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Abstract

Appendages have been reduced or lost hundreds of times independently during vertebrate
evolution. This suggests that selection routinely favors appendage reduction. How often are the
same developmental and genetic pathways used during loss by independent lineages? We
reviewed the developmental and evolutionary literatures of appendage reduction in 12 genera
spanning fish, reptiles, birds, and mammals. We found that appendage reduction and loss
resulted from modified gene expression in each case but one. However, the genes for which
expression was modified were rarely shared. Our findings suggest that adaptive loss of complex
traits might proceed relatively easily through changes in gene expression along multiple

developmental pathways.
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Introduction

Though vertebrate appendages have evolved into fins, wings, flippers, claws, hooves, and
myriad other structures, they have also been reduced or lost repeatedly across the vertebrate
phylogeny. This repeated, independent reduction offers the potential to deduce general
mechanisms of appendage evolution. That is, to what extent are the developmental bases of
appendage loss shared across lineages, and to what extent is loss idiosyncratic (i.e., non-parallel
(Bolnick et al., 2018))?

Here, we introduce some significant molecular pathways involved in appendage
development and loss across major vertebrate clades to ask whether same or different pathways
are involved in appendage reduction and loss. This question requires that we find taxa that (i)
show appendage loss or reduction, and (ii) have data on the molecular and developmental
components driving reduction. At this time, the union of these two conditions is quite small and
biased to relatively few clades. Though there are hundreds of independent instances of lost or
reduced appendage elements reported in the literature, we found only a handful for which the
pathways involved are described even in part, likely limited by the difficulty of studying
developmental and molecular pathways in non-model organisms.

Despite limited data, we found literature investigating development across the vertebrate
phylogeny, representing about 450 million years of vertebrate evolution (Lopez et al., 2016).
Teleost fish comprise roughly half of all vertebrate species (Weitzman, 2015), so in our search
for generality in appendage loss across vertebrates, we must first discuss homology, or the lack
thereof, between rayed fins and limbs. Teleosts and tetrapods have paired appendages
superficially similar in position and function (Drucker and Lauder, 2003; Fish et al., 2003;

Standen, 2008), but is it fair to compare fish fin elements to tetrapod limb elements?
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Figure 1. The teleost pectoral fin is based on zebrafish fin morphology while the tetrapod
forelimb is based on human anatomy. Elements of the ancestral pectoral fin are retained and
modified in extrant vertebrates: appendage structures are colored to reflect their evolutionary
origins. The propterygium (yellow) and mesopterygium (red) were retained and modified in
teleost evolution while the metapterygium (dark and light blues) makes up the tetrapod limb.
The distal portion of the metapterygium (light blue) was likely elaborated to form the tetrapod
zeugopod and autopod, while its more proximal region (dark blue) contributed to the stylopod
(Ahn and Ho, 2008; Don et al., 2013; Freitas et al., 2007; Hawkins et al., 2021).

Teleost fins and tetrapod limbs arose by modifications to the paired fins of their last
common ancestor. Ancestral gnathostome fins were composed of long-bone segments arranged
into three structures along the anteroposterior axis: the propterygium, the mesopterygium, and
the metapterygium (Coates, 1994; Don et al., 2013; Hawkins et al., 2021) (Fig. 1). In teleosts, the
propterygium and mesopterygium form the fins whereas the metapterygium is lost (Coates,

1994; Don et al., 2013; Hawkins et al., 2021) (Fig 1.). In contrast, the metapterygium is the only
element retained in lobe-finned fishes and was modified in the evolution of the tetrapod limb
(Coates, 1994; Don et al., 2013; Hawkins et al., 2021). Thus, the teleost fin and the tetrapod limb
are derived from distinct tissues of the ancestral vertebrate appendage and therefore are not

