daniels, L., Belay, N., Rajagopal, B. S., & Weimer, P. J. (1987).
Bacterial methanogenesis and growth from CO2 with
elemental iron as the sole source of electrons. Science ,237 , 509–511.https://doi.org/10.1126/science.237.4814.509
De Windt, W., Boon, N., Siciliano, S. D., & Verstraete, W. (2003). Cell
density related H2 consumption in relation to anoxic
Fe(0) corrosion and precipitation of corrosion products byShewanella oneidensis MR-1. Environ Microbiol , 5 ,
1192–1202.https://doi.org/10.1046/j.1462-2920.2003.00527.x
Deng, X., Dohmae, N., Nealson, K. H., Hashimoto, K., & Okamoto, A.
(2018). Multi-heme cytochromes provide a pathway for survival in
energy-limited environments. Sci Adv , 4 , eaao5682.https://doi.org/10.1126/sciadv.aao5682
Dinh, H. T., Kuever, J., Muβmann, M., Hassel, A. W., Stratmann, M., &
Widdel, F. (2004). Iron corrosion by novel anaerobic microorganisms.Nature , 427 , 829-832.https://doi.org/10.1038/nature02321
Enning, D., & Garrelfs, J. (2014). Corrosion of iron by
sulfate-reducing bacteria: new views of an old problem. Appl
Environ Microbiol , 80 , 1226-1236.https://doi.org/10.1128/AEM.02848-13
Enning, D., Venzlaff, H., Garrelfs, J., Dinh, H. T., Meyer, V.,
Mayrhofer, K., Hassel, A. W., Stratmann, M., & Widdel, F. (2012).
Marine sulfate‐reducing bacteria cause serious corrosion of iron under
electroconductive biogenic mineral crust. Environ Microbiol ,14 , 1772-1787.https://doi.org/10.1111/j.1462-2920.2012.02778.x
Ginner, J. L., Alvarez, P. J. J., Smith, S. L., & Scherer, M. M.
(2004). Nitrate and nitrite reduction by Fe0:
influence of mass transport, temperature, and denitrifying microbes.Environ Eng Sci , 21 , 219–229.https://doi.org/10.1089/109287504773087381
Gittel, A., Sørensen, K. B., Skovhus, T. L., Ingvorsen, K., & Schramm,
A. (2009). Prokaryotic community structure and sulfate reducer activity
in water from high-temperature oil reservoirs with and without nitrate
treatment. Appl Environ Microbiol , 75 , 7086-7096.https://doi.org/10.1128/AEM.01123-09
Holmes, D. E., Nevin, K. P., Woodard, T. L., Peacock, A. D., & Lovley,
D. R. (2007). Prolixibacter bellariivorans gen. nov., sp. nov., a
sugar-fermenting psychrotolerant anaerobe of the phylumBacteroidetes , isolated from a marine-sediment fuel cell.Int J Syst Evol Microbiol , 57, 701-707.https://doi.org/10.1099/ijs.0.64296-0
Iino, T., Sakamoto, M., & Ohkuma, M. (2015a). Prolixibacter
denitrificans sp. nov., an iron-corroding, facultatively aerobic,
nitrate-reducing bacterium isolated from crude oil, and emended
descriptions of the genus Prolixibacter and Prolixibacter
bellariivorans . Int J Syst Evol Microbiol , 65 ,
2865–2869.https://doi.org/10.1099/ijs.0.000343
Iino, T., Ito, K., Wakai, S., Tsurumaru, H., Ohkuma, M., & Harayama, S.
(2015b). Iron corrosion induced by nonhydrogenotrophic nitrate-reducingProlixibacter sp. strain MIC1-1. Appl Environ Microbiol ,81 , 1839–1846.https://doi.org/10.1128/AEM.03741-14
Iino, T., Mori, K., Uchino, Y., Nakagawa, T., Harayama, S., & Suzuki,
K. (2010). Ignavibacterium album gen. nov., sp. nov., a
moderately thermophilic anaerobic bacterium isolated from microbial mats
at a terrestrial hot spring and proposal of Ignavibacteriaclassis nov., for a novel lineage at the periphery of green sulfur
bacteria. Int J Syst Evol Microbiol , 60 , 1376-1382.https://doi.org/10.1099/ijs.0.012484-0
Isa, M. I. H., Cheng, Y. L., & Isa, M. I. N., (2012). Saccharides
glucose as a potential corrosion inhibition for mild steel in seawater.Int J Recent Sci Res , 2 , 123–127.
Javaherdashti. R. (2008). Microbiologically influenced corrosion: an
engineering insight. Springer-Verlag. New York.
Jia, R., Yang, D., Xu, D., & Gu, T. (2017). Electron transfer mediators
accelerated the microbiologically influence corrosion against carbon
steel by nitrate reducing Pseudomonas aeruginosa biofilm.Bioelectrochemistry , 118 , 38-46.https://doi.org/10.1016/j.bioelechem.2017.06.013
Lahme, S., Enning, D., Callbeck, C. M., Vega, D. M., Curtis, T. P.,
Head, I. M., & Huberta, C. R. J. (2019). Metabolites of an oil field
sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe
corrosion. Appl Environ Microbiol , 85 , e01891-18.https://doi.org/10.1128/AEM.01891-18
Miller II, R. B., Lawson, K., Sadek, A., Monty, C. N., & Senko, J. M.
