REFERENCES
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W., & Huse, S. M.
(2009). A method for studying protistan diversity using massively
parallel sequencing of V9 hypervariable regions of small-subunit
ribosomal RNA Genes. PLoS ONE , 4 (7), 1–9. doi:
10.1371/journal.pone.0006372
Anderson, M. J. (2001). A new method for non-parametric multivariate
analysis of variance. Austral Ecology , 26 , 32–46. doi:
10.1080/13645700903062353
Beaugrand, G., Edwards, M., & Legendre, L. (2010). Marine biodiversity,
ecosystem functioning, and carbon cycles. Proceedings of the
National Academy of Sciences of the United States of America ,107 (22), 10120–10124. doi: 10.1073/pnas.0913855107
Biggs, D. C., & Ressler, P. H. (2001). Distribution and abundance of
phytoplankton, zooplankton, ichthyoplankton, and micronekton in
deepwater Gulf of Mexico. Gulf of Mexico Science , 19 (1),
7–29. doi: 10.18785/goms.1901.02
Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible
trimmer for Illumina sequence data. Bioinformatics ,30 (15), 2114–2120. doi: 10.1093/bioinformatics/btu170
Bolyen, E., Rideout, J., Dillon, M., Bokulich, N., Abnet, C.,
Al-Ghalith, G., … Caporaso, G. (2019). Reproducible, interactive,
scalable and extensible microbiome data science using QIIME 2.Nature Biotechnology , 37 (August), 852–857.
Bucklin, A., Lindeque, P. K., Rodriguez-Ezpeleta, N., Albaina, A., &
Lehtiniemi, M. (2016). Metabarcoding of marine zooplankton: Prospects,
progress and pitfalls. Journal of Plankton Research ,38 (3), 393–400. doi: 10.1093/plankt/fbw023
Bucklin, A., Yeh, H. D., Questel, J. M., Richardson, D. E., Reese, B.,
Copley, N. J., & Wiebe, P. H. (2019). Time-series metabarcoding
analysis of zooplankton diversity of the NW Atlantic continental shelf.ICES Journal of Marine Science , 76 (4), 1162–1176. doi:
10.1093/icesjms/fsz021
Buttay, L., Miranda, A., Casas, G., González-Quirós, R., & Nogueira, E.
(2015). Long-term and seasonal zooplankton dynamics in the northwest
Iberian shelf and its relationship with meteo-climatic and hydrographic
variability. Journal of Plankton Research , 38 (1),
106–121. doi: 10.1093/plankt/fbv100
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A.
J. A., & Holmes, S. P. (2016). DADA2: High-resolution sample inference
from Illumina amplicon data. Nature Methods , 13 (7),
581–583. doi: 10.1038/nmeth.3869
Carroll, E. L., Gallego, R., Sewell, M. A., Zeldis, J., Ranjard, L.,
Ross, H. A., … Constantine, R. (2019). Multi-locus DNA
metabarcoding of zooplankton communities and scat reveal trophic
interactions of a generalist predator. Scientific Reports ,9 (1), 1–14. doi: 10.1038/s41598-018-36478-x
Carugati, L., Corinaldesi, C., Dell’Anno, A., & Danovaro, R. (2015).
Metagenetic tools for the census of marine meiofaunal biodiversity: An
overview. Marine Genomics , 24 , 11–20. doi:
10.1016/j.margen.2015.04.010
Chamberlain, S. A., & Szöcs, E. (2013). taxize: taxonomic search and
retrieval in R. F1000Research , 2 , 191. doi:
10.12688/f1000research.2-191.v1
Chao, A. (1984). Nonparametric Estimation of the Number of Classes in a
Population. Scanadinavian Journal of Statistics , 11 (4),
265–270. doi: 10.1214/aoms/1177729949
Clarke, K. R., & Warwick, R. M. (2001). A further biodiversity index
applicable to species lists: Variation in taxonomic distinctness.Marine Ecology Progress Series , 216 , 265–278. doi:
10.3354/meps216265
Clarke, L. J., Soubrier, J., Weyrich, L. S., & Cooper, A. (2014).
