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Abstract. The paper provides a study of the commutative algebras gen-
erated by iteration of the cross products in C3. Focusing on particular
real forms we also consider the analytical properties of the corresponding
rings of functions and relate them to different physical problems. Famil-
iar results from the theory of holomorphic and bi-holomorphic functions
appear naturally in this context, but new types of hypercomplex calculi
emerge as well. The parallel transport along smooth curves in E3 and
the associated Maurer-Cartan form are also studied with examples from
kinematics and electrodynamics. Finally, the dual extension is discussed
in the context of screw calculus and Galilean mechanics; a similar con-
struction is studied also in the multi-dimensional real and complex cases.

Introduction

Hypercomplex number systems have become a major tool in mathematical
physics during the past few decades. The variety of applications of the four
normed division algebras R, C, H and O is a classical example of the advan-
tages such an approach has to offer [1]. Then, one may introduce complexi-
fication and consider their split versions C′, H′ and O′ related to hyperbolic
geometry, relativity and quantum mechanics (see [2], [3] and [4]), as well as
dualization, i.e., central extension with a nilpotent element, which is useful for
instance in the treatment of non-homogeneous isometries (see [5]). Clifford’s
geometric algebras provide another strong confirmation. Here we discuss hy-
percomplex numbers originating in rigid body kinematics and more precisely,
the iterated cross product in R3, extended via complexification, with a study
on the split and null forms, as well as the dual setting. Thus, we rediscover
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some algebraic and functional properties well known from complex, bicom-
plex, hyperbolic and dual number analysis, but new objects appear within
our construction too. Furthermore, altering the directional vector on the unit
sphere we also consider the parallel transport in the so obtained fibre bundle,
and finally, provide a generalization to arbitrary dimensions and signatures.

1. Preliminaries

The cross product of two vectors has no direct analogue in dimensions other
than three (apart from the trivial one: k-vectors in R3k) so it is essentially
related to the geometry of R3. From the perspective of Clifford’s geometric
algebras, this construction may be viewed as a composition of the exterior
product ∧ and the Hodge star operator ? acting on monomials in Cliffn as

? : ei1 ∧ ei2 ∧ . . . eik → (−1)[i1,i2,...in]eik+1
∧ eik+2

∧ . . . ein (1.1)

where [i1, i2, . . . in] denotes the parity of the permutation. The latter clearly
sends a subspace of Rn to its orthogonal complement. For n = 3 in particular,
it associates the 2-plane spanned by ei and ej with its normal direction
ek = ei×ej , where [i, j, k] = 0. Thus, we end up with a vector1

u× v = (u ∧ v)
?

(1.2)

by coincidence: the codimension of the span equals the dimension of each
factor. Note, however, that u × v is an image of a bi-vector, i.e., an even
element in the Z2 grading of Cliff0,3. In this sense, the Cliffordian realization
is much less misleading as there one begins with a bi-vector in the first place.
It also gives a direct clue how the cross product endows R3 with the Lie
algebra structure of so(3). Namely, the obvious vector space isomorphism
χ : so(3)→ R3 maps the commutator of Lie generators to the cross product
of their χ-images and vice versa. Thus, the adjoint action adξ of each element
ξ ∈ so(3) is replaced in R3 by a linear transformation of the type û = u×

with u = χ(ξ), whose matrix in a suitably chosen basis may be written as

û →

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ End(R3). (1.3)

Since the adjoint action yields all derivations in a semi-simple Lie algebra,
the cross product appears naturally in ODE’s and PDE’s related tho spatial
geometry, such as the kinematic equation of rigid bodies with a fixed point

ṙ = ω̂ r (1.4)

where r and ω denote respectively the coordinate radius-vector and angular
velocity in a fixed frame. Even in the simple case ω = const. the solution

r(t) = etω̂r0 =

∞∑
k=0

tk

k!
ω̂kr0, r0 = r(0) (1.5)

1or rather, a pseudo-vector, since it is preserved by the principal involution x→ −x.
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has the form of an operator-valued exponent and one encounters the iterated
cross products at this very basic level. According to the famous Hamilton-
Cayley theorem, the matrix (1.3) satisfies its characteristic equation

û3 + u2û = 0 (1.6)

from which we derive a recurrent relation for the powers of ω̂ and thus reduce
(1.5) to a polynomial. In order to study the map (1.3) and its iterations, it
is convenient to begin with the unit sphere S2 ⊂ R3 and use homogeneity.
Namely, if we set x = λx ∈ R3 with x ∈ S2 and λ = ||x|| ∈ R+, this clearly

yields x̂ = λx̂ and thus, x̂n = λnx̂n. Moreover, if we let I, P‖x and P⊥x denote
respectively the identity, the parallel and the normal projector defined as

P‖x = xxt, P⊥x = I − P‖x
it is not hard to see for example, either from (1.6) or by direct computation,
that x̂2 = −P⊥x . Hence, one derives the recurrent relation for n∈N

x̂n+2 = −x̂n, x̂0 = I. (1.7)

With the above construction it is straightforward to represent standard geo-

metric operators, e.g. the parallel projector in the x-direction P‖x = x̂0 + x̂2,
the half-turn Ox = x̂0 + 2x̂2 about it or the mirror reflection M⊥x = −Ox
with respect to the normal plane x⊥ and of course, all rotations in it, with the
aid of formula (1.5). Note, however, that the commutative algebra generated

by powers of x̂ has plenty of zero divisors as none of the operators x̂, P‖x and
P⊥x has maximal rank. In the following pages we study the structure of this
algebra, together with various generalizations and physical implementations.

2. Algebraic Structure

So far we have a representation of a particular commutative and associative
unital algebra Ω, with basis elements p, q and r corresponding to the operators

P‖x , P⊥x and x̂, respectively. The multiplication table

p2 = p, p q = p r = 0, qr = r, q2 = −r2 = q (2.1)

yields a direct sum decomposition Ω ∼= Ω0⊕Ω⊥where Ω0
∼= R is spanned by

the parallel component p and Ω⊥∼= C - by q and r. Thus, the map

Ω 3 ϕ = ϕ0p+ ϕ1q + ϕ2r ←→ {ϕ0, ϕ1+ iϕ2} ∈ R⊕ C

is an isomorphism of algebras and formula (2.1) implies the product rule

ϕψ = ϕ0ψ0 p+ (ϕ1ψ1 − ϕ2ψ2) q + (ϕ1ψ2 + ϕ2ψ1) r. (2.2)

In geometric terms, one may always choose an orthonormal coordinate frame
such that x is aligned with the first axis, so ϕ has the matrix representation

ϕ ∼

 ϕ0 0 0
0 ϕ1 −ϕ2

0 ϕ2 ϕ1

· (2.3)
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Clearly, the element ϕ ∈ Ω is invertible whenever the determinant of its
matrix representation is non-vanishing and the inverse has the explicit form

ϕ−1 =
1

ϕ0
p+

ϕ1

ϕ2
1 + ϕ2

2

q − ϕ2

ϕ2
1 + ϕ2

2

r =
ϕ∗

||ϕ||2
(2.4)

where the conjugation (principal involution) ϕ→ ϕ∗ in Ω corresponds to sign
inversion of x or equivalently, transposition in (2.3)

∗ : {p, q, r} → {p, q, −r}

and the norm in Ω may be introduced in the form of a product of the norms
in its two orthogonal components, namely as

||ϕ||2Ω = ||ϕ||20||ϕ||2⊥ = ϕ0 detϕ = ϕ2
0(ϕ2

1 + ϕ2
2). (2.5)

Thus, each ϕ ∈ Ω is algebraically invertible if and only if its norm (2.5) is
non-zero and the multiplicative inverse ϕ−1 is given by formula (2.4). Note,
however, that an element ϕ may not be invertible in the whole algebra Ω but
only in its parallel or perpendicular invariant subspace associated respectively

with kerP⊥x or kerP‖x . The corresponding projectors are realized as

〈ϕ〉0 = pϕ, 〈ϕ〉⊥ = qϕ = ϕ⊥.

