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Abstract: In this paper, we consider the following quasilinear Schrödinger-Poisson sys-

tem with exponential and logarithmic nonlinearities
−∆u+ φu = |u|p−2u log |u|2 + λf(u), in Ω,

−∆φ− ε4∆4φ = u2, in Ω,

u = φ = 0, on ∂Ω,

where 4 < p < +∞, ε, λ > 0 are parameters, ∆4φ = div(|∇φ|2∇φ),Ω ⊂ R2 is a bounded

domain and f has exponential critical growth. By adapting the reduction argument and a

truncation technique, we prove for every ε > 0, the above system admits at least one pair of

nonnegative solutions (uε,λ, φε,λ) for λ > 0 large. Furthermore, we research the asymptotical

behavior of solutions with respect to the parameters ε and λ. The novelty of this system

is the intersection among the quasilinear term, logarithmic term, and exponential critical

term. These results are new and improve some existing results in the literature.
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1 Introduction

In this article, we are devoted to studying the following quasilinear Schrödinger-Poisson

system 
−∆u+ φu = |u|p−2u log |u|2 + λf(x, u), in Ω,

−∆φ− ε4∆4φ = u2, in Ω,

u = φ = 0, on ∂Ω,

(Pε)
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where 4 < p < +∞, ε, λ > 0 are parameters, ∆4φ = div(|∇φ|2∇φ),Ω ⊂ R2 is a bounded

domain and f satisfies the following assumptions:

(f1) f(s) ∈ C(R,R) and f(s) ≡ 0 for s ≤ 0;

(f2) lim
s→0

f(s)
s

= 0;

(f3) 0 < pF (s) ≤ sf(s) for all s > 0, where F (s) :=
∫ s

0
f(t)dt;

(f4) there exists α0 > 0 such that

lim
s→∞

f(s)

exp(αs2)
= 0 for α > α0 and lim

s→∞

f(s)

exp(αs2)
=∞ for α < α0;

(f5) there exist θ > 2 and M > 0 such that

inf
|s|≥M

f(s)s ≥ |s|θ.

One example of a function that satisfies the above conditions is

f(s) =

|s|θ−2sexp(α0s
2), for s ≥ 0,

0, for s < 0.

We establish the existence and asymptotical behavior of the nonnegative solutions by using

variational methods, reduction argument, and truncation technique.

Problem (Pε) is the planar version of the following quasilinear Schrödinger-Poisson system
i∂tu = −1

2
∆u+ (V + φ(x))u, x ∈ R3,

−div[ε(∇φ)∇φ] = |u|2 − n∗, x ∈ R3,

u(x, 0) = u(x), x ∈ R3,

(1.1)

where ε ≥ 0, V denotes a real effective potential function which does not depend on time t,

n∗ represents a dopant-density and the charge density n(x, t) is arising from the Schrödinger

wave function u(x, t) by n(x, t) = |u(x, u)|2. System (1.1) appears when to study a quantum

mechanical model of extremely small devices in semiconductor nanostructures as considering

quantum structure and the longitudinal field oscillations during the beam propagation. This

is reflected by the fact that the dielectric permittivity depends on the electric field by

cdiel(∇φ) = 1 + ε4|∇φ|2, ε > 0.

For more physical background about this system, readers can refer to [16, 17, 24] and the

references within.

The study of planar nonlocal problems (Pε) is much less understood and remained for

a long time an open field of investigation. The main problem here is that the nonlocal

term exhibits several mathematical differences due to the presence of the quasilinear term.

The methods dealing with (Pε) are different from those handling the Schrödinger-Poisson
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system in R3 (see e.g. [9, 23, 29]). As far as authors’ knowledge, few papers deal with the

system (Pε) or a similar one. Here we cite [17] where authors considered periodic boundary

conditions on the unit cube Q := [0, 1]N , N = 1, 2, 3 and obtained global existence and

uniqueness of solutions. Benmilh and Kavian [7] was devoted to studying the problem in

the whole space R3 and obtained ground state solutions as well as asymptotic behavior. [11]

concerned with an asymptotically linear nonlinearity in R3 and authors verified the existence

and asymptotical behavior. Li and Yang [20] researched the initial boundary value problem

under one-dimension case and obtained existence and uniqueness of a globally mild solution.

For our scope, we shall mention [13], in which Figueiredo and Siciliano were concerned with

the following problem under two dimensional case
−∆u+ φu = f(u), in Ω,

−∆φ− ε4∆4φ = u2, in Ω,

u = φ = 0, on ∂Ω,

(1.2)

where f is assumed to be an exponential critical nonlinearity, they obtained the existence of

the solutions as well as the asymptotical behavior with respect to the parameter ε. Later,

Figueiredo and Siciliano in [12] extended the bounded domain case to R3 and proved the

existence of solutions for quasilinear Schrödinger-Poisson system. In [26], we extended these

results in [12] and considered Schrödinger-Poisson system with double quasilinear terms.

Recently, the logarithmic Schrödinger equation given by

i
∂Φ

∂t
= −∆Φ− Φ log |Φ|2, N ≥ 3 (NLS)

where Φ : [0,+∞)×RN → C, has also obtained special attention due to its physical influence,

such as quantum mechanics, quantum optics, nuclear physics, effective quantum and Bose-

Einstein condensation (see [37]). Standing wave solutions for (NLS) have the ansatz form

Φ(t, x) = u(x)e−iωt, where ω ∈ R, which leads us to a system that

−∆u+ ω(x)u = u log u2, in RN . (1.3)

From the mathematic point of view, (1.3) is very interesting because it arises many difficulties

when applying the variational methods ([4, 14, 22, 28, 31, 35]) to find a solution. In fact,

the associated energy functional of (1.3) would formally be the following form

J̃(u) =
1

2

∫
RN

(|∇u|2 + ω(x)|u|2)dx−
∫
RN
F (u)dx,

where

F (t) =

∫ t

0

s log s2ds = −t
2

2
+
t2 log t2

2
, for all t ∈ R.