Environmental metabarcodes for insects: In silico PCR reveals potential
for taxonomic bias. Molecular Ecology Resources , 14 (6),
1160–1170. doi: 10.1111/1755-0998.12265
Corell, J., & Rodríguez-Ezpeleta, N. (2013). Tuning of protocols and
marker selection to evaluate the diversity of zooplankton using
metabarcoding. Revista de Investigaciones Marinas , 21 (2),
19–39. Retrieved from
http://www.azti.es/rim/wp-content/uploads/2014/05/Revista-Marina-21_2.pdf
Creer, S., Deiner, K., Frey, S., Porazinska, D., Taberlet, P., Thomas,
W. K., … Bik, H. M. (2016). The ecologist’s field guide to
sequence-based identification of biodiversity. Methods in Ecology
and Evolution , 7 (9), 1008–1018. doi: 10.1111/2041-210X.12574
Cristescu, M. E. (2014). From barcoding single individuals to
metabarcoding biological communities: Towards an integrative approach to
the study of global biodiversity. Trends in Ecology and
Evolution , 29 (10), 566–571. doi: 10.1016/j.tree.2014.08.001
Damien, P., Pasqueron de Fommervault, O., Sheinbaum, J., Jouanno, J.,
Camacho-Ibar, V. F., & Duteil, O. (2018). Partitioning of the Open
Waters of the Gulf of Mexico Based on the Seasonal and Interannual
Variability of Chlorophyll Concentration. Journal of Geophysical
Research: Oceans , 123 (4), 2592–2614. doi: 10.1002/2017JC013456
Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F., & Taberlet, P.
(2014). DNA metabarcoding and the cytochrome c oxidase subunit I marker:
Not a perfect match. Biology Letters , 10 (9), 2–5. doi:
10.1098/rsbl.2014.0562
Djurhuus, A., Pitz, K., Sawaya, N. A., Rojas-Márquez, J., Michaud, B.,
Montes, E., … Breitbart, M. (2018). Evaluation of marine
zooplankton community structure through environmental DNA metabarcoding.Limnology and Oceanography: Methods , 16 (4), 209–221. doi:
10.1002/lom3.10237
Elliott, D. T., Pierson, J. J., & Roman, M. R. (2012). Relationship
between environmental conditions and zooplankton community structure
during summer hypoxia in the northern Gulf of Mexico. Journal of
Plankton Research , 34 (7), 602–613. doi: 10.1093/plankt/fbs029
Espinasse, B., Carlotti, F., Zhou, M., & Devenon, J. L. (2014).
Defining zooplankton habitats in the gulf of lion (NW Mediterranean Sea)
using size structure and environmental conditions. Marine Ecology
Progress Series , 506 , 31–46. doi: 10.3354/meps10803
Everaert, G., Deschutter, Y., De Troch, M., Janssen, C. R., & De
Schamphelaere, K. (2018). Multimodel inference to quantify the relative
importance of abiotic factors in the population dynamics of marine
zooplankton. Journal of Marine Systems , 181 (February),
91–98. doi: 10.1016/j.jmarsys.2018.02.009
Färber Lorda, J., Athié, G., Camacho Ibar, V., Daessle, L. W., &
Molina, O. (2019). The relationship between zooplankton distribution and
hydrography in oceanic waters of the Southern Gulf of Mexico.Journal of Marine Systems , 192 (March 2018), 28–41. doi:
10.1016/j.jmarsys.2018.12.009
Gasca, R., Suárez-Morales, E., & Haddock, S. H. D. (2007). Symbiotic
associations between crustaceans and gelatinous zooplankton in deep and
surface waters off California. Marine Biology , 151 (1),
233–242. doi: 10.1007/s00227-006-0478-y
Gaston, K. J. (2009). Geographic range limits of species.Proceedings of the Royal Society B: Biological Sciences ,276 (1661), 1391–1393. doi: 10.1098/rspb.2009.0100
Gazonato Neto, A. J., Silva, L. C. da, Saggio, A. A., & Rocha, O.