developmentally homologous.
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However, much of the genetic architecture controlling this non-homologous development
is shared (Hall, 2007). For example, the Hedgehog pathway plays a role in anteroposterior
appendage patterning and maintaining downstream gene expression (Chiang et al., 2001; Lettice
et al., 2003; Ros et al., 2003; Sagai et al., 2005; Tickle and Towers, 2017) in both fish and
tetrapods. Alterations to this signaling pathway result in aberrant appendage development and
morphology in both clades. For example, experimental loss of Sonic hedgehog (Shh) expression
results in truncated mouse limbs (Chiang et al., 1996; Sagai et al., 2005) and in fin-absence in the
medaka, a teleost (Letelier et al., 2018). Similarly, the expression and function of G/i3, a Shh
antagonist, is conserved from fish to tetrapods (Letelier et al., 2020), restricting cellular
proliferation and Shh expression. Gli3-knockout medaka grow extra distal fin elements; G/i3-
deficient mice develop a similar polydactyl phenotype (Letelier et al., 2020; Litingtung et al.,
2002; Welscher et al., 2002b).

Teleosts and tetrapods also share Hox gene regulation and function in their appendages
(Ahn and Ho, 2008; Hall, 2007; Tanaka et al., 2005). Hox genes are a group of transcription
factors that are essential for animal embryo patterning (Cohn and Tickle, 1999; DuBuc et al.,
2018; Parrish et al., 2009; Ryan et al., 2007; Scott, 1993). Hox genes were likely present in the
last common animal ancestor, though they have been lost in some lineages (Ramos et al., 2012).
Despite dramatic differences in adult morphology, there are three phases of Hox gene expression
in teleost and tetrapod pectoral appendages; orthologous genes in chick and zebrafish are

expressed in similar regions of the appendage during each phase (Ahn and Ho, 2008).
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Figure 2. A simplified gene regulatory network implicated in vertebrate
appendage development. Genes coded in red are unique to the hindlimb and
those in blue are unique to the forelimb (Butterfield et al., 2009; Charité et
al., 2000; Delgado and Torres, 2015; Fernandez-Teran et al., 2000; Hockman
et al., 2008; Jin et al., 2019; Lafage-Proust, 2015; Ng et al., 2002; Nishimoto
et al., 2015; Tanaka et al., 2005; Welscher et al., 2002a; Zuiga, 2015).
Additional genes perform similar roles across vertebrate taxa. For example, orthologs of

Thx5 and Thx4 are required for anterior (Ahn and Ho, 2008; Bickley and Logan, 2014; Don et
al., 2016; Garrity et al., 2002; Minguillon et al., 2005; Rallis et al., 2003) and posterior (Ahn and
Ho, 2008; Don et al., 2016; Minguillon et al., 2005; Naiche and Papaioannou, 2007, 2003;
Takeuchi et al., 2003) appendage formation in both teleosts and tetrapods. Pitx/ expression is
similar in the developing posterior appendage bud of teleosts and tetrapods (Lanctot et al., 1999;
Logan and Tabin, 1999; Marcil et al., 2003; Shapiro et al., 2006; Szeto et al., 1999; Thompson et
al., 2018), thereby inducing similar 7hx4 expression and subsequent appendage development
(Duboc and Logan, 2011; Infante et al., 2013; Logan and Tabin, 1999) (Fig. 2). Altogether, we

suggest that there is sufficient homology between fins and limbs to assess parallelism in the
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genetic basis of appendage loss and reduction across all vertebrates. Are the same genes used for
appendage reduction and loss by distantly related vertebrate clades?

Another challenge in such studies is definitional. Defining appendage “loss” is
straightforward: the absence of appendage elements, from the pelvic or pectoral girdle to the
most distal elements (e.g., lepidotrichia or digits). “Reduction” is more difficult to define
because of the continuous allometric relationship between appendage size and body size. Some
studies have taken a categorical approach; for example, in squamates, researchers have defined
limb reduction as the loss of at least one bone (Brandley et al., 2008; Greer, 1991; Wiens et al.,
2006). In contrast, other researchers define reduction as a deviation from a standard allometric
relationship measured in adult (Chiang et al., 2001; Klepaker et al., 2013; Kragesteen et al.,
2018; Thompson et al., 2018) or embryological (Bickley and Logan, 2014) specimens of interest.
For our review, however, because there are so few molecular studies of appendage reduction in
non-model organisms, we consider “reduction” to be a diminishment in bone number, relative
bone size, or both.

Having established homology and defined reduction, we now divide the rest of our
discussion by clade and appendage type to allow for comparisons within and between

appendage-reduced taxa.