In the last years, researchers have developed several techniques to solve Problem (1.3) or

similar one. We cite [8] where authors worked in a suitable Banach space endowed with

3



a Luxemburg type norm, in this way, the functional J̃ is well defined and C1 smooth;

[15] where the authors penalized the nonlinearity around the origin and tried to obtain a

prior estimates to get a nontrivial solution at the limit; [5, 6] where the authors used the

non-smooth critical point theory introduced in [10] to obtain the existence and multiplicity

of solutions; [32] where authors tried to construct solutions of (1.3) through spatially 2L-

periodic solutions; [1, 2, 3, 18, 27, 30] where authors decomposed J̃ into the sum of a C1

functional and a convex lower semicontinuous functional, and applied the minimax principles

for lower semicontinuous functionals to obtain solutions; [21, 34, 36] where authors considered

the sign-changing solutions with logarithmic nonlinearity in a bounded domain.

The motivation of this paper is derived from [13, 36], as the fact that the quasilinear

Schrödinger-Poisson system with mixed type, that is, exponential critical and logarithmic

nonlinearities, has not been investigated before. The novelty of this kind of problem is

the intersection among the logarithmic term, quasilinear term, and exponential term, which

will influence the structure of energy functional. Our results give a better understanding

on the quasilinear problem, especially under two-dimension case. The main difficulties are

related to the facts: (i) the ‘fourth” order term loses homogeneity property and it prevents

us from using the standard procedure to prove the boundedness of (PS) sequence; (ii) the

logarithmic term may be sign-changing which also brings new obstacles; (iii) the exponential

critical growth will lead to a lack of compactness.

Define

E = H1
0 (Ω) ∩W 1,4

0 (Ω)

which is a Banach space endowed with the norm

||φ||E = ||∇φ||2 + ||∇φ||4.

Moreover, one can see that E ↪→ L∞(Ω) (see [13]).

By a solution of (Pε) we mean a pair of (uε,λ, φε,λ) ∈ H1
0 (Ω)× E such that∫

Ω

∇uε,λ∇vdx+

∫
Ω

φε,λuε,λvdx =

∫
Ω

|uε,λ|p−2uε,λv log |uε,λ|2dx

+ λ

∫
Ω

f(uε,λ)vdx, for all v ∈ H1
0 (Ω)

(1.4)

and ∫
Ω

∇φε,λ∇ϕdx+ ε4

∫
Ω

|∇φε,λ|2∇φε,λ∇ϕdx =

∫
Ω

u2
ε,λϕdx, for all ϕ ∈ E. (1.5)

Now, we are in the position to state our main results.

Theorem 1.1. Assume that (f1)−(f5) hold. Then there exists Λ > 0 such that for all λ ≥ Λ,

(Pε) admits at least a pair of nonnegative solutions (uε,λ, φε,λ) ∈ H1
0 (Ω)× E. Moreover, for

each ε > 0, there hold

1. lim
λ→∞
||uε,λ|| = 0;
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2. lim
λ→∞
||φε,λ||E = 0;

3. lim
λ→∞
||φε,λ||∞ = 0.

Theorem 1.2. Assume that (f1) − (f5) hold. For each fixed λ̃ ≥ Λ, let (uε,λ̃, φε,λ̃) be the

pair of solutions of (Pε) given by Theorem 1.1. Then as ε→ 0+,

uε,λ̃ → u0,λ̃ in H1
0 (Ω) and φε,λ̃ → φ0,λ̃ in E,

where (u0,λ̃, φ0,λ̃) ∈ H1
0 (Ω) × E is a pair of solutions of the following Schrödinger-Poisson

system 
−∆u+ φu = |u|p−2u log |u|2 + λ̃f(u), in Ω,

−∆φ = u2, in Ω,

u = φ = 0, on ∂Ω.

(1.6)

The main procedure of proving Theorem 1.1 and 1.2 can be summarized as follows:

(i) To apply variational methods to prove the main results, we consider the energy functional

Iε,λ(u, φ) of (Pε) (see (2.4)). However, due to the strong indefiniteness of Iε,λ, we adopt

a reduction method to transfer Iε,λ(u, φ) into a single variable functional Iε,λ(u).

(ii) Due to the presence of the “fourth” order term, it is not easy to verify the boundedness of

(PS) sequence. To do this, we introduce a suitable truncated functional ITε,λ depending

on T > 0. In such way, we can prove every (PS) sequence of ITε,λ is bounded and it is

actually the (PS) sequence of Iε,λ.

(iii) Because we consider the exponential critical growth, (PS) condition is hard to verify.

The key point is to show the behavior of mountain pass level cε,λ with respect to λ,

see Lemma 3.3. With this property in hand, we can obtain the compactness results.

Remark 1.1. Due to the specialty of the nonlinearities, it is crucial to give estimates of the

nonlinearities. For the indefinite logarithmic term, we make use of an elementary inequality

(see (3.8)) and for exponential critical growth term, the Trudinger-Moser inequality (see

Lemma 2.3) plays an important role.

The rest of this paper is organized as follows. In section 2, we show the variational

framework and introduce the reduction procedure. In section 3, we give the proof of Theorem

1.1. Section 4 is devoted to proving Theorem 1.2.

Throughout this paper, we make use of the following notations:

• H1
0 (Ω) denotes the usual Sobolev space endowed with the scalar product and norm

given by

(u, v) =

∫
Ω

∇u∇vdx, ||u|| = (u, u)1/2, for any u, v ∈ H1
0 (Ω).
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• For 1 ≤ s <∞, Ls(Ω) is the usual Lebesgue space with the norm

||u||s =

(∫
Ω

|u|sdx
) 1

s

and || · ||∞ denotes L∞-norm.