On the other hand, the conjugation naturally fixes the even subalgebra Ωev∼=
R⊕ R spanned by p and q, represented by diagonal matrices in (2.3). It is
convenient to introduce cylindrical coordinates in Ω in the form

ϕ1 + iϕ2 = ρ eiϑ, ρ = ||ϕ||⊥, ϑ = arg〈ϕ〉⊥ = atan2 [ϕ2, ϕ1] (2.6)

where atan2 [ϕ2, ϕ1] stands for the so-called proper quadrant inverse tangent.
Here we recover all standard facts about complex numbers, e.g., even elements
of Ω act as scale transformations in the x direction (with a possible reflection
if ϕ0 < 0) and spiral motions in the plane x⊥. Moreover, the following holds

Theorem 2.1. For all n ∈ N (or n ∈ Z as long as ||ϕ||Ω 6= 0) one has

ϕn = ϕn0 p+ ρn (cosnϑ q + sinnϑ r) = ϕn0 p+ ρn〈enϑr〉⊥.

Similarly, the n-th root of an arbitrary ϕ ∈ Ω is given as

( n
√
ϕ)jk = ( n

√
ϕ0)j p+ ρ

1
n

(
cos

ϑ+2kπ

n
q + sin

ϑ+2kπ

n
r

)
where ( n

√
ϕ)jk = ψjk denotes the jk-th of the n2 solution to the equation

ψn=ϕ with j, k = 0, . . . , n−1, while ρ
1
n is the unique non-negative real root.

This somewhat classical result is a direct consequence of the algebraic struc-
ture of Ω and some elementary trigonometry provided in the next section.
Note also that demanding only real values for n

√
ϕ0 one clearly ends up with

either 0, n or 2n solutions depending on the parity of n and the sign of ϕ0.
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3. Analytical Properties

The decomposition Ω ∼= R ⊕ C allows for introducing functions f : Ω → Ω
in the following manner: let ϕ ∈ Ω be represented by the pair {ϕ0, z} where
ϕ0 ∈ R, z = ϕ1 + iϕ2 ∈ C and consider a function f(ϕ) = 〈f〉0+ 〈f〉⊥ with

〈f〉0 = f0(ϕ0) p, 〈f〉⊥ = f1(ϕ⊥) q + f2(ϕ⊥) r.

Using the R⊕ C representation, the above may also be given in the form

{ϕ0, z}
f−→ {f0(ϕ0), f̃(z)}, f̃(z) = f̃1(z) + if̃2(z) (3.1)

where f̃ might be taken as the complex extension of f0, but generally one
only demands f̃(0) = f0(0) since ϕ0 = p+ q. Take for example the exponent

eϕ = eϕ0p+ eϕ1 (cosϕ2 q + sinϕ2 r) (3.2)

that is globally invertible (in the algebraic sense) as || expϕ||Ω = eϕ0+ϕ1 6= 0
and it is not hard to see that eϕeψ = eϕ+ψ. It is an example of an analytic
(holomorphic) function in Ω. More generally, we work with the following

Definition 3.1. A function f : Ω→ Ω is said to be analytic in a subset D ⊂ Ω
if f0 is real-analytic in D0 = D∩〈Ω〉0 and 〈f〉⊥ satisfies the Cauchy-Riemann
conditions in D⊥ = D ∩ 〈Ω〉⊥, i.e.,

∂f1

∂ϕ1
=
∂f2

∂ϕ2
,

∂f2

∂ϕ1
= − ∂f1

∂ϕ2
· (3.3)

This is equivalent to the algebraic definition of analyticity demanding the
tangent map to be in Ω and due to the mutual annihilation of p and q also
means that f has a power series expansion (we choose the origin for conve-

nience) f(ϕ) =

∞∑
n=0

anϕ
n, in which both the variable ϕ and the coefficients

{ak} are Ω−valued. Separating the term a0ϕ
0 = a0(p+ q) allows for writing

f(ϕ) =

∞∑
n=0

〈an〉0 ϕn0 +

∞∑
n=0

〈an〉⊥ϕn⊥. (3.4)

Since the above splitting is applicable also to inverse powers, as can be seen
from Moivre’s formula, we may express an arbitrary meromorphic function
in a similar way. Consider for example the familiar geometric series

∞∑
n=0

ϕn =
p

1−ϕ0
+

(1−ϕ1) q + ϕ2r

(1−ϕ1)2+ ϕ2
2

, ||ϕ||0, ||ϕ||⊥ < 1

or the Cayley map ϕ
Cay−−→ (1 + ϕ)(1− ϕ)−1 which takes the explicit form

Cay(ϕ) =
1 + ϕ0

1− ϕ0
p+

(1−||ϕ||2⊥) q + 2ϕ2r

(1−ϕ1)2+ ϕ2
2

· (3.5)

Naturally, this construction allows for a straightforward generalization of the
mean value and residue theorems as both differentiation and integration are
performed separately in Ω0 and Ω⊥, which also simplifies calculations greatly.
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Note, however, that the principal part of the Laurent series is generally de-
fined only in the restriction Ω⊥, e.g. r−1 = −r in Ω⊥ ∼= C, while @ r−1 in Ω.

Next, we shall study the invertibility of functions over Ω. In the analytic case
an inverse function at ϕ exists as long as the Jacobian is non-vanishing:

∃ f−1 ⇔ ||f ′(ϕ)||2Ω = |f ′0(ϕ0)|2|f̃ ′(z)|2 6= 0

and the inversion is being performed separately on Ω0 and Ω⊥. If the above
condition holds, f defines a biholomorphic map on Ω. Consider for instance
the exponent (3.2) and its inverse - the logarithm defined (modulo 2kπr) as

lnϕ = lnϕ0 p+ ln ||ϕ||⊥ q + arg〈ϕ〉⊥r. (3.6)

A particular case would be a map f with the property f ′0(ϕ0) |f̃ ′(z)| = const.,
which is easily illustrated by the restriction ϕ = λr ∈ Ω, i.e., f has a purely
imaginary argument. For example, the exponent now takes the simple form

eλr = p+ cosλ q + sinλ r (3.7)

that yields the famous Rodrigues’ rotation formula, where x ∈ S2 determines
the invariant axis and λ = ||x|| is the corresponding angle with counterclock-
wise orientation. Similarly, the geometric series here is reduced to

∞∑
n=0

(λr)n = p+
q+ λr

1 + λ2
, |λ| < 1 (3.8)

and finally, the Cayley map (3.5) takes the form

Cay(λr) = p+
1−λ2

1 + λ2
q +

2λ

1 + λ2
r (3.9)

which is easily seen to represent a rotation about x by an angle φ = 2 arctanλ,
so the group structure on SO(3) allows for analytic continuation to λ ∈ RP1.