(2014). Zooplankton communities as eutrophication bioindicators in
tropical reservoirs. Biota Neotropica , 14 (4). doi:
10.1590/1676-06032014001814
Gluchowska, M., Trudnowska, E., Goszczko, I., Kubiszyn, A. M.,
Blachowiak-Samolyk, K., Walczowski, W., & Kwasniewski, S. (2017).
Variations in the structural and functional diversity of zooplankton
over vertical and horizontal environmental gradients en route to the
Arctic Ocean through the Fram Strait. PLoS ONE , 1–26. doi:
10.1371/journal.pone.0171715
Hamilton, P. (2007). Eddy statistics from Lagrangian drifters and
hydrography for the northern Gulf of Mexico slope. Journal of
Geophysical Research: Oceans , 112 (9), 1–16. doi:
10.1029/2006JC003988
Hawkins, B. A., & Diniz-filho, J. A. F. (2004). ‘Latitude’and
geographic patterns in species richness. Ecography , 27 (2),
268–272.
Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P., &
Minghim, R. (2015). InteractiVenn: A web-based tool for the analysis of
sets through Venn diagrams. BMC Bioinformatics , 16 (1),
1–7. doi: 10.1186/s12859-015-0611-3
Heimeier, D., Lavery, S., & Sewell, M. A. (2010). Using DNA barcoding
and phylogenetics to identify Antarctic invertebrate larvae: Lessons
from a large scale study. Marine Genomics , 3 (3–4),
165–177. doi: 10.1016/j.margen.2010.09.004
Helenius, L. K., Leskinen, E., Lehtonen, H., & Nurminen, L. (2017).
Spatial patterns of littoral zooplankton assemblages along a salinity
gradient in a brackish sea: A functional diversity perspective.Estuarine, Coastal and Shelf Science , 198 , 400–412. doi:
10.1016/j.ecss.2016.08.031
Hereu, C. M., Arteaga, M. C., Galindo-Sánchez, C. E., Herzka, S. Z.,
Batta-Lona, P. G., & Jiménez-Rosenberg, S. P. A. (2020). Zooplankton
summer composition in the southern Gulf of Mexico with emphasis on salp
and hyperiid amphipod assemblages. Journal of the Marine
Biological Association of the United Kingdom , 1–16. doi:
10.1017/s0025315420000715
Howson, U. A., Buchanan, G. A., & Nickels, J. A. (2017). Zooplankton
Community Dynamics in a Western Mid-Atlantic Lagoonal Estuary.Journal of Coastal Research , 78 , 141–168. doi:
10.2112/si78-012.1
Jennifer E., P., & Mary N., A. (2001). Interactions of pelagic
cnidarians and ctenophores with fish: a review. Hydrobiologia ,451 , 27–44.
Johnston, E. L., Mayer-Pinto, M., & Crowe, T. P. (2015). Chemical
contaminant effects on marine ecosystem functioning. Journal of
Applied Ecology , 52 (1), 140–149. doi: 10.1111/1365-2664.12355
Jouanno, J., Ochoa, J., Pallàs-Sanz, E., Sheinbaum, J., Andrade-Canto,
F., Candela, J., & Molines, J. M. (2016). Loop current frontal eddies:
Formation along the campeche bank and impact of coastally trapped waves.Journal of Physical Oceanography , 46 (11), 3339–3363. doi:
10.1175/JPO-D-16-0052.1
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment
software version 7: Improvements in performance and usability.Molecular Biology and Evolution , 30 (4), 772–780. doi:
10.1093/molbev/mst010
Larke, L. J., Beard, J. M., Swadling, K. M., & Deagle, B. E. (2017).