• We use “ → ” and “ ⇀ ” to denote the strong and weak convergence in the related

function space respectively.

• For any x0 ∈ Ω and R > 0, BR(x0) denotes the ball centered at x0 with radius R and

|Ω| denotes the Lebesgue measure of Ω.

• C,C1, C2, · · · represent positive constants which may change from lines to lines and

on(1) denotes the quantity that tends to 0 as n→∞.

2 Preliminaries

We start this section by considering the single equation−∆φ− β∆4φ = δ (β > 0), in Ω

φ = 0, on ∂Ω.
(2.1)

This kind of equation involves the (p, q)-Laplacian and has been studied broadly. Set β = ε4,

δ = u2 ∈ E∗ (E∗ denotes the dual space of E), then (2.1) will become the following form−∆φ− ε4∆4φ = u2, in Ω,

u = φ = 0, on ∂Ω.
(2.2)

Define

Ψ(φ) =
1

2

∫
Ω

|∇φ|2dx+
ε4

4

∫
Ω

|∇φ|4dx−
∫

Ω

φu2dx.

Using classical PDE theory, one can know Ψ(φ) has a unique critical point φε := φε(u), that

says, (2.2) possesses the unique solution φε satisfying∫
Ω

|∇φε|2dx+ ε4

∫
Ω

|∇φε|4dx =

∫
Ω

φεu
2dx. (2.3)

The following lemmas gives the main properties of φε.

Lemma 2.1. ([13]) If un → u in Lq(Ω) for q ∈ [1,+∞), then there hold

(i) lim
n→+∞

∫
Ω

|∇φε(un)|2dx =

∫
Ω

|∇φε(u)|2dx;

(ii) lim
n→+∞

∫
Ω

|∇φε(un)|4dx =

∫
Ω

|∇φε(u)|4dx;
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(iii) lim
n→+∞

φε(un) = φε(u) in L∞(Ω);

(iv) lim
n→+∞

∫
Ω

φε(un)u2
ndx =

∫
Ω

φε(u)u2dx.

Lemma 2.2. ([7]) If uε → u in L
6
5 (Ω) as ε→ 0+, then

φε(uε)→ φ0(u) in H1
0 (Ω) and εφε(uε)→ 0 in W 1,4

0 (Ω).

It is standard to see the energy functional of (Pε) can be defined by

Iε,λ(u, φ) =
1

2
||u||2 +

1

2

∫
Ω

φu2dx+
2

p2

∫
Ω

|u|pdx− 1

p

∫
Ω

|u|p log |u|2dx

− λ
∫

Ω

F (u)dx− 1

4

∫
Ω

|∇φ|2dx− ε4

8

∫
Ω

|∇φ|4dx.
(2.4)

Moreover, one can check Iε,λ ∈ C1(H1
0 (Ω)×E,R). Note that Iε,λ(u, φ) possesses two variables

which bring more obstacles. Inspired by [12, 13], in the sequel, we will adopt a reduction

method which can transfer Iε,λ to a single variable functional.

Define the following map

Φε : u ∈ H1
0 (Ω)→ φε(u) ∈ E (2.5)

and G(Φε) denotes the graph of the map Φε. According to the classical implicit function

theorem, we have

G(Φε) = {(u, φ) ∈ H1
0 (Ω)× E : ∂φIε,λ(u, φ) = 0}.

Consequently, the functional Iε(u, φ) can be reduced to

Iε,λ(u) :=Iε,λ(u,Φε(u))

=
1

2
||u||2 +

2

p2

∫
Ω

|u|pdx+
1

4

∫
Ω

|∇φε|2dx+
3ε4

8

∫
Ω

|∇φε|4dx

− 1

p

∫
Ω

|u|p log |u|2dx− λ
∫

Ω

F (u)dx.

Note that Iε,λ ∈ C1(H1
0 (Ω),R) and for any v ∈ C∞0 (Ω),

I ′ε,λ(u)v = ∂uIε,λ(u, φε(u))v + ∂φIε,λ(u, φε(u)) ◦ Φ′ε(u)v

= ∂uIε,λ(u, φε(u))v,

which yields,

I ′ε,λ(u)v =

∫
Ω

∇u∇vdx+

∫
Ω

φε(u)uvdx−
∫

Ω

|u|p−2uv log |u|2dx− λ
∫

Ω

f(u)vdx.

As a consequence, (Pε) can be reduced to the following problem−∆u+ φεu = |u|p−2u log |u|2 + λf(u), in Ω,

u = 0, on ∂Ω.
(Q)
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Remark 2.1. Let λ, ε be fixed, then the following two statements are equivalent:

(i) (uε,λ, φε,λ) ∈ H1
0 (Ω)× E is a pair of critical points of Iε,λ,

(ii) uε,λ is a critical point of Iε,λ and φε,λ = φε(uε,λ).

For the sake of simplicity in the presentation, we introduce the following functional

Jε : u ∈ H1(Ω)→ 1

4

∫
Ω

|∇φε(u)|2dx+
3ε4

8

∫
Ω

|∇φε(u)|4dx.

Thus we get

Iε,λ(u) =
1

2
||u||2 +

2

p2

∫
Ω

|u|pdx+ Jε(u)− 1

p

∫
Ω

|u|p log |u|2dx− λ
∫

Ω

F (u)dx.

Remark 2.2. By above analysis, we know that Jε ∈ C1(H1
0 (Ω),R) and for any v ∈ H1

0 (Ω),

d

dt
Jε(tv) = J ′ε(tv)v = t

∫
Ω

φε(tv)v2dx.

We shall end this section by introducing the Trudinger-Moser inequality which plays a

crucial role in the proofs of main results.

Lemma 2.3. ([25, 33]) If α > 0 and u ∈ H1
0 (Ω), then∫

Ω

eα|u|
2

dx <∞.