Finally, let us point out that the algebraic equivalence between r and the
imaginary unit i yields alternating power series in the case ϕ = λr, namely

∞∑
n=0

an(λr)n = a0p+

∞∑
k=0

(−1)k〈a2k〉⊥λ2k q +

∞∑
k=0

(−1)k〈a2k+1〉⊥λ2k+1 r

so we may use the Leibniz convergence test to show that if ||an||⊥Rn → 0, the

above series converges at least in a ball of radius R, e.g. f(x) =

∞∑
n=1

n−sx̂n

is well defined in the unit ball for s > 0, while the exponent exists in all R3.
Note the geometric interpretation of analyticity in this context, namely as
preservation of x ∈ S2 which is equivalent to a choice of basis. We also see that
poles of meromorphic functions f̃(iλ) correspond to radii of singular spheres
for x ∈ R3. Similarly, critical points of f(λr), i.e., zeroes of the equation
||f ′||Ω = 0, are associated with spheres, on which f is non-invertible, etc.
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4. The Lorentz Setting

The complex version of the above construction yields a linear map χ̃ : C3 →
End(C3) given in matrix terms again by formula (1.3), this time with u ∈ C3.
The natural physical context here would be relativistic as χ̃ takes values in
the complex Lie algebra so3 that is isomorphic to so(3, 1) and respectively

SO(3,C) ∼= PSL(2,C) ∼= SO+(3, 1) (4.1)

where SO+(3, 1) denotes the proper Lorentz group, i.e., the connected com-
ponent of identity in SO(3, 1), which preserves causality in Minkowski space-
time (cf [7]). Unlike in the real case, here normalization is not always possible
due to the presence of isotropic directions. However, one still has the relation

x̂2 = xxt − x2I
and may use it to obtain a recurrent formula for x̂n similar to, or in the
particular case x2 6= 0, identical with (1.7), with the same notation x = λx

with λ =
√

x2 and x2 = 1 as before. The multiplication rule (2.2) and the
matrix representation (2.3) also remain valid in a suitably chosen, although
with ϕk ∈ C. Hence, for x2 6= 0 we end up with a complexification of Ω

ΩC ∼= C⊕ B
where B ∼= CC stands for the ring of bicomplex numbers (see [6]), also referred
to as tessarines, obtained by introducing a second imaginary init, which,
unlike in the Cayley-Dickson doubling process that yields H, commutes with
the initial one. Thus, we may choose a basis {1, i, j, k} satisfying

i2 = j2 = −1, ij = ji = k

and the presence of zero divisors allows for constructing the two idempotents

τ± =
1

2
(1± k), τ2

± = τ±, τ+τ− = 0

such that every element ψ⊥ ∈ B may be decomposed as

ψ⊥ = ψ−τ−+ ψ+τ+, ψ± = ψ1∓ iψ2 ∈ C (4.2)

which yields the splitting B ∼= C ⊕ C. Note also that the expressions (3.7)
and (3.9) still hold for non-isotropic directions but the equivalence between
the two does so only under the Plücker condition x2 ∈ R. More precisely, one
has Cay(λr)= eφr with φ=2 arctanλ where the parameters λ and φ are real
in the positive case x2 = 1 and purely imaginary in the negative one x2 = −1.

As far as analyticity is concerned, f0 is bound to satisfy the classical Cauchy-
Riemann conditions in C, while the bicomplex counterpart f⊥ satisfies a
generalized set of twelve relations for the partial derivatives {∂1, ∂i, ∂j , ∂k}
of the real components of f1,2 imposed by demanding that in the 4 × 4 real
matrix representation the differential of f⊥ takes values in ΩC

⊥
∼= B. However,

eight of them hold automatically if we restrict to the 2 × 2 complex matrix
realization and demand that f1,2 are analytic in both their arguments, namely

f⊥ ↔ f̃ ∈ C1(B) : ψ1 + jψ2 → f1 + jf2, ∂̄ψmfn = 0 (4.3)
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where m,n ∈ {1, 2} and ∂̄ψm
= ∂ψ̄m

stands for the complex conjugates of

∂ψ1
=

1

2
(∂1 − i∂i) , ∂ψ2

=
1

2
(∂j − i∂k) ·

The remaining four arise from the j-complex structure in the familiar form

∂ψ1
f1 = ∂ψ2

f2, ∂ψ1
f2 = −∂ψ2

f1 (4.4)

Note that all twelve analyticity conditions can be represented in a rather
compact form using the canonical conjugations of the bicomplex derivative

∂ =
1

2
(∂ψ1 − j∂ψ2)

namely, the usual 4∂̄ = ∂1 + i∂i − j∂j − k∂k inverting the sign or i and the
one with respect to j which yields 4∂∗ = ∂1 − i∂i + j∂j − k∂k. Adding their
composition 4∂̄∗ = ∂1 + i∂i + j∂j + k∂k we obtain the following (see [6])

Theorem 4.1. A function f̃ ∈ C1(D ⊂ B) is bicomplex holomorphic in D if
and only if it lies simultaneously in the kernels of the operators ∂̄, ∂∗ and ∂̄∗.

Note that the equalities (4.4) come from ∂∗ while ∂̄ and ∂̄∗ combined yield
(4.3). Typically, one would expect the Dirac-type operator ∂̄∗ to provide the
non-trivial part but B ∼= Cliff2(C) is not a real Clifford algebra although it is
a real form of Cliff0,3

∼= H⊕H. Classical results of complex calculus, such as
the Cauchy theorem and integral representation, extend naturally to B. We
refer to [6] for details while [4] provides insight for the physical applications.

Isotropic Directions

Next, we consider the isotropic case x2 = 0, C3 3 x 6= 0. This yields a nilpo-
tent element ` ↔ x̂ in our algebra since x̂2 = xxt, i.e., we have the relation
`2 = ε and respectively, ε` = ε2 = 0. Then, the algebra ΩC

null generated by
the nilpotent element ` of order three and the identity can be represented as

ΩC
null 3 ψ = ψ0 + ψ1`+ ψ2ε ∼

 ψ0 ψ1 ψ2

0 ψ0 ψ1

0 0 ψ0

· (4.5)

It is straightforward to derive the multiplication there in the form2

ϕψ = ϕ0ψ0 + (ψ0ϕ1 + ϕ0ψ1)`+ (ϕ1ψ1 + ψ0ϕ2 + ϕ0ψ2) ε
(4.6)

ψn = ψn0 + nψn−1
0 ψ1`+ nψn−2

0

(
n−1

2
ψ2

1 + ψ0ψ2

)
ε

where the latter certainly holds also for negative (not necessarily integer)
powers. The nilpotent counterpart (ψ0 = 0) is mapped to strict upper trian-
gular matrices, while the even subalgebra generated by {1, ε} is isomorphic
to the well-known dual complex numbers C[ε] with the multiplication rule

ϕψ = ϕ0ψ0 + (ψ0ϕ2 + ϕ0ψ2) ε.

2in projective coordinates ψ̃ = ψ−1
0 ψ this yields ϕ̃ ψ̃ = 1+(ϕ̃1 + ψ̃1)`+(ϕ̃1ψ̃1 + ϕ̃2 + ψ̃2) ε.
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For functions we use power series expansion and formula (4.6) to show that

Theorem 4.2. If f(ψ0) is analytic in C, then f(ψ) is analytic in ΩC
null and

f(ψ) = f(ψ0) + f ′(ψ0) [ψ1`+ ψ2 ε] +
1

2
f ′′(ψ0)ψ2

1 ε. (4.7)

Moreover, f is invertible if and only if f ′(ψ0) 6= 0 and the inverse is given

by (4.7) but the coefficients f
(k)
0 are replaced with h

(k)
0 where h[f(ψ0)] = ψ0.

In particular, f is completely determined by its two-jet at ψ0, e.g. we have

eψ = eψ0

[
1 + ψ1`+

(
ψ2 +

ψ2
1

2

)
ε

]
while for the inversion of power functions, one may use formula (4.6). Note
also that (4.7) provides a convenient way to calculate Lie derivatives as

ḟ(ψ) = f ′0ψ̇0 + f ′′0

[
(ψ̇0ψ1 + ψ̇1)`+ (ψ̇0ψ2 + ψ1ψ̇1 + ψ̇2) ε

]
+

1

2
f ′′′0 ψ̇0ψ

2
1 ε

with the notation f
(k)
0 = f (k)(ψ0). The general case is studied in Section 5.