Effect of marker choice and thermal cycling protocol on zooplankton DNA
metabarcoding studies. Ecology and Evolution , 7 (3),
873–883. doi: 10.1002/ece3.2667
Leray, M., Yang, J. Y., Meyer, C. P., Mills, S. C., Agudelo, N., Ranwez,
V., … Machida, R. J. (2013). A new versatile primer set targeting
a short fragment of the mitochondrial COI region for metabarcoding
metazoan diversity: Application for characterizing coral reef fish gut
contents. Frontiers in Zoology , 10 (1), 1–14. doi:
10.1186/1742-9994-10-34
Linacre, L., Lara-Lara, R., Camacho-Ibar, V., Herguera, J. C.,
Bazán-Guzmán, C., & Ferreira-Bartrina, V. (2015). Distribution pattern
of picoplankton carbon biomass linked to mesoscale dynamics in the
southern gulf of Mexico during winter conditions. Deep-Sea
Research Part I: Oceanographic Research Papers , 106 , 55–67.
doi: 10.1016/j.dsr.2015.09.009
Lindeque, P. K., Parry, H. E., Harmer, R. A., Somerfield, P. J., &
Atkinson, A. (2013). Next generation sequencing reveals the hidden
diversity of zooplankton assemblages. PLoS ONE , 8 (11),
1–14. doi: 10.1371/journal.pone.0081327
Machida, R. J., Leray, M., Ho, S.-L., & Knowlton, N. (2017). Data
Descriptor: Metazoan mitochondrial gene sequence reference datasets for
taxonomic assignment of environmental samples. Scientific Data ,4 (September 2016), 1–7. doi: 10.1038/sdata.2017.27
Martin, M. (2011). Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.Journal , 17 (1),
10–12. Retrieved from http://dx.doi.org/10.14806/ej.17.1.200
McArdle, B. H., & Anderson, M. J. (2001). Fitting Multivariate Models
To Community Data : Ecology , 82 (1), 290–297.
Muller-Karger, F. E., Smith, J. P., Werner, S., Chen, R., Roffer, M.,
Liu, Y., … Enfield, D. B. (2015). Natural variability of surface
oceanographic conditions in the offshore Gulf of Mexico. Progress
in Oceanography , 134 , 54–76. doi: 10.1016/j.pocean.2014.12.007
Palumbi, S. R., Sandifer, P. A., Allan, J. D., Beck, M. W., Fautin, D.
G., Fogarty, M. J., … Wall, D. H. (2009). Managing for ocean
biodiversity to sustain marine ecosystem services. Frontiers in
Ecology and the Environment , 7 (4), 204–211. doi: 10.1890/070135
Parmar, T. K., Rawtani, D., & Agrawal, Y. K. (2016). Bioindicators: the
natural indicator of environmental pollution. Frontiers in Life
Science , 9 (2), 110–118. doi: 10.1080/21553769.2016.1162753
Pérez-Brunius, P., García-Carrillo, P., Dubranna, J., Sheinbaum, J., &
Candela, J. (2013). Direct observations of the upper layer circulation
in the southern Gulf of Mexico. Deep-Sea Research Part II: Topical
Studies in Oceanography , 85 , 182–194. doi:
10.1016/j.dsr2.2012.07.020
Piñol, J., Mir, G., Gomez-Polo, P., & Agustí, N. (2015). Universal and
blocking primer mismatches limit the use of high-throughput DNA
sequencing for the quantitative metabarcoding of arthropods.Molecular Ecology Resources , 15 (4), 819–830. doi:
10.1111/1755-0998.12355
Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 -
Approximately maximum-likelihood trees for large alignments. PLoS
ONE , 5 (3). doi: 10.1371/journal.pone.0009490
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
… Glöckner, F. O. (2013). The SILVA ribosomal RNA gene database
project: Improved data processing and web-based tools. Nucleic
Acids Research , 41 (D1), 590–596. doi: 10.1093/nar/gks1219
Ratnasingham, S., & Hebert, P. D. N. (2007). BOLD : The Barcode of
Life Data System (www.barcodinglife.org). Molecular Ecology
Notes , 7 , 355–364. doi: 10.1111/j.1471-8286.2006.01678.x
Salmerón-García, O., Zavala-Hidalgo, J., Mateos-Jasso, A., &
Romero-Centeno, R. (2011). Regionalization of the gulf of mexico from
space-time chlorophyll-a concentration variability. Ocean
Dynamics , 61 (4), 439–448. doi: 10.1007/s10236-010-0368-1
Sheinbaum, J., Athié, G., Candela, J., Ochoa, J., & Romero-Arteaga, A.