Moreover, if α < 4π, then there exists C = C(α,Ω) > 0 such that

sup
||u||≤1

∫
Ω

eα|u|
2

dx ≤ C.

3 Proof of Theorem 1.1

In this section, we will give the proof of Theorem 1.1. Firstly, we shall use a truncation

method to overcome the growth of “fourth” order in Iε,λ.

3.1 The truncated functional

Let η ∈ C∞0 (R+, [0, 1]) be a cut-off function defined by
η(t) = 1, if t ∈ [0, 1],

0 ≤ η(t) ≤ 1, if t ∈ (1, 2),

η(t) = 0, if t ∈ [2,+∞),

η′ ≤ 0, |η′|∞ ≤ 2.

(3.1)
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For every T > 0, we define kT (u) = η( ||u||
2

T 2 ) and the truncated functional ITε,λ : H1
0 (Ω) → R

is given by

ITε,λ(u) =
1

2
||u||2 +

2

p2

∫
Ω

|u|pdx+ kT (u)Jε(u)− 1

p

∫
Ω

|u|p log |u|2dx− λ
∫

Ω

F (u)dx. (3.2)

Observe that ITε,λ(u) ∈ C1(H1
0 (Ω),R) and for v ∈ C∞0 (Ω),

(ITε,λ)
′(u)v =

∫
Ω

∇u∇vdx+ kT (u)

∫
Ω

φε(u)uvdx+
2

T 2
η′(
||u||2

T 2
)Jε(u)

∫
Ω

∇u∇vdx

−
∫

Ω

|u|p−2uv log |u|2dx− λ
∫

Ω

f(u)vdx.

(3.3)

In the sequel, we prove that the functional ITε,λ satisfies the Mountain Pass geometry

uniformly in ε and λ.

Lemma 3.1. Assume that (f1)− (f5) hold. Then

(i) for every λ > 0 fixed, there exist δλ, ρλ > 0 such that for any T > 0 and ε > 0,

ITε,λ(u) ≥ ρλ, for all ||u|| = δλ;

(ii) for every T > 0 fixed, there exists eT ∈ H1
0 (Ω) with ||eT || > δλ (given in (i)) such that

for any ε > 0 and λ > 1,

ITε,λ(eT ) < 0.

Proof. (i) From (f1), (f2) and (f4), for each ε > 0 and α > α0, there exists Cε > 0 such that

for all t ∈ R and q > 0,

f(t)t ≤ ε|t|2 + Cε|t|qexp(α|t|2). (3.4)

Moreover, since 4 < p <∞, for given ε > 0, there exists C̃ε > 0 such that for all r > p and

t ∈ R,

|t|p−1 log |t|2 ≤ ε|t|3 + C̃ε|t|r−1. (3.5)

For each λ > 0, choose ε > 0 sufficiently small. Letting q > 2 in (3.4) and gathering (3.5),

Hölder inequality with Sobolev embedding theorem, we obtain

ITε,λ(u) ≥ 1

2

∫
Ω

|∇u|2dx− ε
∫

Ω

|u|4dx− C̃ε
∫

Ω

|u|rdx

− λε
∫

Ω

|u|2dx− Cελ
∫

Ω

|u|qexp(α|u|2)dx

≥ C1||u||2 − C2||u||4 − C3||u||r

− Cελ
(∫

Ω

|u|2qdx
) 1

2
(∫

Ω

exp(2α||u||2 u2

||u||2
)dx

) 1
2

≥ C1||u||2 − C2||u||4 − C3||u||r

− C4λ||u||q
(∫

Ω

exp(2α||u||2 u2

||u||2
)dx

) 1
2

.

(3.6)
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Taking ||u|| = δ̃λ > 0 small such that 2αδ̃2
λ < 4π, then from Lemma 2.3, one can yield

ITε,λ(u) ≥ C1δ̃
2
λ − C2δ̃

4
λ − C3δ̃

r
λ − C̃4λδ̃

q
λ > 0.

Therefore, there exists ρλ > 0 such that for all ||u|| = δλ ∈ (0, δ̃λ),

ITε,λ(u) ≥ ρλ.

(ii) Let T > 0 be fixed. For any v ∈ H1
0 (Ω) with v 6= 0 and t ≥ 0, by the definition of kT ,

we know that

lim
t→+∞

kT (tv) = 0. (3.7)

Recall the element inequality

2tp − ptp log t2 ≤ 2 for all t ∈ (0,∞). (3.8)

By (f5), one can easily verify that there exists C̄ > 0 such that for some θ > 2 and M > 0,

inf
|t|≥M

F (t) ≥ C̄|t|θ. (3.9)

Then for each ε > 0 and λ > 1, it follows from (3.7)-(3.9) that as t→ +∞,

ITε,λ(tv) =
t2

2
||v||2 +

2

p2

∫
Ω

|tv|pdx+ kT (tv)Jε(tv)− 1

p

∫
Ω

|tv|p log |tv|2dx− λ
∫

Ω

F (tv)dx

≤ t2

2
||v||2 +

2

p2
|Ω| − C̄tθ||v||θθ → −∞,

(3.10)

where we use the fact θ > 2. Let t∗ > 0 and define a path h : [0, 1]→ H1
0 (Ω) by h(t) = t(t∗v).

For t∗ > 0 large enough, we can have∫
Ω

|∇h(1)|2dx > δ2
λ and ITε,λ(h(1)) < 0,

where δλ is given in (i). Setting eTλ = h(1), then the result follows. �

Remark 3.1. Here we want to emphasize the independence of parameters, that is, δλ and

ρλ in (i) do not depend on T, ε and eT in (ii) does not depend on λ, ε.