Real Hyperbolic Transformations

As pointed out in [7], there are different ways to construct the isomorphism
(4.1) explicitly and only the Plücker setting x2 ∈ R guarantees the existence
of an invariant plane in the R3,1 representation as this keeps the real and
imaginary parts of x̂n separated, which yields a restriction to one of the
Wigner little groups. After studying the Euclidean and isotropic (front form)
cases, we focus on the hyperbolic one, where a vector x ∈ R2,1 qualifies as
either space-like, time-like or null (light-like) depending on whether its square

x2 = (x, ηx), η = diag (1, 1,−1)

is positive, negative or vanishing, respectively. For the first two types one
may introduce pseudo-normalization x2 = α|x|2 with α = x2 = sgn x2, while
the isotropic (null) case x2 = 0 is scale invariant. The analogue of the map
(1.3) in the pseudo-Euclidean setting is given with the aid of the metric η as

u ∈ R2,1 → û ∼

 0 −u3 u2

u3 0 −u1

u2 −u1 0

 ∈ so(2, 1)

and for a normalized regular vector x ∈ R2,1 (x2 = ±1) one easily shows that

x̂2 = αI − x(ηx)t (4.8)

which yields in the time-like case x̂2 = −P⊥x and thus, we recover the algebra
Ω ∼= R⊗C corresponding to the Euclidean construction in R3. For space-like
vectors, on the other hand, one ends up with an algebra generated by the
{p, q, r} basis with r2 = q that is isomorphic to R⊗C′ where C′ denotes the
set of split-complex (or hyperbolic) numbers. Those are just the real tessarines
with basis {1, k} where k2 = 1, which therefore have zero-divisors in the form
τ± = 1

2 (1±k) that may be used for the direct sum decomposition C′ ∼= R⊕R.
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Functions over C′ have peculiar properties, e.g. their singularities supported
by infinite lines (rather than points) associated with τ± (the “light cone” in
the hyperbolic plane). We refer to a function f⊥(ϕ1 + kϕ2) = f1 + kf2 as
analytic in C′ if it satisfies the modified Cauchy-Riemann conditions (cf [6])

∂f1

∂ϕ1
=
∂f2

∂ϕ2
,

∂f1

∂ϕ2
=
∂f2

∂ϕ1
(4.9)

and the equality of mixed second derivatives ensures that for such functions
we have �f1,2 = 0, where � represents the 1 + 1 dimensional wave operator.
Using the well-known Green identities we can show that the famous Cauchy
theorem applies to the hyperbolic case of analytic functions as well. One
example of a globally analytic function (beside polynomials) is the exponent

eϕ1+kϕ2 = eϕ1 (coshϕ2 + k sinhϕ2) = eϕ1−ϕ2τ− + eϕ1+ϕ2τ+.

Note, however, that due to the zero divisors τ± neither algebraic, nor func-
tional invertibility is guaranteed for generic non-vanishing elements of C′.
Whenever ϕ1 = ±ϕ2 or f1 = ±f2 one comes across that problem. Thus, we
may define the split-complex conjugate C′ 3 ϕ → ϕ∗ = ϕ1 − kϕ2 and the
pseudo-norm as ||ϕ||2Ω = ϕ∗ϕ, which take place in the algebraic inversion

||ϕ||2Ω 6= 0 → ϕ−1 =
ϕ∗

||ϕ||2
·

Note also that in C′ the two idempotents τ±=
1

2
(1± k) yield a decomposition

into two orthogonal ideals, hence, each element ϕ ∈ Ω can be expressed as3

ϕ = ϕ0p+ (ϕ−τ− + ϕ+τ+) q, ϕ± = ϕ1 ± ϕ2

and similarly, for a function f : Ω→ Ω one has

f = f0p+ (f−τ− + f+τ+) q, f± = f(ϕ±) (4.10)

as illustrated above for the exponent. Moreover, f(ϕ) has an inverse if and
only if all its projections on the ideals defined by p and τ±q are invertible, i.e.,
we demand ||f ′||Ω 6= 0 just as in the Euclidean case. Note that for analytic
functions this means non-vanishing partial derivative with respect to ϕ1 since

dh(z) =
∂h

∂z
dz =

∂h

∂z1
dz, z = z1 + kz2 ∈ C′

as long as h : C′ → C′ satisfies the Cauchy-Riemann equations (4.9) that may

be written also in the form
∂h

∂z∗
= 0 familiar from complex analysis. Finally,

in the isotropic (null) case x2 = 0 one encounters the real version of the
algebra ΩC

null described above we shall refer to simply as Ωnull. In particular,
formulas (4.5), (4.6) and (4.7) still apply, but restricted to real coefficients.

3the pseudo-norm in this representation is given as ||ϕ||Ω = |ϕ0ϕ−ϕ+|.
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5. Further Extensions and Applications

In this section we consider applications in various physical contexts: form
rigid body kinematics to electrodynamics and special relativity. Then, we let
the unit vector x vary on S2 according to Frenet’s equations for the moving
frame along a smooth curve γ, thus obtaining a bundle with fibre Ω, for which
one may consider the parallel transport and the associated affine connection.
We also discuss the dual extension in mechanical (screw-theoretic) context.
Before we proceed, let us note that the algebra Ω appears naturally in some
kinematical problems, e.g. a similar idea has been used in [8] for the deriva-
tion of a convenient system of differential equations on Ω ∼= R ⊗ C. It has
been developed further in [9] in the projective (vector-parametric) setting for
Ω̄ ∼= S1 ⊗ S2 (see also [10]) and in [11] it has been used for the derivation
of a large class of solutions for rigid body kinematics and quantum mechanics.

The Multi-Variable Setting

Let us now consider a setting, in which we do not have a preferred direction in
space, but rather, allow different directions to interact. Namely, let χ : xi ∈
R3 → x̂i ∈ End(R3) as before and we shall attempt to derive polynomial
expressions spanned by monomials in the form Πn = x̂nx̂n−1 · · · x̂1. Since
our operations are linear, however, we can always choose a basis of three
vectors, e.g. {a1,a2,a3} and restrict our considerations to it. Let gij = ai ·aj
be the corresponding Gram matrix and λk - the contravariant components of
an arbitrary vector x ∈ R3 in the basis {ai}. Then, one obviously has

âiâj x = λkâi × (âj × âk) = −λkgi[jak] = −gi[jak]a
k · x (5.1)

where a[ibj] = aibj − ajbi stands for the usual alternator, ai = gijaj de-
notes the corresponding vector in the dual basis and Einstein summation
over repeated indices is assumed. Then, one may show by induction that

Theorem 5.1. With the above notation and all indices varying from 1 to 3

x̂2nx̂2n−1 · · · x̂1 = (−1)nλi2n2n λ
i2n−1

2n−1 · · ·λ
i1
1 gi2n[i2n−1

. . . gi2[i1ak]]... ]a
k· (5.2)

while monomials of odd degree are then given as Π2n+1 = x̂2n+1Π2n.

In particular, if we choose an orthonormal basis {ei} formula (5.2) simplifies
greatly as ei · ej = δij and the components of ek are the same as those of ek.
Moreover, it suffices to begin with only two directions as we clearly have

e3 = e1 × e2, ê3 = [ê1, ê2]

and thus, introducing a second direction in Ω breaks the symmetry providing
a non-commutative extension of Ω ∼= R ⊕ C ⊂ H. Next, we show how this
process may be realized as a deformation and related to a bundle connection.