(2016). Structure and variability of the Yucatan and loop currents along
the slope and shelf break of the Yucatan channel and Campeche bank.Dynamics of Atmospheres and Oceans , 76 , 217–239. doi:
10.1016/j.dynatmoce.2016.08.001
Stefanni, S., Stanković, D., Borme, D., de Olazabal, A., Juretić, T.,
Pallavicini, A., & Tirelli, V. (2018). Multi-marker metabarcoding
approach to study mesozooplankton at basin scale. Scientific
Reports , 8 (1), 1–13. doi: 10.1038/s41598-018-30157-7
Steinberg, D. K., & Landry, M. R. (2017). Zooplankton and the Ocean
Carbon Cycle. Annual Review of Marine Science , 9 (1),
413–444. doi: 10.1146/annurev-marine-010814-015924
Trudnowska, E., Gluchowska, M., Beszczynska-Möller, A.,
Blachowiak-Samolyk, K., & Kwasniewski, S. (2016). Plankton patchiness
in the Polar Front region of the west Spitsbergen Shelf. Marine
Ecology Progress Series , 560 (November), 1–18. doi:
10.3354/meps11925
Uribe-Martínez, A., Aguirre-Gómez, R., Zavala-Hidalgo, J., Ressl, R., &
Cuevas, E. (2019). Unidades oceanográficas del Golfo de México y áreas
adyacentes : La integración mensual de las características biofísicas
superficiales Oceanographic units of Gulf of Mexico and adjacent
areas : The monthly integration of surface biophysical features.Geofísica Internacional , 58 (4), 295–315.
Usov, N., Khaitov, V., Smirnov, V., & Sukhotin, A. (2019). Spatial and
temporal variation of hydrological characteristics and zooplankton
community composition influenced by freshwater runoff in the shallow
Pechora Sea. Polar Biology , 42 (9), 1647–1665. doi:
10.1007/s00300-018-2407-1
Vause, B. J., Morley, S. A., Fonseca, V. G., Jazdzewska, A., Ashton, G.
V., Barnes, D. K. A., … Peck, L. S. (2019). Spatial and temporal
dynamics of Antarctic shallow soft-bottom benthic communities:
Ecological drivers under climate change. BMC Ecology ,19 (1), 1–14. doi: 10.1186/s12898-019-0244-x
Vázquez-Baeza, Y., Pirrung, M., Gonzalez, A., & Knight, R. (2013).
EMPeror : a tool for visualizing high-throughput microbial community
data. Gigascience , 2 (Nov), 1–4.
Wang, Q., Garrity, G. M., Tiedje, J. M., & Cole, J. R. (2007). Naïve
Bayesian classifier for rapid assignment of rRNA sequences into the new
bacterial taxonomy. Applied and Environmental Microbiology ,73 (16), 5261–5267. doi: 10.1128/AEM.00062-07
WoRMS Editorial Board. (2017). Retrieved from
https://doi.org/10.14284/170
Xiong, W., Ni, P., Chen, Y., Gao, Y., Li, S., & Zhan, A. (2019).
Biological consequences of environmental pollution in running water
ecosystems: A case study in zooplankton. Environmental Pollution ,252 , 1483–1490. doi: 10.1016/j.envpol.2019.06.055
Yang, J., & Zhang, X. (2019). eDNA metabarcoding in zooplankton
improves the ecological status assessment of aquatic ecosystems.Environment International , 134 (September 2019), 105230.
doi: 10.1016/j.envint.2019.105230
Zhan, A., Bailey, S. A., Heath, D. D., & Macisaac, H. J. (2014).
Performance comparison of genetic markers for high-throughput
sequencing-based biodiversity assessment in complex communities.Molecular Ecology Resources , 14 (5), 1049–1059. doi:
10.1111/1755-0998.12254
Zhang, G. K., Chain, F. J. J., Abbott, C. L., & Cristescu, M. E.
(2018). Metabarcoding using multiplexed markers increases species
detection in complex zooplankton communities. Evolutionary
Applications , 11 (10), 1901–1914. doi: 10.1111/eva.12694