Applying the Mountain Pass Theorem ([35]), we know that for every T > 0, λ > 1 and

ε > 0, there exists a sequence {un} ⊂ H1
0 (Ω), which depends on T, λ and ε, such that

as n→∞,

ITε,λ(un)→ cTε,λ > 0 and (ITε,λ)
′(un)→ 0,

where

cTε,λ := inf
γ∈ΓTλ

max
t∈[0,1]

ITε,λ(γ(t)) > 0 (3.11)

and

ΓTλ := {γ ∈ C([0, 1], H1
0 (Ω))| γ(0) = 0, γ(1) = eT}.

Define the path

γ∗ : t ∈ [0, 1]→ teT ∈ H1
0 (Ω). (3.12)

It is easy to see that γ∗ ∈
⋂

λ>1,ε>0

ΓTλ .
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3.2 Estimation of cTε,λ and Boundedness of (PS)cTε,λ sequence

In the sequel, we shall prove that every (PS)cTε,λ sequence of ITε,λ is bounded in H1
0 (Ω). To

do this, we need to estimate the value of cTε,λ. Firstly, we give the following crucial lemma.

Lemma 3.2. Suppose that (f1) − (f5) hold. Let T > 0, λ > 1 and ε > 0 be fixed, then for

every w ∈ H1
0 (Ω) \ {0}, the function

t ∈ [0,+∞)→ ITε,λ(tw) ∈ R

has a positive global maximum point, denoted by tTλ (w), which is independent of ε . Moreover,

for any T > 0, there holds

lim
λ→+∞

tTλ (w) = 0.

Proof. Let λ > 1 and ε > 0 be fixed. For each w ∈ H1
0 (Ω) \ {0}, similar to (3.6), let q > 2

in (3.4) and we have

ITε,λ(tw) ≥C1t
2||w||2 − C2t

4||w||4 − C3t
r||w||r

− C4λt
q||w||q

(∫
Ω

exp(2α||tw||2 |tw|
2

||tw||2
)dx

)1/2

.

Let t > 0 small enough such that 2α||tw||2 < 4π, Lemma 2.3 yields that

ITε,λ(tw) ≥ C1t
2||w||2 − C2t

4||w||4 − C3t
r||w||r − C̃4λt

q||w||q. (3.13)

Since r > p > 4, q > 2, then we get ITε,λ(tw) > 0 for t sufficiently small.

On the other hand, for fixed T > 0, we know that

lim
t→+∞

kT (tw) = 0.

Similar to (3.10), we can choose t∗ > 0 large such that for all t > t∗,

ITε,λ(tw) ≤ t2

2
||w||2 +

2

p2
|Ω| − C̄λtθ||w||θθ

< 0.

(3.14)

Gathering (3.13) with (3.14), we verify the existence of tTλ (w).

Now we prove lim
λ→+∞

tTλ (w) = 0. For the sake of simplicity, we set tλ := tTλ (w). Without

loss of generality, we set ||w|| = 1. Moreover, we know that for any v ∈ C∞0 (Ω),

(ITε,λ)
′(tλw)v = 0. (3.15)

Taking v = tλw in (3.15), then it arrives at∫
Ω

|tλw|p log |tλw|2dx+ λ

∫
Ω

f(tλw)tλwdx =t2λ + t2λη(
||tλw||2

T 2
)

∫
Ω

φε(tλw)w2dx

+
2t2λ
T 2

η′(
||tλw||2

T 2
)Jε(tλw).

(3.16)
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Due to η′ < 0, from (3.8) and (f5), one can deduce

t2λ + t2λη(
||tλw||2

T 2
)

∫
Ω

φε(tλw)w2dx ≥ 2tpλ
p

∫
Ω

|w|pdx− 2

p
|Ω|+ λtθλ||w||θθ. (3.17)

Assuming that tλ is unbounded, then there is λn → ∞ as n → ∞ such that lim
n→∞

tλn = ∞.

Thus, for n large enough, from the definition of η, we obtain

t2λ ≥
2tpλ
p

∫
Ω

|w|pdx− 2

p
|Ω|+ λtθλ||w||θθ,

which is impossible since θ > 2 and p > 4. Therefore, up to a subsequence, there exists t̃ ≥ 0

such that

tλ → t̃ as λ→∞.

We claim t̃ = 0. Arguing by contradiction that t̃ > 0, from Lemma 2.1, we deduce that

Jε(tλw)→ Jε(t̃w)

and

φε(tλw)→ φε(t̃w) in L∞(R3) as λ→ +∞.

Using (3.5) and Lebesgue theorem, we have∫
Ω

|tλw|p log |tλw|2dx→
∫

Ω

|t̃w|p log |t̃w|2dx as λ→ +∞.

Passing to the limit as λ→∞ in (3.16), the above analysis yields that∫
Ω

|t̃w|p log |t̃w|2dx+ lim
λ→∞

λ

∫
Ω

f(tλw)tλwdx

= t̃2 + t̃2η(
||t̃w||2

T 2
)

∫
Ω

φε(t̃w)w2dx+
2t̃2

T 2
η′(
||t̃w||2

T 2
)Jε(t̃w).

(3.18)

which is impossible. Hence t̃ = 0 and the proof is completed. �

In the sequel, we devote to estimating the value of cTε,λ defined by (3.11).

Lemma 3.3. Assume that (f1)− (f5) hold. Then for any T > 0, there holds

lim
λ→∞

sup
ε>0

cTε,λ = 0.

Proof. Let T > 0 be fixed. It is sufficient to verify that for any τ > 0, there exists λ0 > 1

such that for all λ > λ0,

0 < max
t∈[0,1]

ITλ (γ∗(t)) < τ,

where γ∗ is given in (3.12).
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Let w ∈ C∞0 (Ω) and w ≥ 0 with ||w|| = 1. By Lemma 3.2, there exists tλ := tTλ (w) > 0

(independent of ε) such that ITε,λ(tλw) = max
t≥0

ITε,λ(tw) and lim
λ→∞

tλ = 0. In this perspective,

we can conclude that

lim
λ→∞

sup
ε>0

tλ = 0.