Teleost Pelvic Fin Reduction

Threespine stickleback (Gasterosteus aculeatus) are small fish with populations in
saltwater ocean and estuarine habitats, as well as freshwater lake and stream habitats (Bell and
Foster, 1994; Schluter and McPhail, 1992). Marine threespine sticklebacks have robust bony

armor that includes lateral plates, dorsal spines, and a pelvic girdle with spines. However, likely
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due to differences in water chemistry and predation regimes, freshwater stickleback usually
evolve armor reduction, including loss of pelvic elements (Bell et al., 1993; Colosimo et al.,
2005; Giles, 1983; Grant and Grant, 2010; Hoogland et al., 1957; Marchinko, 2009; Mobley et
al., 2012; Reimchen, 2000, 1992, 1983, 1980; Shapiro et al., 2006, 2004; Smith et al., 2014;
Spence et al., 2013, 2012; Tanaka et al., 2005; Zeller et al., 2012; Ziuganov and Zotin, 1995).

The pelvic girdle is a modified pelvic fin comprised of two articulated spines and a bony
plate that extends along the belly and up the sides of the fish. Over 100 geographically distinct
freshwater stickleback populations have evolved pelvic-reduction or loss (Chan et al., 2010;
Coyle et al., 2007; Klepaker et al., 2013; Shapiro et al., 2009, 2006; Shikano et al., 2013;
Thompson et al., 2018). Because these freshwater populations were independently colonized by
oceanic ancestors at the end of the last glacial maximum (Schluter and McPhail, 1992), these
losses represent repeated instances of evolution and provide a good system in which to ask about
the genetic parallelism of appendage reduction (Bolnick et al., 2018).

Many instances of pelvic reduction have been linked to the gene Pitx/ (Bell et al., 2006;
Klepaker et al., 2013; Shapiro et al., 2006; Thompson et al., 2018). Pelvic-reduced populations
of G. aculeatus show no variation in their Pitx/ amino acid sequences, relative to the pelvic
complete form (Chan et al., 2010; Shapiro et al., 2006). Instead, pelvic-complete and reduced
morphs vary in Pitx] expression. Pitx/ is expressed in the mouth, jaw, and pelvis of pelvic-
complete larvae, but is missing from the corresponding region of pelvic-absent fish (Chan et al.,
2010; Shapiro et al., 2006; Thompson et al., 2018). Differential expression is governed by
mutations to two pelvic-specific Pitx/ enhancer elements— Pel4 and PelB (Chan et al., 2010;
Coyle et al., 2007; Kragesteen et al., 2018; Thompson et al., 2018; Xie et al., 2019). Genomic

studies have shown that mutations to PelA4 arise de novo, likely because the enhancer is in a
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region is prone to double strand breakages (Xie et al., 2019). The Pel4 enhancer region is subject
to strong positive selection that drives the null allele to fixation within a population (Chan et al.,
2010; Xie et al., 2019). That de novo mutations arise frequently in and are acted on by positive
selection at this enhancer locus suggests that the Pitx/ regulatory region is an unconstrained
locus that could underlie posterior appendage reduction in other taxa.

For example, more than thirty populations of the ninespine stickleback (Pungitius
pungitius) have also evolved pelvic reduction (Klepaker et al., 2013). There are also no
differences in the Pitx/ amino acid sequence between pelvic-complete and pelvic-absent fish of
either species (Shapiro et al., 2006, 2004), despite their 26-million-year divergence
(Varadharajan et al., 2019). Rather, as in G. aculeatus, Pitx] expression in P. pungitius is
missing in pelvic tissue in pelvic-absent fish (Shapiro et al., 2006, 2004). Hybrids of three- and
ninespine stickleback with one pelvic-complete parent and one pelvic-reduced parent have a full
pelvis, while hybrids with two pelvic-reduced parents demonstrate pelvic girdle reduction
(Shapiro et al., 2006). These results further indicate that pelvic reduction is controlled by the
same locus, Pitx/, in threespine and ninespine sticklebacks (Shapiro et al., 2006). Moreover,
Pitx1 has been implicated in pelvic reduction of a fossil sequence of G. doryssus, a threespine
stickleback from the Miocene (Stuart et al., 2020). This study used indirect, phenotypic evidence
to infer modified Pitx] expression: pelvic asymmetry in which left vestiges are larger than right
(Chan et al., 2010; Gurnett et al., 2008; Kragesteen et al., 2018; Lanctot et al., 1999; Marcil et
al., 2003; Nelson, 1971; Shapiro et al., 2006, 2004; Shiratori et al., 2014; Szeto et al., 1999;
Thompson et al., 2018; Xie et al., 2019). Pelvic-reduced G. doryssus fossils show this same left-
larger bias. As such, it appears that pelvic reduction in more than 100 populations across at least