12 Danail Brezov

Parallel Transport

After studying the fixed axis setting and briefly discussing multiple directions,
we are ready to consider deformations. Let γ = γ(s) be a smooth curve in R3

parameterized with arc length and {ek} represent the corresponding Frenet
moving frame spanned by the tangent, normal and bi-normal direction at
each point on γ. Kinematics involves time-derivatives of the ek’s

ėi = v Γjiej , Γ ∼

 0 κ 0
−κ 0 τ
0 −τ 0

 (5.3)

where κ and τ are respectively the curvature and torsion on γ and v = ṡ is
the velocity magnitude. Fibres of the tangent bundle Tγ may then be linked
to copies of Ω associated with the tangent or another preferred direction in
the local frame, which defines a bundle of algebras Ωγ and the time flow on γ
determines the parallel transport on Ωγ via formula (5.3). More precisely, let
us consider a Ω-valued differentiable t−dependent function on γ in the form

ϕ(t) = ϕ0(t)p(t) + ϕ1(t)q(t) + ϕ2(t)r(t)

where r is associated with ê1 and the relations (2.1) hold at each instant t.
Then, a straightforward differentiation yields for the moving frame in Ωγ

dϕ = dϕiω
i + ϕidω

i

where {ωi} = {p, q, r} denotes the basis on each fibre of Ωγ . Next, it is not
difficult to show that ṗ = −q̇ = {r, ṙ} = ṙr + rṙ, so one has

ϕ̇ = ϕ̇0p+ ϕ̇1q + ϕ̇2r + (ϕ0 − ϕ1)(ṙr + rṙ) + ϕ2ṙ (5.4)

where the last two terms are due to differentiation of the basis and may be
obtained explicitly with the aid of (5.3). This way we introduce two more ele-
ments in the algebra, namely r′ and r′′ corresponding to the transformations
ê2 and ê3, respectively. This breaks the commutativity, so one may work with
commutators and anti-commutators to complete the multiplication table, e.g.

[r, r′] = r′′, [r′, r′′] = r, [r′′, r] = r′

thus so(3) is embedded in the deformation of Ω. Moreover, we may associate
{r, r′} with the symmetric operator4 P12 = e1e

t
2 + e2e

t
1 and discover that

[p, r′] = −[q, r′] = [r, {r, r′}] = {r, r′′}, {p, r′} = r′.

With this in mind, the derivative (5.4) can be written also as

ϕ̇ = ϕ̇0p+ ϕ̇1q + ϕ̇2r + κv [ϕ2r
′ + (ϕ0−ϕ1){r, r′}] . (5.5)

In particular, if ϕ(t) = r(t), then one clearly has ϕ̇ = κvr′. Similarly, for
ϕ(t) = r2(t) = −q(t), the derivative is ϕ̇ = κv{r, r′}. Next, we consider a
slightly more general setting related to rigid body kinematics, namely let

g(φ, r) = eφr = p + cosφ q + sinφ r (5.6)

4clearly, one also has for the other anti-commutators {r′, r′′} ↔ P23 and {r, r′′} ↔ P13.
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⊗ p q r r′ {r, r′} r′′

p 1 + rr 0 0 r′′r r′r −r′r
q 0 −rr r −rr′′ rr′ rr′

r 0 r rr rr′ rr′′ rr′′

r′ −rr′′ r′′r r′r r′r′ −r′r′′ r′r′′

{r, r′} rr′ r′r −r′′r r′′r′ rr + r′r′ rr − r′r′
r′′ rr′ −r′r r′′r r′′r′ r′r′ − rr r′′r′′

Table 1. Multiplication table of the non-commutative exten-
sion to Ω expressed in the minimal basis {1, r, r′, r′′}.

represent an element of SO(3) in Ω. Then, from (5.5) one obtains directly

dg = dφ (cosφ r − sinφ q) + sinφdr + (1− cosφ) {r, dr}
which yields for the Maurer-Cartan forms ω−=g−1dg and ω+ = g ω−g

−1

Theorem 5.2. The SO(3) action (5.6) on Ω yields the Maurer-Cartan forms

ω± = dφ r + sinφdr ± (1− cosφ)[ r, dr]. (5.7)

We may also consider the pull-back ω̃± associated with restriction to a smooth
spatial curve γ with a lift t ∈ R→ g(t) to SO(3), i.e., φ = φ(t) and r = r(t).
Then, using the connection (5.3) we obtain the 1−forms ω̃± in the Ω−image

ω̃± = dφ r + κv sinφdt r′ ± κv(1− cosφ)dt r′′.

The above expressions define the angular velocity of a screw motion along γ
(e1(t) represents the rotation axis) in the body and inertial frame respectively

ω± =
(
φ̇, κv sinφ, ±κv(1−cosφ)

)t
. (5.8)

Note that the latter implies both dilation and precession with rate
φ

2
about

the instantaneous velocity and the integrability condition pointed out in [11]
is satisfied (one may find explicit solutions there). Moreover, the rotation axis
does not need to be aligned with the tangent to γ. We may consider for exam-
ple a rigid body with helical trajectory γ : {a cos t, a sin t, bt} parameterized
with time, spinning about its instantaneous velocity and formula (5.8) yields
(in our notation κv = sinϑ and τv = cosϑ with ϑ = const for the helix)

ω± =
(
φ̇, sinϑ sinφ, ± sinϑ(1−cosφ)

)t
, ϑ = arccot

|a|
b

but if we want to consider a different type of motion, e.g. rotation about the
normal, then the torsion comes into play and one ends up with the expression

ω± = R2(ϑ)
(
±(1−cosφ), φ̇, sinφ

)t
where R2(ϑ) denotes a rotation by an angle ϑ in the rectifying plane spanned

by e1 and e3, e.g. for ϑ =
π

2
the spin axis precesses in a circular orbit.
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Note also that (5.7) clearly holds in the non-isotropic case and moreover, φ is
real as long as x2 is real positive. As for the null setting, it is not hard to verify
for example that ˙̀ anti-commutes with ε and their product is proportional to
ε. The same refers to ` and ε̇ due to the property `ε̇ = ε ˙̀, while εε̇ = ε̇ε = 0.
In order to obtain the Maurer-Cartan form of the exponential map

g = exp(λ`) = 1 + λ`+
λ2

2
ε (5.9)

one can either use direct differentiation together with the above relations or
consider the isotropic limit of formula (5.7), both leading to the result

Corollary 5.3. The Maurer-Cartan forms associated with (5.9) are given by

ω± = dλ `+ λ d`± λ2

2
[`,d`]. (5.10)

Although formula (5.3) has no such direct analogue in C3, one may impose
various restrictions. For example, consider a null vector field x = e3 + ie1

defined on the tangent bundle of the helix with the above parametrization.
Using (5.10) and the Frenet’s equations (5.3) we easily obtain

ω± =

(
λ̇± iλ

2
e−iϑ

)
x− λe−iϑe2 (5.11)

so x is an eigenvector of ω×± with eigenvalue iλe−iϑ. This solution may be
related to the physical setting of an electromagnetic wave with circular po-
larization traveling through a helical coil. The oscillation rate of the induced
current depends on the coil’s curvature and torsion in a rather simple man-
ner. A thorough treatment of this subject would demand extensive volume
and divert the focus of the present study, so we leave it for future research.

Finally, let us point out that as the Cayley map (3.9) provides an alternative
representation of rotations and Lorentz boosts, it may also be used to define
the angular velocity ω via differentiation which yields (see [10] for details)

ω± =
2

1 + ξ2
(I ± ξ×) ξ̇ (5.12)

where the relation between the projective Rodrigues’ parameter ξ = λx and
the spherical vector x = φx in the exponential map (3.7) is given as λ =
2 arctanφ. Interpreted in the context of Ω and its derivations, this leads to

Corollary 5.4. The Maurer-Cartan forms associated with (3.9) are given as

ω± =
2

1 + λ2

(
dλ r + λdr ± λ2[r, dr]

)
. (5.13)

This approach works both in the real and complex cases, providing a unified
geometric description of well-known kinematic effects in classical mechanics
and special relativity, due to Coriolis, Thomas, Sagnac and Hall (see [3, 10]).
For a thorough investigation of the physical applications, however, one needs
to develop calculus on Ω bundles, which goes beyond the scope of this paper.
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Some Explicit Calculations

Let us consider a complex vector x = x1 + ix2 satisfying5 x2 > 0 and the
Plücker relation x1 ⊥ x2 that provide an invariant plane, then normalize as

x = coshψ x1 + i sinhψ x2, x1,2 ∈ S2.