On the other hand, since kT and Jε are both continuous, then for any ε > 0, we have

lim
λ→∞

kT (tλw) = 1 and lim
λ→∞

Jε(tλw) = 0.

Therefore for any τ > 0, there exists λ0 > 1 large such that for all λ > λ0,

0 < max
t∈[0,1]

ITε,λ(γ∗(t)) = ITε,λ(tλw)

=
t2λ
2
||w||2 +

2

p2

∫
Ω

|tλw|pdx+ kT (tλw)Jε(tλw)

− 1

p

∫
Ω

|tλw|p log |tλw|2dx− λ
∫

Ω

F (tλw)dx

< τ.

(3.19)

Thus the proof of this lemma is finished. �

Next we will show that every (PS)cTε,λ sequence of ITε,λ is bounded in H1
0 (Ω).

Lemma 3.4. Assume that (f1) − (f5) hold. Then for fixed T > 0, there exists λ(T ) > 0

large enough such that for all λ > λ(T ),

sup
ε>0

cTε,λ ≤
p− 2

2p
T 2. (3.20)

Furthermore, for given ε > 0, if {un} is a (PS)cTε,λ sequence of ITε,λ, then

||un|| ≤ T.

Proof. In view of Lemma 3.3, we can easily deduce that (3.20) holds. Since {un} is a (PS)cTε,λ
sequence of ITε,λ, that is, as n→∞,

ITε,λ(un)→ cTε,λ, (ITε,λ)
′(un)→ 0. (3.21)

Firstly, we show that ||un||2 ≤ 2T 2. If the conclusion does not hold, then there exists a

subsequence of {un} ⊂ H1
0 (Ω), still denoted by {un}, satisfying

||un||2 > 2T 2. (3.22)
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From (3.21), (3.22) and (f3), we have

cTε,λ + on(1) = ITε,λ(un)− 1

p
(ITε,λ)

′(un)un

≥ p− 2

2p
||un||2 + η(

||un||2

T 2
)

(
Jε(un)− 1

p

∫
Ω

φε(un)u2
ndx

)
− 2

pT 2
η′(
||un||2

T 2
)||un||2Jε(un)

≥ p− 2

2p
||un||2

>
p− 2

p
T 2,

where we use the facts that η′ ≤ 0 and η(t) = 0 for t > 2, which is a contradiction to (3.20).

Now we prove ||un||2 ≤ T 2. Note that for p > 4,

Jε(un)− 1

p

∫
Ω

φε(un)u2
ndx > 0. (3.23)

By contradiction, if T 2 < ||un||2 ≤ 2T 2, since η ≥ 0 and η′ ≤ 0, from (3.23) and (f3), we can

obtain

cTε,λ + on(1) = ITε,λ(un)− 1

p
(ITε,λ)

′(un)un

≥ p− 2

2p
||un||2 + η(2)

(
Jε(un)− 1

p

∫
Ω

φε(un)u2
ndx

)
− 2

pT 2
η′(
||un||2

T 2
)||un||2Jε(un)

≥ p− 2

2p
||un||2

>
p− 2

2p
T 2,

which contradicts to (3.20). At this point, we conclude that ||u|| ≤ T . �

Remark 3.2. It follows from Lemma 3.4 that for any T > 0 and ε > 0 given, there exists

λ(T ) > 0 such that for all λ > λ(T ), every (PS)cTε,λ sequence of ITε,λ is bounded in H1
0 (Ω)

and ||un|| ≤ T , thus it is actually a (PS) sequence of Iε,λ at level cε,λ = cTε,λ.

3.3 Compactness results of the functional Iε,λ

Lemma 3.5. Assume that (f1) − (f5) hold. Then for given T > 0 and ε > 0, there exists

λ̃(T ) > λ(T ) such that for all λ > λ̃(T ), the functional Iε,λ satisfies the (PS) condition at

the level cε,λ, where λ(T ) is given in Lemma 3.4.

Proof. In view of Remark 3.2, we know that for all λ > λ(T ), Iε,λ possesses a bounded

(PS)cε,λ sequence {un} ⊂ H1
0 (Ω), that is,

Iε,λ(un)→ cε,λ, I
′
ε,λ(un)→ 0 as n→∞ (3.24)
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and ||un|| ≤ T uniformly in ε. We shall prove that {un} admits a convergent subsequence

in H1
0 (Ω). Since {un} is bounded in H1

0 (Ω), up to a subsequence, there exists uε,λ ∈ H1
0 (Ω)

with ||uε,λ|| ≤ T such that

un ⇀ uε,λ in H1
0 (Ω),

un → uε,λ in Ls(Ω) for s ∈ [1,∞),

un → uε,λ a.e. x ∈ Ω.

We claim that ∫
Ω

f(un)undx→
∫

Ω

f(uε,λ)uε,λdx. (3.25)

It is easy to verify that f(un)un → f(uε,λ)uε,λ a.e. x ∈ Ω. To verify (3.25), it is sufficient to

prove that there exists g(x) ∈ L1(Ω) such that

|f(un)(x)un(x)| ≤ g(x) a.e. x ∈ Ω.

Then by Lebesgue theorem, the claim holds.

Recall inequality (3.4) with q = 1 and α = α0 + 1, then one gets

f(un)un ≤ εu2
n + Cε|un|exp

(
(α0 + 1)u2

n

)
.

It is clear that {u2
n} is convergent in L1(Ω), thus there exists g1(x) ∈ L1(Ω) such that, up to

a subsequence,

u2
n(x) ≤ g1(x) a.e. x ∈ Ω.