three stickleback species proceeds by the same genetic pathway.
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However, Pitx] expression does not drive pelvic reduction in a different teleost, the fugu
(or pufferfish) Takifugu rubripes. Fugu also has a reduced pelvic girdle, perhaps because pelvic
structures would interfere with its defensive “puffing” mechanism (Tanaka et al., 2005). Pelvic
reduction is likely due to the absence of HoxD gene expression (Tanaka et al., 2005). Stickleback
embryos express HoxD9 in pectoral and pelvic buds to initiate and position fin buds (Tanaka et
al., 2005). In contrast, the fugu ortholog, HoxD9a, is not expressed in the pelvic region of fugu

embryos, preventing pelvic development (Tanaka et al., 2005) (Fig. 2).

Squamate Limb Reduction

Squamate reptiles have evolved reduced limbs dozens of times (Brandley et al., 2008;
Greer, 1991), most notably in snakes. All snakes have lost forelimb elements, and most have no
hindlimb or pelvic elements (Bellairs and Underwood, 1951; Cohn and Tickle, 1999). However,
basal snakes like the python (Python regius) possess vestiges of the pelvis and femur (Cohn and
Tickle, 1999; Leal and Cohn, 2016; Vitt and Caldwell, 2013).

In P. regius, early embryos develop hindlimb buds that then regress (Bellairs and
Underwood, 1951; Leal and Cohn, 2016). Hindlimb development arrests because the feedback
loop involving Shh and fibroblast growth factors (Fgfs) is attenuated in the limb bud. In typical
tetrapods, Fgf4 and Fgf8 are signals essential for distal growth of the limb bud (Boulet et al.,
2004; Cohn and Tickle, 1999; Hockman et al., 2008; Laufer et al., 1994; Leal and Cohn, 2016;
Neubiiser et al., 1997; Nissim et al., 2006; Ohuchi et al., 1997; Provot et al., 2008; Zuaiiga et al.,
1999) while Shh controls development along the anteroposterior axis of the limb bud (Chang et
al., 1994; Cohn and Tickle, 1999; Fernandez-Teran et al., 2000; Leal and Cohn, 2016; Lopez-

Martinez et al., 1995; Riddle et al., 1993) and specifies bud width and the presence and identity
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of digits (Chiang et al., 2001; Ros et al., 2003; Tickle and Towers, 2017). Reciprocal interactions
between Shh and Fgfs is important for maintenance of their expression and limb outgrowth in the
developing limb (Boulet et al., 2004; Cohn and Tickle, 1999; Leal and Cohn, 2016).

Shh expression in the tetrapod limb is controlled by an enhancer called the ZRS (Galli et
al., 2010; Leal and Cohn, 2016; Lettice et al., 2003; Park et al., 2008; Riddle et al., 1993; Young
and Tabin, 2017). The python ZRS has three large deletion mutations relative to Anolis sagrei, a
lizard with fully developed hindlimbs (Leal and Cohn, 2016). These mutations result in reduced
Shh expression in pythons. Though initially expressed in the python hindlimb bud, Fgf8 levels
decrease following loss of Shh signaling (Fig. 2), preventing distal limb growth (Leal and Cohn,
2016). The ZRS sequences are even more poorly conserved in advanced snakes, likely causing
complete pelvic loss (Kvon et al., 2016; Leal and Cohn, 2016).