Clearly, this yields for the associated skew operator r = coshψ r1 + i sinhψ r2

and thus, the corresponding parallel and normal projectors are given by

p =
p1 − β2p2 + iβp12

1− β2
, q =

q1 − β2q2 − iβp12

1− β2
(5.14)

with β = tanhψ and p12 = {r1, r2} = r1r2 + r2r1. The algebraic properties
of the rk’s are the same as the ones of r, r′ and r′′ introduced above. Now
we may represent an element of SO(3,C) as an exponential in ΩC, namely

eφr=
p1−β2p2

1− β2
+cosφ

q1−β2q2

1− β2
+

sinφ√
1− β2

r1+(1−cosφ)
iβp12

1− β2
+
i sinφβ√

1− β2
r2

where the real part is associated to the rotational component and the imagi-
nary one to a boost transformation, as usual. Of course, there is some mixing
due to well-known relativistic effects of Thomas, Sagnac, Lorentz and others.

Next, we let our frame move along a smooth complex curve and calculate the
associated generalized angular velocity, for which we need to express

ṙ = ψ̇(sinhψ r1 + i coshψ r2) + coshψ ṙ1 + i sinhψ ṙ2

which yields for the commutator

[r, ṙ] = iψ̇r3 + cosh2ψ [r1, ṙ1]− sinh2ψ [r2, ṙ2] + i sinhψ coshψ[r(1, ṙ2)]

where we denote [r(1, ṙ2)] = [r1, ṙ2] + [r2, ṙ1]. Suppose that the orthogonality
condition x1 ⊥ x2 holds at each instant of time and let x1 be the unit tangent
to a smooth curve in R3, then x2 will be restricted to the normal plane, so
if we denote the unit normal and binormal to the curve respectively x′1 and
x′′1 , the corresponding ΩC representation takes the form

r2 = cos θ r′1 − sin θ r′′1 , r3 = sin θ r′1 + cos θ r′′1 (5.15)

for some real parameter θ = θ(t). Differentiating and taking into account the

Frenet equations, we easily obtain ṙ2 = (τ − θ̇) r3 − κ cos θ r1 which yields

[r1, ṙ1] = κ(cos θ r3 − sin θ r2), [r2, ṙ2] = (τ − θ̇) r1 + κ cos θ r3

hence [r(1, ṙ2)] = κ cos θ r1 + (θ̇ − τ) r2 and we may express in the {ri} basis

Ω = LψT (θ, ψ)Ω0 (5.16)

where Ω0 = (φ̇, sinφ, 1 − cosφ)t is familiar from the Euclidean case and
the transformations in the LT -decomposition above are given explicitly as

5the case x2 < 0 is treated similarly, one only needs to multiply with i =
√
−1.
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follows: Lψ is simply a rotation by an angle iψ in the x1,2 plane, i.e., one has

Lψ =

 coshψ −i sinhψ 0
i sinhψ coshψ 0

0 0 1

 (5.17)

while T (θ, ψ) is bit a more complex, so we decompose for convenience

T (θ, ψ) =

 1 0 0
0 κ cos θ −κ sin θ coshψ
0 κ sin θ coshψ κ cos θ

+

(5.18)

i

 0 0 0

0 ψ̇ (θ̇ − τ) sinhψ

0 −(θ̇ − τ) sinhψ ψ̇

·
Note that in the case of pure rotation ψ = 0 the real part of T becomes
proportional also to a rotation R1(θ) by an angle θ about the x1 axis, while
the off-diagonal elements of the imaginary part vanish, so one obtains simply

L−1
ψ Ω =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 φ̇
κ sinφ

κ(1− cosφ)

+ iψ̇

 0
sinφ

1− cosφ


and in particular, for θ = 0, the real part coincides with the one we know
from the Euclidean case. On the other hand, θ = π/2, that is the case when
x2 is constantly aligned with the bi-normal of the curve, guarantrees Ω2 ∈ R.

As already pointed out, formula (5.7) is valid in the complex case but we
do not have the simple set of Frenet equations (5.3) for the moving frame.
However, the property x · ẋ = 0 remains valid for an arbitrary normalized
vector x, which leads to a Cauchy-Riemann type conditions in the plane
determined by x1,2 as long as we have the Plücker relation x2 ∈ R satisfied.
This is quite easy to see in the isotropic case x2 = 0 where x = x1 + ix2 and
the flow preserves the complex structure in the plane determined by x1,2,
i.e., acts as a multiplication by a complex number, while adding a shift in the
normal direction ς. In other words, one has ẋ = µx+ νς and we can see that

ε̇ = ˙̀̀ + ` ˙̀, ε ˙̀ = ˙̀ε = −`ε̇ = −ε̇`, εε̇ = ε̇ε = 0. (5.19)

From kinematical perspective, it suffices to consider only the first group of
relations given by formula (5.19) as there is a small parameter ω dt attached to
the unit vector ς, where ω ∈ C may be interpreted as a generalized angular

velocity. Considering an infinitesimal shift of a null vector x
χ−→ ` ∈ ΩC

null

linked to a proper Lorentz transformation via the exponential map (5.9) we
apply the above definition of ω± and using either (5.19) easily obtain (5.10).
Note that the isotropic case may be obtained as a contraction ψ → ∞ or
β → 1 of either the space-like or the time-like Wigner little group. In the
following section we use dual extension to incorporate generic rigid motions.
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The Dual Setting

Dual numbers are defined as a central extension of R with a nilpotent element

t, u ∈ R −→ t = t+ εu ∈ R[ε], ε2 = 0

that yields for differentiable functions f : R[ε]→ R[ε] the Taylor expansion

f(t+ εu) = f(t) + εf ′(t)u (5.20)

thus making analysis in R[ε] quite manageable. One may introduce similarly
dual vectors, quaternions or Lie groups, keeping in mind that formula (5.20)
demands commutativity. We shall consider dualization of Ω starting with

x = x + εh, x,h ∈ R3

and decomposing h into a parallel and normal to x parts, i.e., h = h‖ + h⊥

determined via the projectors P‖x and P⊥x , e.g. h⊥ = 0 yields upon normal-
ization x = λx, x ∈ S2 the operator x̂ = λx̂. Contrary to the usual R3 case,
the vector x cannot be normalized with a real constant λ, so we have instead

x̂ = λx̂, λ = λ+ εµ = λ(1 + εν).

Therefore, the operator x̂ is mapped to Ω = Ω[ε] as

r = (1 + εν)r ⇒ rk = (1 + εkν) rk

so the dual extension of Ω in the parallel case has the simple form

Ω‖[ε] ∼= R[ε]⊗ Ω

and we may apply formula (5.20) to functions in Ω‖[ε] thus obtaining

f(r) = f(r) + ενrf ′(r).

Similarly, h‖ = 0 yields x2 ∈ R, so we normalize x = λx withλ ∈ R and6

x = x+ εx′ ∈ S2[ε], so x̂ is directly associated with r = r + εr′ ∈ Ω[ε], i.e.

r2 = −q, q = q − ε{r, r′}.
Defining p = 1−q and using Table 5 we see that p, q and r satisfy the relations

(2.1) of {p, q, r}, so as a real algebra Ω⊥[ε] is isomorphic to Ω ∼= R⊕ C, but
with a hypercomplex basis, and one has rk+2 = −rk for k ∈ N which yields

r2k+1 = (−1)kr, r2k = (−1)kq. (5.21)

Finally, the generic case h = h‖ + h⊥ may be represented as a superposition

x = x + εh = λx, x = x+ εx′ ∈ S2[ε]

where we use the notation

λ = |x|+ εx · h, x′ = |x|−1h⊥.

This certainly preserves the validity of (5.21) and allows for interpreting Ω[ε]

as a dualization of Ω⊥ ∼= Ω. Hence, it is straightforward to see that the main
results laid out so far, for instance Theorem 2.1, apply in the dual case as

6the dual sphere S2[ε] ∼= {u + εv : u2 = 1, u · v = 0} parameterizes ruled surfaces in R3.
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a manifestation of the so-called transfer principle (see [5]). Trigonometric
functions of the dual angle φ = φ+ εd are obtained with the aid of (5.20) as

sinφ = sinφ+ εd cosφ, cosφ = cosφ− εd sinφ.