Set hn = |un|exp ((α0 + 1)u2
n), then

hn(x)→ |uε,λ|exp
(
(α0 + 1)u2

ε,λ

)
a.e. x ∈ Ω. (3.26)

On the other hand, by (3.23), (3.24) and (f3), we can obtain

cε,λ + on(1) = Iε,λ(un)− 1

p
I ′ε,λ(un)un

≥ p− 2

2p
||un||2 + Jε(un)− 1

p

∫
Ω

φε(un)u2
ndx

≥ p− 2

2p
||un||2.

(3.27)

Then it follows from Lemma 3.3 and (3.27), one can choose λ̃(T ) > λ(T ) such that for some

s ∈ (1, 2),

lim sup
n→∞

||un||2 ≤
4π

s(α0 + 1)
. (3.28)

Lemma 2.3 and (3.28) give that∫
Ω

exp
(
s(α0 + 1)u2

n

)
dx =

∫
Ω

exp

(
s(α0 + 1)||un||2

u2
n

||un||2

)
dx ≤ Ĉ,
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where Ĉ does not depend on n. Note that

exp
(
s(α0 + 1)u2

n

)
→ exp

(
s(α0 + 1)u2

ε,λ

)
a.e. x ∈ Ω.

Then by Lemma 4.8 in [19], it holds that

exp
(
(α0 + 1)u2

n

)
→ exp

(
(α0 + 1)u2

ε,λ

)
in Ls(Ω). (3.29)

Obviously, it also holds

|un| → |uε,λ| in Ls
′
(Ω), where

1

s
+

1

s′
= 1. (3.30)

In view of Hölder inequality, for above s ∈ (1, 2), we have∫
Ω

hndx =

∫
Ω

|un|exp
(
(α0 + 1)u2

n

)
dx

≤
(∫

Ω

|un|s
′
)1/s′ (∫

Ω

exp
(
s(α0 + 1)u2

n

)
dx

)1/s

.

(3.31)

Combining (3.26), (3.29)-(3.31) with Lebegue theorem, we can obtain∫
Ω

hndx =

∫
Ω

|un|exp
(
(α0 + 1)u2

n

)
dx→

∫
Ω

|uε,λ|exp
(
(α0 + 1)u2

ε,λ

)
dx,

which yields

hn → |uε,λ|exp
(
(α0 + 1)u2

ε,λ

)
in L1(Ω).

Hence, up to a subsequence, there exists g2(x) ∈ L1(Ω) such that

hn(x) = |un|exp
(
(α0 + 1)u2

n

)
≤ g2(x) a.e. x ∈ Ω.

Taking g(x) = g1(x) + g2(x), then the claim is proved.

From (3.5) and Lebesgue theorem, we know∫
Ω

|un|p log |un|2dx→
∫

Ω

|uε,λ|p log |uε,λ|2dx. (3.32)

Since I ′ε,λ(un)un = on(1) and I ′ε,λ(uε,λ)uε,λ = 0, then∫
Ω

|∇un|2dx+

∫
Ω

φε(un)u2
ndx−

∫
Ω

|un|p log |un|2dx− λ
∫

Ω

f(un)undx

=

∫
Ω

|∇uε,λ|2dx+

∫
Ω

φε(uε,λ)u
2
ε,λdx−

∫
Ω

|uε,λ|p log |uε,λ|2dx− λ
∫

Ω

f(uε,λ)uε,λdx+ on(1).

From Lemma 2.1, (3.25) and (3.32), we get∫
Ω

|∇un|2dx =

∫
Ω

|∇uε,λ|2dx+ on(1),

which implies un → uε,λ in H1
0 (Ω).

Up to now, we finish the proof of this lemma. �
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Proof of Theorem 1.1 From Remark 3.2 and Lemma 3.5, we know that for all λ ≥ Λ :=

λ̃(T )+1, Iε,λ possesses one critical point uε,λ ∈ H1
0 (Ω) and Iε,λ(uε,λ) = cε,λ. Remark 2.1

implies that (uε,λ, φε,λ) ∈ H1
0 (Ω)× E is a pair of critical points of Iε,λ, that is, (uε,λ, φε,λ) is

a pair of solutions of (Pε). Set φ−ε,λ := max{−φε,λ, 0} and then by multiplying the second

equation of (Pε) and integrating, we reach to∫
Ω

|φ−ε,λ|
2dx+

∫
Ω

|φ−ε,λ|
4dx ≤ 0,

which implies that φ−ε,λ ≡ 0. So φε,λ ≥ 0. Similarly, we can prove uε,λ ≥ 0.

Now we prove the asymptotical behavior of (uε,λ, φε,λ) with respect to λ. Note that

Iε,λ(uε,λ) = cε,λ and I ′ε,λ(uε,λ) = 0.

Similar to (3.27), we have

cε,λ = Iε,λ(uε,λ)−
1

p
I ′ε,λ(uε,λ)uε,λ

≥ p− 2

2p
||uε,λ||2 + Jε(uε,λ)−

1

p

∫
Ω

φε(uε,λ)u
2
ε,λdx

≥ p− 2

2p
||uε,λ||2.

(3.33)

Recall Lemma 3.3, we know that

lim
λ→∞

sup
ε>0

cε,λ = 0. (3.34)

Then (3.33) and (3.34) give that for each ε > 0,

lim
λ→∞

uε,λ = 0 in H1
0 (Ω).

As Φε (see (2.5)) is continuous, we know

lim
λ→∞

φε,λ = 0 in E.

Recalling the fact E ↪→ L∞(Ω), one gets lim
λ→∞
||φε,λ||∞ = 0.

The above analysis concludes the proof of Theorem 1.1.