While less striking than that of snakes, limb reduction has evolved independently over a
dozen times (Brandley et al., 2008; Greer, 1991) in Scincidae, a squamate family of over 1,700
described species (Uetz et al., n.d.) characterized by varying degrees of forelimb and hindlimb
reduction (Greer, 1990). For example, fore- and hindlimb digit number varies between and
within the seven species of the Australian genus Hemiergis (Shapiro et al., 2003; Uetz et al.,
n.d.). This variation is correlated with variable duration of expression of S4/ in the limb bud:
shorter expression corresponds to fewer digits (Shapiro et al., 2003). Though a specific
mechanism has not yet been identified in Hemiergis, changes to cis- and/or trans-regulation may

underlie the attenuation of Shh expression (Shapiro et al., 2003; Young and Tabin, 2017).

Mammal hindlimb reduction
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Sirenians (manatees and dugongs) and cetaceans (dolphins, porpoises, and whales) are
aquatic mammals that have converged independently on a phenotype that retains a vestigial
pelvis and no external hind limb elements (Adam, 2009; Bejder and Hall, 2002; Cooper, 2009;
Foote et al., 2015; Geisler and Uhen, 2005; Senter and Moch, 2015; Shapiro et al., 2006;
Springer et al., 2004; Thewissen et al., 2001, 2006). Cetacean vestigial pelvic elements likely
help support genitalia and musculature (Dines et al., 2014; Senter and Moch, 2015). Hand2, an
activator of Shh (Charité et al., 2000; Fernandez-Teran et al., 2000; Galli et al., 2010; Leal and
Cohn, 2016; Ros et al., 2003), is not expressed in the hindlimb bud of the spotted dolphin
(Stenella attenuata) (Thewissen et al., 2006), preventing Sh# initiation (Ros et al., 2003;
Thewissen et al., 2006), and diminishing Figf8 (Leal and Cohn, 2016; Thewissen et al., 2006)
expression in turn (Fig. 2). Like the python (Leal and Cohn, 2016), Figf8 is initially present in the
cetacean hindlimb bud (Richardson and Oelschldger, 2002; Sedmera et al., 1997; Thewissen et
al., 2006), but is not sustained without S&/ expression (Leal and Cohn, 2016; Thewissen et al.,
2006; Zhu et al., 2008). This results in the attenuation of limb outgrowth, regression of the limb
bud, and a vestigial pelvis (Bejder and Hall, 2002; Cooper, 2009; Leal and Cohn, 2016; Sedmera
et al., 1997; Thewissen et al., 2006; Zhu et al., 2008).

The molecular origins of sirenian limb reduction have yet to be explored, but their pelvic
morphology offers some insight. As in G. doryssus fossils and extant populations of G. aculeatus
and P. pungitius (Bell et al., 2006; Chan et al., 2010; Nelson, 1971; Shapiro et al., 2006, 2004;
Thompson et al., 2018; Xie et al., 2019), the manatee Trichechus manatus latirostris has
asymmetrical pelvic vestiges: out of 114 skeletal specimens, 93 had larger left-side than right

side pelvic vestiges, indicative of modified Pitx/ expression in pelvic tissue (Shapiro et al.,

2006).
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Mammal Forelimb Reduction

The monophyletic order Chiroptera contains over 1400 species of bats (Database, 2021;
Lei and Dong, 2016; Simmons et al., 2008). They are the only mammals capable of powered
flight. Flight evolved early in the bat lineage and was facilitated by structural changes to the
forelimb and pectoral girdle (Simmons et al., 2008). As in volant birds, the bat sternum has
evolved a keel to which large pectoral muscles attach (Simmons et al., 2008). The hand bones
are thin and elongated (Hockman et al., 2008; Simmons et al., 2008), and the length and width of
the ulna is reduced relative to the radius, and its distal tip is fused to the radius (Sears, 2007),
reducing weight without compromising wing function.

In the Natal long-fingered bat (Miniopterus natalensis) Shh expression is spatially
expanded while its initiation is delayed (Hockman et al., 2008) relative to mouse. In
experimental studies, Shh-knockout mice demonstrate reduced cell proliferation and increased
cell death in forelimb buds (Chiang et al., 2001), resulting in a mutant phenotype similar the bat
wing—a normal radius and a reduced ulna (Ahn and Joyner, 2004; Chiang et al., 2001; Hockman
et al., 2008; Sears, 2007).