Similarly, the matrix exponent (3.7) and the Cayley map (3.9) take the form

eφr = p+ cosφ q + sinφ r (5.22)

and respectively

Cay(λr) = p+
1−λ2

1 + λ2 q +
2λ

1 + λ2
r (5.23)

to which the expressions for Ω‖,⊥ considered above appear as particular cases.
However, since usual trigonometry applies to the dual setting too, the repre-
sentations (5.22) and (5.23) are equivalent under the relation λ = 2 arctanφ.

Let us note that in the applications dual vectors and quaternion typically do
not appear in a polarized form, i.e., with vanishing h‖ or h⊥. For instance,
in the dual quaternion representation of the spatial Euclidean group one has

n = n + εm ∈ S2[ε], i.e., n2 = 1, m ⊥ n

representing in Plücker coordinates the instantaneous screw line appearing
in the Mozzi-Chasles theorem. Here n is the unit vector along the rotation
axis and the moment m is expressed in terms of the translation vector t as

m = r× n =
1

2

(
cot

φ

2
I − n×

)
P⊥n t (5.24)

with r = n ×m denoting the radius-vector of the screw line and P⊥n - the
orthogonal projector with respect to n. Similarly, one has for the dual angle

φ = φ+ εd, d = t · n
where d is referred to as screw displacement while p̃ = d cscφ is the so-called
screw pitch that takes place in the definition of the dual Rodrigues’ vector7

c = tan
φ+ εd

2
(n + εm) = tan

φ

2

(
1 +

ε d

sinφ

)
n. (5.25)

Moreover, the transfer principle allows for defining the dual angular velocity
ω = ω + εv (with v being the linear one) in Ω by extending Theorem 5.2 as

Theorem 5.5. The SO(3) action (5.22) on Ω yields the Maurer-Cartan forms

ω± = dφ r + sinφdr ± (1− cosφ)[ r,dr] (5.26)

while (5.23) yields respectively the representation

ω± =
2

1 + λ2

(
dλ r + λdr ± λ2[r,dr]

)
. (5.27)

The transfer principle allows for considering C[ε] in a similar manner although
no such straightforward physical application of this algebra is known so far.

7for φ = 0 both p̃ and m are ill-defined and one has instead c = 1
2
ε t with m = n× t = 0.
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6. Higher-Dimensional Extension

We extend the cross-product (1.2) to higher dimensions as a linear mapping

σ̂ : ξ −→ (σ ∧ ξ)? (6.1)

where ξ and σ are multi-vectors in Cliff(Rn) of grade 1 and n−2, respectively.
In particular, if σ is a blade (decomposable multi-vector), one has complete
analogy with three-dimensional cross-product and formula (6.1) is linked to
rotations in the plane determined by σ?. In this case we may assume σ2 = ±1
since one can always choose an orthonormal basis {ek} in Rn such that after
proper normalization σ = e1e2 · · · en−2, hence the sign of σ2 is given as

σ2 = (−1)N , N =

(
n−2

2

)
= dim SO(n−2). (6.2)

Note also that the Plücker relations for a multi-vector ψ may be written as

ψ2 ∈ R ⇒ 〈ψ2〉k = 0, k 6= 0

where 〈·〉k denotes the so-called grade projector onto the corresponding sub-
space of k−vectors. In our case, however, due to the low codimension, the
Hodge duality allows for writing the above as a single quadric

σ2 ∈ R ⇔ σ? ∧ σ? = 0. (6.3)

The Clifford product of a k−blade ϑ and a m−blade ψ with k + m ≤ n
expands as a sum of blades with grades from k+m to |k−m| in the form

ϑψ = ϑ ∧ ψ + . . . + ϑ · ψ (6.4)

where · denotes right or left contraction, depending on the context. This
allows us to define parallel and normal projections of a vector ξ with respect
to a blade ϑ using the properties ϑ · ξ = ϑξ‖ and ϑ ∧ ξ = ϑξ⊥ which yield

ξ‖ = ϑ−1(ϑ · ξ), ξ⊥ = ϑ−1(ϑ ∧ ξ). (6.5)

Moreover, when Hodge duality comes into play one has the de Morgan laws

(ϑ ∧ ψ)? = ϑ · ψ?, (ϑ · ψ)? = ϑ ∧ ψ? (6.6)

for every pair of multi-vectors ϑ and ψ. Now, for the iterations of the map
(6.1) it is convenient to use the above properties and the fact that since ? is
associated with the action of the volume form (pseudo-scalar) I, namely as

ψ? = ψI−1, I = e1e2 . . . en

for a generic multi-vector ψ, one obviously has

?2 = I2 = (−1)N
′
, N ′ =

(
n

2

)
= dim SO(n). (6.7)

Taking all this into consideration, we finally obtain

σ̂2 : ξ −→ (σ ∧ (σ ∧ ξ)?)? = (−1)N
′
σ ·(σ∧ξ) = (−1)N+N ′σ−1σ ξ⊥ = −ξ⊥

as it is not hard to see that the sum N + N ′ is always an odd number and
σ ·(σ∧ξ) = σ(σ∧ξ) since all terms of higher grade involve exterior product of
intersecting blades and thus vanish. In this way we have shown the following
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Lemma 6.1. The linear map (6.1) for a normalized blade σ squares as8

σ̂2 = −P⊥σ (6.8)

where P⊥σ is the orthogonal projector (6.5) with respect to σ. Moreover, the

operators σ̂, P⊥σ and P‖σ = I − P⊥σ close an algebra isomorphic to R⊕ C.

For instance, the decomposable setting yields a reduction SO(n) → SO(3)
where the rotation plane is associated with σ? (we refer to [7] for details). A
generic multi-vector σ ∈ Cliff(Rn), on the other hand, can always be written
as a sum of blades, e.g. for n = 4 one has σ = σ1 +σ2 with σ1 ·σ2 = 0, which

yields P‖1 = P⊥2 and P‖2 = P⊥1 . Moreover, if σ2
k = −λ2

k with λk ∈ R, then
σ1 ∧ σ2 = λ1λ2I. Now, going back to formula (6.1) we easily see that

ξ
σ̂2

−→ [(σ1+ σ2) ∧ (σ1∧ ξ + σ2∧ ξ)?]? =

(σ1+ σ2) · (σ1ξ
(1)
⊥ + σ2ξ

(2)
⊥ ) = −λ2

1ξ
(1)
⊥ − λ

2
2ξ

(2)
⊥

where ξ
(1,2)
⊥ denotes the normal projection of ξ with respect to σ1,2 and

since we have a direct sum decomposition (σ?1 ∼ σ2 and σ?2 ∼ σ1), they
may be written simply as ξ⊥ and ξ‖. Hence, we end up with a commutative

algebra (spanned by σ̂1,2 and P⊥1,2) isomorphic to B ∼= C⊕C. For the higher-
dimensional case it is useful to point out that each two-vector in Rn or Rp,q
with p+ q = n may be expressed as a sum of

[
n
2

]
blades and if σ is a multi-

vector of grade n− 2, then such decomposition clearly applies to σ? and by
Hodge duality, to σ itself. Let us consider first the even-dimensional case
n = 2k, in which one may write in complete analogy with R4

σ = σ1+σ2+. . .+σk, σ?i ·σ?j = −δijλ2
j , σ?1∧σ?2∧. . .∧σ?k = λ1λ2 . . . λkI

where δij stands for the Kronecker symbol. This justifies the following result

Lemma 6.2. Let σ =

k∑
i=1

σi (n = 2k) with σi ∧ σi = 0 and P⊥i = P⊥σi
, then

σ̂2 = −λ2
1P⊥1 − λ2

2P⊥2 − . . .− λ2
kP⊥k

and since we have

P⊥i P⊥j = P⊥j P⊥i = δijP⊥j , σ̂iP⊥j = P⊥i σ̂j = δij σ̂j

the algebra closed by all σ̂i, P‖i and P⊥i is isomorphic to C⊕C⊕· · ·⊕C ∼= Ck.

