(±) electric-field×10-4 a.u
-20 {3.1999, 1.3789, 0.5157}{3.4961, 1.0657, 0.7231}
{3.4229, 1.1970, 0.7757}{3.2624, 1.5383, 0.5502}
-100 {0.3698, 2.9198, 0.6052}{0.7745, 3.9570, 0.7739}
{0.7527, 3.9581, 0.7784}{0.3735, 2.9209, 0.6039}
-200 {1.5422, 2.8812, 0.5281}{2.2128, 3.4541, 0.7779}
{2.2930, 3.4013, 0.6959}{1.5461, 2.5344, 0.5428}
+20 {3.4216, 1.1451, 0.7773}{3.2804, 1.4972, 0.5525}
{3.2203, 1.3400, 0.5365}{3.5034, 1.0231, 0.7204}
+100 {3.1570, 2.2760, 0.7501}{2.6790, 2.3690, 0.5560}
{2.6209, 2.2755, 0.5359}{3.3027, 2.2004, 0.6971}
+200 {1.6560, 1.5748, 1.2344}{1.9578, 1.2426, 1.4150}
{2.6512, 1.5395, 1.7706}{3.0119, 1.8427, 0.5820}
Table 3(b). The chirality Cσ, bond-flexing
Fσ and bond-anharmonicity Aσ and theE -field amplification EAσ of the dominant
torsional C1-N7 BCP for the electric field induced
Sa and Ra stereoisomers of glycine. TheE -field amplification EAσ, is defined for each
Sa and Ra stereoisomer as the ratio
EAσ =
Cσ/Cσ|E= 0, see also Table 3(a) and Table 1(b) .
Sa Ra
Molecule {Cσ, Fσ,
Aσ} EAσ {Cσ,
Fσ, Aσ} EAσXσ