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Abstract

Appendages have been reduced or lost hundreds of times independently during vertebrate

evolution. This suggests that selection routinely favors appendage reduction. How often are the 

same developmental and genetic pathways used during loss by independent lineages? We 

reviewed the developmental and evolutionary literatures of appendage reduction in 12 genera 

spanning fish, reptiles, birds, and mammals. We found that appendage reduction and loss 

resulted from modified gene expression in each case but one. However, the genes for which 

expression was modified were rarely shared. Our findings suggest that adaptive loss of complex 

traits might proceed relatively easily through changes in gene expression along multiple 

developmental pathways. 
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Introduction

Though vertebrate appendages have evolved into fins, wings, flippers, claws, hooves, and

myriad other structures, they have also been reduced or lost repeatedly across the vertebrate 

phylogeny. This repeated, independent reduction offers the potential to deduce general 

mechanisms of appendage evolution. That is, to what extent are the developmental bases of 

appendage loss shared across lineages, and to what extent is loss idiosyncratic (i.e., non-parallel 

(Bolnick et al., 2018))?

Here, we introduce some significant molecular pathways involved in appendage 

development and loss across major vertebrate clades to ask whether same or different pathways 

are involved in appendage reduction and loss. This question requires that we find taxa that (i) 

show appendage loss or reduction, and (ii) have data on the molecular and developmental 

components driving reduction. At this time, the union of these two conditions is quite small and 

biased to relatively few clades. Though there are hundreds of independent instances of lost or 

reduced appendage elements reported in the literature, we found only a handful for which the 

pathways involved are described even in part, likely limited by the difficulty of studying 

developmental and molecular pathways in non-model organisms.

Despite limited data, we found literature investigating development across the vertebrate 

phylogeny, representing about 450 million years of vertebrate evolution (López et al., 2016). 

Teleost fish comprise roughly half of all vertebrate species (Weitzman, 2015), so in our search 

for generality in appendage loss across vertebrates, we must first discuss homology, or the lack 

thereof, between rayed fins and limbs. Teleosts and tetrapods have paired appendages 

superficially similar in position and function (Drucker and Lauder, 2003; Fish et al., 2003; 

Standen, 2008), but is it fair to compare fish fin elements to tetrapod limb elements? 
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Figure 1. The  teleost pectoral fin is based on zebrafish fin morphology while the tetrapod 
forelimb is based on human anatomy. Elements of the ancestral pectoral fin are retained and 
modified in extrant vertebrates: appendage structures are colored to reflect their evolutionary 
origins. The propterygium (yellow) and mesopterygium (red) were retained and modified in 
teleost evolution while the metapterygium (dark and light blues) makes up the tetrapod limb. 
The distal portion of the metapterygium (light blue) was likely elaborated to form the tetrapod 
zeugopod and autopod, while its more proximal region (dark blue) contributed to the stylopod 
(Ahn and Ho, 2008; Don et al., 2013; Freitas et al., 2007; Hawkins et al., 2021). 

Teleost fins and tetrapod limbs arose by modifications to the paired fins of their last 

common ancestor. Ancestral gnathostome fins were composed of long-bone segments arranged 

into three structures along the anteroposterior axis: the propterygium, the mesopterygium, and 

the metapterygium (Coates, 1994; Don et al., 2013; Hawkins et al., 2021) (Fig. 1). In teleosts, the

propterygium and mesopterygium form the fins whereas the metapterygium is lost (Coates, 

1994; Don et al., 2013; Hawkins et al., 2021) (Fig 1.). In contrast, the metapterygium is the only 

element retained in lobe-finned fishes and was modified in the evolution of the tetrapod limb 

(Coates, 1994; Don et al., 2013; Hawkins et al., 2021). Thus, the teleost fin and the tetrapod limb

are derived from distinct tissues of the ancestral vertebrate appendage and therefore are not 

developmentally homologous. 
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However, much of the genetic architecture controlling this non-homologous development

is shared (Hall, 2007). For example, the Hedgehog pathway plays a role in anteroposterior 

appendage patterning and maintaining downstream gene expression (Chiang et al., 2001; Lettice 

et al., 2003; Ros et al., 2003; Sagai et al., 2005; Tickle and Towers, 2017) in both fish and 

tetrapods. Alterations to this signaling pathway result in aberrant appendage development and 

morphology in both clades. For example, experimental loss of Sonic hedgehog (Shh) expression 

results in truncated mouse limbs (Chiang et al., 1996; Sagai et al., 2005) and in fin-absence in the

medaka, a teleost (Letelier et al., 2018). Similarly, the expression and function of Gli3, a Shh 

antagonist, is conserved from fish to tetrapods (Letelier et al., 2020), restricting cellular 

proliferation and Shh expression. Gli3-knockout medaka grow extra distal fin elements; Gli3-

deficient mice develop a similar polydactyl phenotype (Letelier et al., 2020; Litingtung et al., 

2002; Welscher et al., 2002b). 