�

4 Proof of Theorem 1.2

In the sequel, we fix the parameter λ̃ ≥ Λ and consider the asymptotical behavior of the

pair of solutions (uε,λ̃, φε,λ̃) with respect to the parameter ε, where Λ is given above.
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Lemma 4.1. Assume that (f1) − (f5) hold. Let 0 < ε < 1 and {(uε,λ̃, φε,λ̃)} ⊂ H1
0 (Ω) × E

be a sequence of solutions of (Pε). Then there hold

lim
ε→0+

uε,λ̃ = u0,λ̃ in H1
0 (Ω) and lim

ε→0+
φε,λ̃ = φ0,λ̃ in E,

where (u0,λ̃, φ0,λ̃) is a pair of solutions of the following Schrödinger-Poisson system
−∆u+ φu = |u|p−2u log |u|2 + λ̃f(u), in Ω,

−∆φ = u2, in Ω,

u = φ = 0, on ∂Ω.

(4.1)

Proof. Since {(uε,λ̃, φε,λ̃)} ⊂ H1
0 (Ω) × E is a sequence of solutions of (Pε), then it follows

from Remark 2.1 that {uε,λ̃} is a sequence of solutions of (Q) and for each ε > 0, there hold

Iε,λ̃(uε,λ̃) = cε,λ̃, I
′
ε,λ̃

(uε,λ̃) = 0,

where cε,λ̃ is the mountain pass level of Iε,λ̃. Note that for any 0 < ε < 1,

0 < cε,λ̃ < c1,λ̃.

Similar to (3.33), one yields that

c1,λ̃ > cε,λ̃ = Iε,λ̃(uε,λ̃)−
1

p
I ′
ε,λ̃

(uε,λ̃)uε,λ̃

≥ p− 2

2p
||uε,λ̃||

2 + Jε(uε,λ̃)−
1

p

∫
Ω

φε(uε,λ̃)u
2
ε,λ̃
dx

≥ p− 2

2p
||uε,λ̃||

2,

(4.2)

which implies that {uε,λ̃} is bounded uniformly in H1
0 (Ω). Then, up to s subsequence if

necessary, there exists u0,λ̃ ∈ H1
0 (Ω) such that as ε→ 0+,

uε,λ̃ ⇀ u0,λ̃ in H1
0 (Ω),

uε,λ̃ → u0,λ̃ in Ls(Ω) for s ∈ [1,∞),

uε,λ̃ → u0,λ̃ a.e. x ∈ Ω.

Due to λ̃ ≥ Λ, then repeating the method in Lemma 3.5, we can prove

uε,λ̃ → u0,λ̃ in H1
0 (Ω).

Observe that as ε→ 0+,

u2
ε,λ̃
→ u2

0,λ̃
in L

6
5 (Ω).
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In view of Lemma 2.2, we can obtain as ε→ 0+,

φε(uε,λ̃)→ φ0(u0,λ̃) in H1
0 (Ω), εφε(uε,λ̃)→ 0 in W 1,4

0 (Ω). (4.3)

On the other hand, since uε,λ̃ is a solution of (Q), then for any v ∈ C∞0 (Ω), we have∫
Ω

∇uε,λ̃∇vdx+

∫
Ω

φε(uε,λ̃)uε,λ̃vdx =

∫
Ω

|uε,λ̃|
p−2uε,λ̃v log |uε,λ̃|

2dx+ λ̃

∫
Ω

f(uε,λ̃)vdx.

Using (4.3), by standard argument, we can prove∫
Ω

∇u0,λ̃∇vdx+

∫
Ω

φ0(u0,λ̃)u0,λ̃vdx =

∫
Ω

|u0,λ̃|
p−2u0,λ̃v log |u0,λ̃|

2dx+ λ̃

∫
Ω

f(u0,λ̃)vdx.

which implies that (u0,λ̃, φ0(u0,λ̃)) gives rise to a pair of solutions of the Schrödinger-Poisson

system (4.1).

The proof of this lemma is completed. �

Remark 4.1. Theorem 1.2 follows from Lemma 4.1.
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470.

[8] T. Cazenave, Stable solutions of the logarithmic Schrödinger equation, Nonlinear Anal.

7 (1983) 1127-1140.

[9] J.Q. Chen, Multiple positive solutions of a class of non autonomous Schrödinger-Poisson

systems, Nonlinear Anal. Real World Appl. 21 (2015) 13-26.

[10] M. Degiovanni, S. Zani, Multiple solutions of semilinear elliptic equations with one-

sided growth conditions, nonlinear operator theory, Math. Comput. Model. 32 (2000)

1377-1393.

[11] L. Ding, L. Li, Y.J. Meng, C.L. Zhuang, Existence and asymptotic behavior of ground

state solution for quasi-linear Schrödinger-Poisson system in R3, Topol. Methods Non-

linear Anal. 47 (2016) 241-264.

[12] G.M. Figueiredo, G. Siciliano, Existence and asymptotical behavior of solutions for

Schrödinger-Poisson system with a critical nonlinearity, Z. Angew. Math. Phys. 71

(2020) 130.

[13] G.M. Figueiredo, G. Siciliano, Quasi-linear Schrödinger-Poisson system under an ex-

ponential critical nonlinearity: existence and asymptotic behavior of solutions, Arch.

Math. 112 (2019) 313-327.

[14] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol.

224, 2nd edn. Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1983.

[15] P. Guerrero, J.L. López, J. Nieto, Global H1 solvability of the 3D logarithmic

Schrödinger equation, Nonlinear Anal. Real World Appl. 11 (2010) 79-87.

[16] R. Illner, O. Kavian, H. Lange, Stationary solutions of quasi-linear Schrödinger-Poisson

systems, J. Differential Equations 145 (1998) 1-16.

[17] R. Illner, H. Lange, B. Toomire, P.F. Zweifel, On quasi-linear Schrödinger-Poisson sys-

tems, Math. Methods Appl. Sci. 20 (1997) 1223-1238.

[18] C. Ji, A. Szulkin, A logarithmic Schrödinger equation with asymptotic conditions on

the potential, J. Math. Anal. Appl. 437 (2016) 241-254.
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