Introduction:
Stable isotope analysis has become an established tool of ecologists for
numerous applications, including research on ecosystem functioning (e.g.
Mehner et al. 2016), animal migration (e.g. Hobson 1999),
ecophysiological processes (e.g. Gannes et al. 1998), and parasitism
(e.g. Lafferty et al. 2008). Furthermore, it provides a useful tool for
elucidating trophic interactions in food-web research (Post 2002,
Boecklen et al. 2011, Layman et al. 2012). For these purposes, the ratio
of carbon (12C/13C, expressed as
δ13C values) and nitrogen
(14N/15N, expressed as
δ15N values) stable isotopes have been widely used.
While δ13C values can be used to track the origin of
the carbon source in organisms´ diet and the base of the food web,
δ15N values are especially useful for determining the
organisms´ trophic level (DeNiro and Epstein 1978, 1981, Peterson and
Fry 1987). Combining these two approaches can provide information on
resource and habitat use, thus allowing inference of the ecological
niche of individuals, species or communities (Bearhop et al. 2004,
Newsome et al. 2007, Martínez del Rio et al. 2009).
For many applications of stable isotope analyses in ecology, estimates
of the isotopic spacing between a consumer and its food (trophic
discrimination) are needed. Trophic discrimination factors (TDF,
Δ13C and Δ15N) represent
the difference in values of δ13C (or
δ15N) between the consumer and its diet. Most studies
rely on average values for this parameter found in the literature, but
the use of inaccurate TDF has been described as a major source of
uncertainties in the use of mixing models to calculate the contributions
of food items to the diet of a consumer (Phillips et al. 2014).
Therefore, to allow precise interpretations of isotope data, appropriate
TDF values obtained from relevant species-specific trophic interactions
are necessary (Martínez del Rio et al. 2009, Wolf et al. 2009).
TDF may vary considerably within and between species (Post 2002),
influenced e.g. by diet quality (Gaye-Siessegger et al. 2003), feeding
rates (Barnes et al. 2007), and the metabolic processes which shape the
rate of diet incorporation (MacAvoy et al. 2005, MacAvoy et al. 2006,
Pecquerie et al. 2010). Metabolism describes the sum of all anabolic
(synthesizing) and catabolic (degrading) processes of living organisms.
In animals, metabolism is driven by the oxidation of organic molecules
with the consumption of oxygen during cellular respiration. Part of this
energy is used during anabolic processes to produce macromolecules (i.e.
carbohydrates, proteins or lipids). This will lead to an increase in
tissue mass, resulting in growth, or to replacement of tissue, which are
both important underlying processes shaping isotopic equilibration,
potentially influencing TDF. Therefore, metabolic rate has strong
implications for the rate at which isotopes are incorporated (Carleton
and Martínez del Rio 2010). It is generally acknowledged, that more
metabolically active tissues (e.g. liver) have faster turnover,
resulting in lower TDF due to the preferential incorporation of12C in the excreted metabolites, compared to tissues
with slower turnover (e.g. muscle) (McIntyre and Flecker 2006, Xia et
al. 2013, Matley et al. 2016). However, this framework has rarely been
applied to the overall metabolism of an organism.
Fundamental differences in metabolic rates exist across the animal
kingdom with higher mass-specific metabolic rates in smaller species
compared to larger ones (Kleiber 1947). In addition to phylogenic
differences in metabolism, metabolic rates also vary over ontogeny in
individuals of the same species (Wieser 1984, Chabot et al. 2016). To
achieve high growth rates in younger individuals, these ontogenetic live
stages are characterized by high metabolic rates (e.g. Hou et al. 2008,
Yagi et al. 2010). In addition, a whole research field studies the
consequences of metabolic differences between individuals irrespective
of ontogenetic stages, and their influence on general behavior and
performance (Metcalfe et al. 1995, Careau et al. 2008, Biro and Stamps
2010), including social dominance, aggressive behavior, and activity
levels (Røskaft et al. 1986, Reidy et al. 2000).
One component of an organism’s metabolism is standard metabolic rate
(SMR) which is the minimum metabolic rate needed for subsistence
(Hulbert and Else 2004, Chabot et al. 2016). Oxygen consumption,
measured in a respirometer is typically used as a proxy for SMR. This
baseline is ecologically relevant in how it translates to differences in
“maintenance costs” and thereby fitness, between conspecifics (Burton
et al. 2011). Previous studies have been able to correlate individual
metabolic rates to the differences of TDF found between species, sexes
and laboratory strains of endothermic animals with a high metabolism,
such as birds and rodents (Ogden et al. 2004, MacAvoy et al. 2006,
MacAvoy et al. 2012), but this concept has not been broadened to
ectothermic organisms with a slower mass-specific metabolic rate, such
as temperate fish.
In this study, we examined TDF for Eurasian perch (Perca
fluviatilis ), which is a ubiquitous fish in Europe and Asia (Froese and
Pauly 2020). It is the dominant predatory species in many aquatic
habitats including freshwater (Mehner et al. 2007) and brackish systems
(Ådjers et al. 2006), playing a fundamental role in structuring food
webs (e.g. Svanbäck et al. 2015, Bartels et al. 2016, Marklund et al.
2019). Nonetheless, species-specific stable isotope TDF for perch
feeding natural diets have not been established. Like many vertebrate
predators, perch grow several orders of magnitude in body size over
their lifetime (e.g. Hjelm et al. 2000), making this species an
excellent model for studying the relationship between metabolism and TDF
over ontogeny.
The motivation for this study was two-fold. First, we wanted to
experimentally derive Δ13C and
Δ15N for different weight classes of Eurasian perch,
to allow more accurate estimates of trophic positions, ecological niches
and other potential food-web inferences for this common teleost. Second,
we aimed at identifying the role of metabolic rate on TDF. We predicted
that the higher mass-specific standard metabolic rate of juvenile fish
will result in lower TDF than those seen in adult perch.