This change in Shh expression may contribute to expanded Hox expression that further
shrinks the ulna (Chiang et al., 2001; Hockman et al., 2008; San-Ezquerro and Tickle, 2000).
The Global Control Regions (GCRs), a Hox regulatory sequence, of the little brown bat (Myotis
lucifugus) and the greater horseshoe bat (Rhinolophus ferrumequinum) show conserved changes
to the GCR relative to other mammals (Ray and Capecchi, 2008). Transgenic mice possessing
the R. ferrumequinum GCR demonstrate a proximal expansion of enhancer activity relative to

wildtype mice (Ray and Capecchi, 2008). This increased expression of HoxD12 and HoxD13 in
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proximal tissue is linked to mouse ulnar reduction through suppression of HoxA11 and HoxD11
(Boulet and Capecchi, 2004; Hérault et al., 1997; Peichel et al., 1997; Sears, 2007). In
HoxAl1/HoxD11 double knockout mice, the outgrowth of the zeugopod is disrupted, resulting in
shorter, abnormal forelimbs (Boulet and Capecchi, 2004). This suggests that changes to Hox
gene regulation and expression impact the morphology of the bat ulna (Boulet and Capecchi,

2004; Sears, 2007).

Bird Forelimb and Sternal Reduction

The emu, Dromaius novaehollandiae, is a flightless bird with a reduced sternum,
humerus, radius, ulna, and autopodial elements (Bickley and Logan, 2014; Farlie et al., 2017;
Kawabhata et al., 2019; Maxwell and Larsson, 2007; Smith et al., 2016; Vokes et al., 2008). Wing
morphology is highly variable between and even within individuals (Kawahata et al., 2019;
Maxwell and Larsson, 2007), suggesting relaxed selective constraint. For example, vestigial
digits II and/or digit IV are commonly but not always fused to digit III, while digit three is the
only digit retained across individuals (Farlie et al., 2017; Kawahata et al., 2019; Maxwell and
Larsson, 2007; Vokes et al., 2008).

The emu wing bud has fewer progenitor cells than the chick wing bud and is about half of
its relative size (Bickley and Logan, 2014). Emu expression of 7bx5 is delayed relative to chick
(Bickley and Logan, 2014; Minguillon et al., 2005) contra Farlie et al., 2017), reducing
recruitment of progenitor cells in sternal and forelimb tissues (Bickley and Logan, 2014) . With a
restricted progenitor population, rates of proliferation and outgrowth are reduced (Bickley and

Logan, 2014; Farlie et al., 2017; Smith et al., 2016) and the emu wings grow 64% slower than in
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chicken (Faux and Field, 2017). Also, unlike in chick, the emu wing bud emerges after and
develops more slowly than the hindlimb bud*-'#*13°,

Shh expression is also delayed and decreased in the emu forelimb relative to its hindlimb
and relative to chick (Smith et al., 2016). Msx2 and Gli3, two Shh repressors, are upregulated in
the emu forelimb relative to its hindlimb (Bakker et al., 2013; Smith et al., 2016). Experimental
expression of Msx2 in the chick wing bud led to a reduction in length and number of wing
elements and produces an emu-like wing (Ferrari et al., 1998; Smith et al., 2016). In normal
chick and mouse development, Gli3 restricts the expression domain of Hand2 (Welscher et al.,
2002a, 2002b), indirectly restricting that of Si4 (Smith et al., 2016; Welscher et al., 2002a) (Fig.
2). Elevated (Bakker et al., 2013) and expanded (Smith et al., 2016) expression of G/i3 in the
emu wing further restricts Shh relative to the chick. Gremlinl, a gene important for digit
patterning, is repressed by G/i3 (Kawahata et al., 2019; Vokes et al., 2008) but upregulated and
maintained by Sh4 (Litingtung et al., 2002; Panman and Zeller, 2003; Vokes et al., 2008;
Welscher et al., 2002b; Zuiiga et al., 1999) and Hand2 (Welscher et al., 2002a) (Fig. 2).
Restriction of Shh and upregulation of G/i3 in the emu wing likely alters Gremlinl expression
relative to chick (Farlie et al., 2017; Kawahata et al., 2019; Smith et al., 2016; Vokes et al.,
2008), decreasing digit number in the emu forelimb (Kawahata et al., 2019; Lopez-Rios et al.,
2012; Smith et al., 2016).