As for the odd-dimensional case, the Euler invariant axis theorem asserts
that there is a common normal direction (a vector σ?0) to all the planes {σ?i }.
Then, the planes {σi} intersect along σ?0 and we may express

σ = σ?0

k∑
i=1

σi, σ?i ·σ?j = −δijλ2
j , σ?0∧σ?1∧σ?2∧. . .∧σ?k = λ0λ1λ2 . . . λkI

8one may use the identity σ̂ = −σ?· in order to simplify the proof.
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so in the case n = 2k+ 1 there is an additional projector P⊥0 associated with
{σ?0}, which annihilates all other operators in the algebra, thus leading to an
additional (real) degree of freedom, i.e., one has for the two cases

Ω2k∼= Ck, Ω2k+1∼= R⊕ Ck (6.9)

where Ωn denotes the associative commutative algebra generated by the σ̂k’s
in Rn. For example, in the case of R7 the generalized cross-product yields
Ω7 ∼= R ⊕ C3, while in R8 one has Ω8 ∼= C4 ∼= B2 instead, and so on. Here
one may complexify similarly to the three-dimensional case and find out that
the above direct sum decomposition has several different complex analogues
according to the particular choice of σ. The simplest one replaces R with C
and C with B. It is realized when all blade components σi are time-like, while
space-like blades lead to split complex numbers and isotropic ones generate
nilpotent components as described in Section 4 and discussed below in detail.

Next, we consider non-trivial signatures of the type Rp,q with p + q = n.
To gain some intuition first, we begin with the four-dimensional Lorentzian
(+,−,−,−) and the ultra-hyperbolic (+,+,−,−) metrics. The signature de-
termines the square of the Hodge star as

?2 = (−1)M
′
, M ′ =

(
n

2

)
+ q

while the sign (−1)Mi of σ2
i for a given blade σi depends on the number of

vectors qi with negative square that take part in its decomposition as

Mi =

(
n−2

2

)
+ qi

e.g. if σ1 = e0e1 and σ2 = e2e3 in the Lorentzian signature, then σ2
1 = 1 and

σ2
2 = −1. Unlike in the Euclidean case, in which N +N ′ is always a negative

number, here the parity of M ′ +Mi is equal to the one of q − qi + 1, i.e.,

σ̂2
i = (−1)q−qi+1P⊥i (6.10)

and when the sign is positive one ends up with a copy of C′ ∼= R⊕R instead
of C in the above decomposition. Note also that it is easier to work with the
irreducible plane {σ?i }, in which the infinitesimal rotation generated by σ̂i
takes place. In particular, it is straightforward to see that

(−1)q−qi+1 = sgn(σ?i
2)

and we may classify these irreducible planes as space-like, for which the above
sign is positive and time-like, for which it is negative. For instance, in the
case of R1,3 considered above and σ = λ1σ1 + λ2σ2, one has σ?1 ∼ σ2, hence

σ̂2 = −λ2
1P⊥1 + λ2

2P⊥2 ⇒ Ω1,3
σ
∼= C⊕ C′ ∼= C⊕ R2.

Note that if the signature is non-trivial, the decomposition of Ω depends on
the particular choice of σ, e.g. in the case of R2,2 if we choose σ1 = e1e2,
we end up with Ω2,2

σ
∼= B, while σ1 = e1e3 yields Ω2,2

σ
∼= C′⊕C′ ∼= R4 instead.
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Finally, we consider the isotropic case pointing out that the Lorentzian signa-
ture (1, n−1) allows for only one null vector in each blade. Indeed, denoting
σij = (e0 + ei)(e0 + ej) one finds that σ2

ij ∈ R ⇔ i = j. Moreover, in the
orthogonal decomposition of a bivector into blades, only one of the compo-
nents may have a null direction, otherwise the sum is reducible. Similarly,
in Rp,q one cannot have more than q null directions in each blade and no
null direction is repeated in the same blade expansion. For instance, in the
usual Minkowski space R1,3, we may choose σ = (e0 + e1)e2 which yields
σ? = (e0 + e1)e3 and since the two mutually perpendicular planes share a
common direction, we can no longer have an orthogonal decomposition in the
form R1,3 ∼= {σ}×{σ?} that leads to an effect known as light cone singularity.
On the other hand, the sum of σ and σ? is also decomposable9 and therefore

σ̂2 : ξ −→ (σ ∧ (σ ∧ ξ)?)? = (−1)M
′
σ · (σ ∧ ξ) =

(6.11)
(−1)M

′
σ(σ ξ − σ · ξ) = (−1)M

′+1P◦‖ ξ

where we use the fact that σ2 = 0 and let P◦‖ denote the linear operator

that extracts the parallel to σ component of the vector ξ with scale qua-
dratic with respect to σ. We cannot use the term projector here, as P◦‖ is

nilpotent and moreover, mutually annihilates with σ̂. Thus, each isotropic
direction in the blade expansion for σ yields an algebra Ni of the type ΩC

null

described in Section 4 with `3i = 0. These algebras share a common iden-
tity and their nilpotent parts commute - they come in the form of a cluster,
rather than a direct sum. The process may be seen as “contraction” of Wigner
little groups, i.e., a transition between the complex (time-like) and the split-
complex (space-like) state. Such an approach is widely used in the physical
literature [3]. Thus, formula (6.9) extends to (here we use that C′ ∼= R⊕ R)

Theorem 6.3. The generalized cross product in Rp,q yields for n = p+ q odd

Ωp+q ∼= N2k+1⊕ R2l⊕ Cm, 2(k + l +m) = p+ q − 1 (6.12)

and for the even one, respectively

Ωp+q ∼= N2k⊕ R2l⊕ Cm, 2(k + l +m) = p+ q (6.13)

where N2k+1 denotes the unital algebra generated by k ≤ q ≤ p mutually
commuting elements `i satisfying `3i = 0 associated with isotropic directions.

For instance, we have N3
∼= Ωnull, while N2k

∼= N k
2 where N2

∼= {`, `2 = ε}
with `3 = 0 is purely nilpotent and decomposable. In other words, the above
hypercomplex algebras correspond to a decomposition with respect to l space-
like, m time-like and k null directions in Rp,q. In particular, for k = 0 one has
N1
∼= R and N0

∼= ∅, so we finally end up with a regular decomposition of
generalized boost and rotation components, while for k = l = 0 one obtains
formula (6.9). In the complex setting we substitute R with C and C with
B, while the N -components emerge naturally for isotropic vectors and have
complex dimension 2k+1 and 2k, respectively (e.g.NC

1
∼= C andNC

3
∼= ΩC

null).

9allowing rotation in {e2, e3} yields an action of the front form Wigner little group.



Hypercomplex Algebras and Calculi... 23

Final Remarks

The study presented above is inspired by an idea proposed in [12] but has
evolved in a completely different direction. It is proposed mainly as a tool for
more advanced research in geometry and physics via hypercomplex analysis.

Aknowledgement

I am obliged to Professor Vladimir Todorov at the University of Architecture,
Civil Engineering and Geodesy (Sofia) for a series of productive discussions.

References

[1] Dray T. and Manogue C., The Geometry of the Octonions, World Scientific
Publishing, Singapore 2015.

[2] Aste A., Complex Representation Theory of the Electromagnetic Field, J. Geom.
Symmetry Phys. 28 (2012) 47-58.

[3] Brezov D., Mladenova C. and Mladenov I., Wigner Rotation and Thomas Pre-
cession: Geometric Phases and Related Physical Theories, Journal of the Korean
Physical Society 66 (2015) 1656-1663.
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