(2018). Uniform and pitting corrosion of carbon steel byShewanella oneidensis MR-1 under nitrate-reducing conditions.Appl Environ Microbiol , 84 , e00790-18.https://doi.org/10.1128/AEM.00790-18
Mori, K., Tsurumaru, H., & Harayama, S. (2010). Iron corrosion activity
of anaerobic hydrogen-consuming microorganisms isolated from oil
facilities. J Biosci Bioeng , 110 , 426–430.https://doi.org/10.1016/j.jbiosc.2010.04.012
Okamoto, A., Kalathil, S., Deng, X., Hashimoto, K., Nakamura, R., &
Nealson, K. H. (2014). Cell-secreted flavins bound to membrane
cytochromes dictate electron transfer reactions to surfaces with diverse
charge and pH. Sci Rep , 4 , 5628.https://doi.org/10.1038/srep05628
Saito, H., & Miura, K. (1963). Preparation of transforming
deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta ,72 , 619-629.https://doi.org/10.1016/0926-6550(63)90386-4
Saitou, N., & Nei, M. (1987). A neighbor-joining method: a new method
for reconstructing phylogenetic trees. Mol Biol Evol , 4 ,
406-425.https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sandell, E.B. (1959). Colorimetric determination of trace metals. The
chemical analysis monograph series, vol. 3. Interscience Publishers,
Inc, New York, NY.
Schaedler, F., Lockwood, C., Lueder, U., Glombitza, C., Kappler, A., &
Schmidta, C. (2018). Microbially mediated coupling of Fe and N cycles by
nitrate-reducing Fe(II)-oxidizing bacteria in littoral freshwater
sediments. Appl Environ Microbiol , 84 , e02013-17.https://doi.org/10.1128/AEM.02013-17
Schwermer, C. U., Lavik, G., Abed, R. M. M., Dunsmore, B., Ferdelman, T.
G., Stoodley, P., Gieseke, A, & de Beer, D. (2008). Impact of nitrate
on the structure and function of bacterial biofilm communities in
pipelines used for injection of seawater into oil fields. Appl
Environ. Microbiol , 74 , 2841-2851.https://doi.org/10.1128/AEM.02027-07
Stackebrandt, E., & Goebel, B. M. (1994). Taxonomic note: a place for
DNA-DNA reassociation and 16S rRNA sequence analysis in the present
species definition in bacteriology. Int J Syst Evol Microbiol ,44 , 846–849.https://doi.org/10.1099/00207713-44-4-846
Telang, A. J., Evert, S., Foght, J. M., Westlake, D. W. S., Jenneman, G.
E., Gevertz, D., & Voordouw, G. (1997). Effect of nitrate injection on
the microbial community in an oil field as monitored by reverse sample
genome probing. Appl Environ Microbiol , 63 , 1785-1793.https://doi.org/10.1128/AEM.63.5.1785-1793.1997
Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., &
Higgins, D. G. (1997). The CLUSTAL_X Windows interface: flexible
strategies for multiple sequence alignment aided by quality analysis
tool. Nucleic Acids Res , 24 , 4876-4882.https://doi.org/10.1093/nar/25.24.4876
Till, B. A., Weathers, L. J., & Alvarez, P. J. J. (1998).
Fe(0)-supported autotrophic denitrification. Environ Sci Technol ,
32, 634-639.https://doi.org/10.1021/es9707769
Tindall, B. J., Rosselló-Móra, R., Busse, H. J., Ludwig, W., & Kämpfer,
P. (2010). Notes on the characterization of prokaryote strains for
taxonomic purposes. Int J Syst Evol Microbiol , 60 ,
249–266.https://doi.org/10.1099/ijs.0.016949-0
Touzel, J. P., & Albagnac, G. (1983). Isolation and characterization ofMethanococcus mazei strain MC3. FEMS
Microbiol Lett , 16 , 241-245.https://doi.org/10.1111/j.1574-6968.1983.tb00295.x
Tsurumaru, H., Ito, N., Mori, K., Wakai, S., Uchiyama, T., Iino, T.,
Hosoyama, A, Ataku, H, Nishijima, K, Mise, M, Shimizu, A, Harada, T,
Horikawa, H, Ichikawa, N, Sekigawa, T, Jinno, K, Tanikawa, S, Yamazaki,
J, Sasaki, K, Yamazaki, S, Fujita, N, & Harayama, S. (2018). An
extracellular [NiFe] hydrogenase mediating iron corrosion is encoded
in a genetically unstable genomic island in Methanococcus
maripaludis. Sci Rep , 8 , 15149.https://doi.org/10.1038/s41598-018-33541-5
Uchiyama, T., Ito, K., Mori, K., Tsurumaru, H., & Harayama, S. (2010).
Iron-corroding methanogen isolated from a crude-oil storage tank.Appl Environ Microbiol , 76 , 1783-1788.https://doi.org/10.1128/AEM.00668-09
Venzlaff, H., Enning, D., Srinivasan, J., Mayrhofer, K. J. J., Hassel,
A. W., Widdel, F., & Stratmann, M. (2013). Accelerated cathodic
reaction in microbial corrosion of iron due to direct electron uptake by
sulfate-reducing bacteria. Corros Sci , 66 , 88-96.https://doi.org/10.1016/j.corsci.2012.09.006
Wolin, E. A., Wolin, M. J., & Wolfe, R. S. (1963). Formation of methane
by bacterial extracts. J Biol Chem , 238 , 2882-2886.
Xu, D., Li, Y., Song, F., & Gu, T. (2013). Laboratory investigation of
microbiologically influenced corrosion of C1018 carbon steel by nitrate
reducing bacterium Bacillus licheniformi s. Corros Sci ,77, 385-390.https://doi.org/10.1016/j.corsci.2013.07.044
Zarasvand, K. A., & Rai, V. R. (2014). Microorganisms: induction and
inhibition of corrosion in metals. Int Biodeterior
Biodegradation , 87 , 66-74.https://doi.org/10.1016/j.ibiod.2013.10.023