Teleosts and tetrapods also share Hox gene regulation and function in their appendages 

(Ahn and Ho, 2008; Hall, 2007; Tanaka et al., 2005). Hox genes are a group of transcription 

factors that are essential for animal embryo patterning (Cohn and Tickle, 1999; DuBuc et al., 

2018; Parrish et al., 2009; Ryan et al., 2007; Scott, 1993). Hox genes were likely present in the 

last common animal ancestor, though they have been lost in some lineages (Ramos et al., 2012). 

Despite dramatic differences in adult morphology, there are three phases of Hox gene expression

in teleost and tetrapod pectoral appendages; orthologous genes in chick and zebrafish are 

expressed in similar regions of the appendage during each phase (Ahn and Ho, 2008). 
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Figure 2. A simplified gene regulatory network implicated in vertebrate 
appendage development. Genes coded in red are unique to the hindlimb and 
those in blue are unique to the forelimb (Butterfield et al., 2009; Charité et 
al., 2000; Delgado and Torres, 2015; Fernandez-Teran et al., 2000; Hockman
et al., 2008; Jin et al., 2019; Lafage-Proust, 2015; Ng et al., 2002; Nishimoto
et al., 2015; Tanaka et al., 2005; Welscher et al., 2002a; Zúñiga, 2015). 

Additional genes perform similar roles across vertebrate taxa. For example, orthologs of 

Tbx5 and Tbx4 are required for anterior (Ahn and Ho, 2008; Bickley and Logan, 2014; Don et 

al., 2016; Garrity et al., 2002; Minguillon et al., 2005; Rallis et al., 2003) and posterior (Ahn and 

Ho, 2008; Don et al., 2016; Minguillon et al., 2005; Naiche and Papaioannou, 2007, 2003; 

Takeuchi et al., 2003) appendage formation in both teleosts and tetrapods. Pitx1 expression is 

similar in the developing posterior appendage bud of teleosts and tetrapods (Lanctôt et al., 1999; 

Logan and Tabin, 1999; Marcil et al., 2003; Shapiro et al., 2006; Szeto et al., 1999; Thompson et

al., 2018), thereby inducing similar Tbx4 expression and subsequent appendage development 

(Duboc and Logan, 2011; Infante et al., 2013; Logan and Tabin, 1999) (Fig. 2). Altogether, we 

suggest that there is sufficient homology between fins and limbs to assess parallelism in the 
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genetic basis of appendage loss and reduction across all vertebrates. Are the same genes used for 

appendage reduction and loss by distantly related vertebrate clades?

Another challenge in such studies is definitional. Defining appendage “loss” is 

straightforward: the absence of appendage elements, from the pelvic or pectoral girdle to the 

most distal elements (e.g., lepidotrichia or digits). “Reduction” is more difficult to define 

because of the continuous allometric relationship between appendage size and body size. Some 

studies have taken a categorical approach; for example, in squamates, researchers have defined 

limb reduction as the loss of at least one bone (Brandley et al., 2008; Greer, 1991; Wiens et al., 

2006). In contrast, other researchers define reduction as a deviation from a standard allometric 

relationship measured in adult (Chiang et al., 2001; Klepaker et al., 2013; Kragesteen et al., 

2018; Thompson et al., 2018) or embryological (Bickley and Logan, 2014) specimens of interest.

For our review, however, because there are so few molecular studies of appendage reduction in 

non-model organisms, we consider “reduction” to be a diminishment in bone number, relative 

bone size, or both. 

Having established homology and defined reduction, we now divide the rest of our 

discussion by clade and appendage type to allow for comparisons within and between 

appendage-reduced taxa.