A transcription factor associated with cardiac tissue, Nkx2.3, is found in the forelimb of
early emu embryos (Farlie et al., 2017) but not in the wing buds of chicken, zebra finch, or
ostrich embryos that possess the typical three-digit wing pattern (Farlie et al., 2017).
Experimental expression of Nkx2.5 in the chick wing bud results in reduced distal wing elements

and emu-like wings (Farlie et al., 2017). Therefore, Nkx2.5 likely plays a role in emu forelimb



287 reduction and may be involved in reduction in the kiwi and cassowary (Farlie et al., 2017), two
288 species closely related to the emu (Farlie et al., 2017; Faux and Field, 2017; Harshman et al.,
289  2008; Mitchell et al., 2014; Phillips et al., 2009; Sackton et al., 2019).

290 The flightless Galapagos cormorant (Phalacrocorax harrisi) has a radius and ulna

291 shortened relative to the humerus, perhaps to improve its diving efficiency (Burga et al., 2017;
292 Elliott et al., 2013; Halsey et al., 2006; Watanabe et al., 2011). Compared to volant cormorant
293 species, the Galapagos cormorant has a deletion of four amino acids in the coding sequence of
294  the gene Cux/ (Burga et al., 2017)—the only coding variant revealed in our review. In

295 experiments with mouse cell lines, the resultant gene product is less effective in activating Indian
296  Hedgehog (Ihh) (Burga et al., 2017), the expression of which is needed for the proliferation and
297 differentiation of cartilage producing cells (Burga et al., 2017; Kronenberg, 2003; Peckham et
298 al., 2003).

299

300 Conclusion

301 Appendage reduction is a major mode of morphological diversification in vertebrates.
302 Convergence on this phenotype across vertebrate clades suggests that natural selection

303 repeatedly favored appendage reduction and loss. We found that appendage reduction is

304 underlain by a mix of shared and unique molecular pathways, depending on taxon and limb
305 position.

306 For example, Pitx] expression is repeatedly modified within and among stickleback species,
307 suggesting parallel evolution within that lineage. On the other hand, altered regulation of Pitx/
308 does influence pelvic reduction in the other teleost for which we found data, nor in any of the

309 other vertebrate groups surveyed here (except potentially manatee).
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Unlike Pitx1, altered expression of Shh is correlated with limb reduction across vertebrate
clades, including squamates, cetaceans, and emu, suggesting parallel use of the pathway. This
may because of the central role of Sh4 in the outgrowth and patterning of the limb. However, the
specific molecular mechanisms by which Sh# is altered vary by taxon and limb type. For
example, altered Shh expression in pythons results from deletions to the ZRS, whereas attenuated
Shh expression in the cetacean hindlimb is altered by changes to Hand?2 expression and the Shh
expression pattern of the emu forelimb is controlled by changes in Msx2 and Gli3 expression.
Hox genes were also implicated multiple times, though again the underlying mechanisms
differed by taxon and limb. For example, in fugu, pelvic reduction stemmed from a lack of
HoxD9a expression in the pelvic region. In bats, ulnar reductions resulted from alterations in
HoxAll, HoxD11, HoxD12, and HoxD13 expression.

Altogether, mixed of shared and unique solutions to the same selective problem is
perhaps not surprising. Appendage development requires spatially and temporally regulated
expression of dozens of interacting genes—complexity that creates numerous pathways to
appendage reduction and therefore non-parallel, many-to-one solutions. However, many of these
key developmental genes have pleiotropic effects, thereby constraining their evolution, and
forcing clades into the use of only a handful of labile pathways (i.e., parallel change). Such
constraint may explain the most salient result in our review: in all cases but one, appendage loss
resulted not from changes in protein coding DNA but rather changes to enhancer sequences and
gene expression specific to the limb tissues. The evolutionary importance of regulatory
mutations is contentious, especially for gain-of-function adaptations (Hoekstra and Coyne,

2007). However, our findings support the assertion that regulatory changes play a repeated role



332 in loss-of-of-function phenotypes (Hoekstra and Coyne, 2007), in ways that are likely adaptive
333 (e.g., Chanetal., 2010).
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