Teleost Pelvic Fin Reduction

Threespine stickleback (Gasterosteus aculeatus) are small fish with populations in 

saltwater ocean and estuarine habitats, as well as freshwater lake and stream habitats (Bell and 

Foster, 1994; Schluter and McPhail, 1992). Marine threespine sticklebacks have robust bony 

armor that includes lateral plates, dorsal spines, and a pelvic girdle with spines. However, likely 
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due to differences in water chemistry and predation regimes, freshwater stickleback usually 

evolve armor reduction, including loss of pelvic elements (Bell et al., 1993; Colosimo et al., 

2005; Giles, 1983; Grant and Grant, 2010; Hoogland et al., 1957; Marchinko, 2009; Mobley et 

al., 2012; Reimchen, 2000, 1992, 1983, 1980; Shapiro et al., 2006, 2004; Smith et al., 2014; 

Spence et al., 2013, 2012; Tanaka et al., 2005; Zeller et al., 2012; Ziuganov and Zotin, 1995). 

The pelvic girdle is a modified pelvic fin comprised of two articulated spines and a bony 

plate that extends along the belly and up the sides of the fish. Over 100 geographically distinct 

freshwater stickleback populations have evolved pelvic-reduction or loss (Chan et al., 2010; 

Coyle et al., 2007; Klepaker et al., 2013; Shapiro et al., 2009, 2006; Shikano et al., 2013; 

Thompson et al., 2018). Because these freshwater populations were independently colonized by 

oceanic ancestors at the end of the last glacial maximum (Schluter and McPhail, 1992), these 

losses represent repeated instances of evolution and provide a good system in which to ask about 

the genetic parallelism of appendage reduction (Bolnick et al., 2018).

Many instances of pelvic reduction have been linked to the gene Pitx1 (Bell et al., 2006; 

Klepaker et al., 2013; Shapiro et al., 2006; Thompson et al., 2018). Pelvic-reduced populations 

of G. aculeatus show no variation in their Pitx1 amino acid sequences, relative to the pelvic 

complete form (Chan et al., 2010; Shapiro et al., 2006). Instead, pelvic-complete and reduced 

morphs vary in Pitx1 expression. Pitx1 is expressed in the mouth, jaw, and pelvis of pelvic-

complete larvae, but is missing from the corresponding region of pelvic-absent fish (Chan et al., 

2010; Shapiro et al., 2006; Thompson et al., 2018). Differential expression is governed by 

mutations to two pelvic-specific Pitx1 enhancer elements— PelA and PelB (Chan et al., 2010; 

Coyle et al., 2007; Kragesteen et al., 2018; Thompson et al., 2018; Xie et al., 2019). Genomic 

studies have shown that mutations to PelA arise de novo, likely because the enhancer is in a 
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region is prone to double strand breakages (Xie et al., 2019). The PelA enhancer region is subject

to strong positive selection that drives the null allele to fixation within a population (Chan et al., 

2010; Xie et al., 2019). That de novo mutations arise frequently in and are acted on by positive 

selection at this enhancer locus suggests that the Pitx1 regulatory region is an unconstrained 

locus that could underlie posterior appendage reduction in other taxa.  

For example, more than thirty populations of the ninespine stickleback (Pungitius 

pungitius) have also evolved pelvic reduction (Klepaker et al., 2013). There are also no 

differences in the Pitx1 amino acid sequence between pelvic-complete and pelvic-absent fish of 

either species (Shapiro et al., 2006, 2004), despite their 26-million-year divergence 

(Varadharajan et al., 2019). Rather, as in G. aculeatus, Pitx1 expression in P. pungitius is 

missing in pelvic tissue in pelvic-absent fish (Shapiro et al., 2006, 2004). Hybrids of three- and 

ninespine stickleback with one pelvic-complete parent and one pelvic-reduced parent have a full 

pelvis, while hybrids with two pelvic-reduced parents demonstrate pelvic girdle reduction 

(Shapiro et al., 2006). These results further indicate that pelvic reduction is controlled by the 

same locus, Pitx1, in threespine and ninespine sticklebacks (Shapiro et al., 2006). Moreover, 

Pitx1 has been implicated in pelvic reduction of a fossil sequence of G. doryssus, a threespine 

stickleback from the Miocene (Stuart et al., 2020). This study used indirect, phenotypic evidence 

to infer modified Pitx1 expression: pelvic asymmetry in which left vestiges are larger than right 

(Chan et al., 2010; Gurnett et al., 2008; Kragesteen et al., 2018; Lanctôt et al., 1999; Marcil et 

al., 2003; Nelson, 1971; Shapiro et al., 2006, 2004; Shiratori et al., 2014; Szeto et al., 1999; 

Thompson et al., 2018; Xie et al., 2019). Pelvic-reduced G. doryssus fossils show this same left-

larger bias. As such, it appears that pelvic reduction in more than 100 populations across at least 

three stickleback species proceeds by the same genetic pathway. 
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However, Pitx1 expression does not drive pelvic reduction in a different teleost, the fugu 

(or pufferfish) Takifugu rubripes. Fugu also has a reduced pelvic girdle, perhaps because pelvic 

structures would interfere with its defensive “puffing” mechanism (Tanaka et al., 2005). Pelvic 

reduction is likely due to the absence of HoxD gene expression (Tanaka et al., 2005). Stickleback

embryos express HoxD9 in pectoral and pelvic buds to initiate and position fin buds (Tanaka et 

al., 2005). In contrast, the fugu ortholog, HoxD9a, is not expressed in the pelvic region of fugu 

embryos, preventing pelvic development (Tanaka et al., 2005) (Fig. 2). 

Squamate Limb Reduction

Squamate reptiles have evolved reduced limbs dozens of times (Brandley et al., 2008; 

Greer, 1991), most notably in snakes. All snakes have lost forelimb elements, and most have no 

hindlimb or pelvic elements (Bellairs and Underwood, 1951; Cohn and Tickle, 1999). However, 

basal snakes like the python (Python regius) possess vestiges of the pelvis and femur (Cohn and 

Tickle, 1999; Leal and Cohn, 2016; Vitt and Caldwell, 2013).

In P. regius, early embryos develop hindlimb buds that then regress (Bellairs and 

Underwood, 1951; Leal and Cohn, 2016). Hindlimb development arrests because the feedback 

loop involving Shh and fibroblast growth factors (Fgfs) is attenuated in the limb bud. In typical 

tetrapods, Fgf4 and Fgf8 are signals essential for distal growth of the limb bud (Boulet et al., 

2004; Cohn and Tickle, 1999; Hockman et al., 2008; Laufer et al., 1994; Leal and Cohn, 2016; 

Neubüser et al., 1997; Nissim et al., 2006; Ohuchi et al., 1997; Provot et al., 2008; Zúñiga et al., 

1999) while Shh controls development along the anteroposterior axis of the limb bud (Chang et 

al., 1994; Cohn and Tickle, 1999; Fernandez-Teran et al., 2000; Leal and Cohn, 2016; López-

Martínez et al., 1995; Riddle et al., 1993) and specifies bud width and the presence and identity 
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of digits (Chiang et al., 2001; Ros et al., 2003; Tickle and Towers, 2017). Reciprocal interactions

between Shh and Fgfs is important for maintenance of their expression and limb outgrowth in the

developing limb (Boulet et al., 2004; Cohn and Tickle, 1999; Leal and Cohn, 2016).

Shh expression in the tetrapod limb is controlled by an enhancer called the ZRS (Galli et 

al., 2010; Leal and Cohn, 2016; Lettice et al., 2003; Park et al., 2008; Riddle et al., 1993; Young 

and Tabin, 2017). The python ZRS has three large deletion mutations relative to Anolis sagrei, a 

lizard with fully developed hindlimbs (Leal and Cohn, 2016). These mutations result in reduced 

Shh expression in pythons. Though initially expressed in the python hindlimb bud, Fgf8 levels 

decrease following loss of Shh signaling (Fig. 2), preventing distal limb growth (Leal and Cohn, 

2016). The ZRS sequences are even more poorly conserved in advanced snakes, likely causing 

complete pelvic loss (Kvon et al., 2016; Leal and Cohn, 2016).

While less striking than that of snakes, limb reduction has evolved independently over a 

dozen times (Brandley et al., 2008; Greer, 1991) in Scincidae, a squamate family of over 1,700 

described species (Uetz et al., n.d.) characterized by varying degrees of forelimb and hindlimb 

reduction (Greer, 1990). For example, fore- and hindlimb digit number varies between and 

within the seven species of the Australian genus Hemiergis (Shapiro et al., 2003; Uetz et al., 

n.d.). This variation is correlated with variable duration of expression of Shh in the limb bud: 

shorter expression corresponds to fewer digits (Shapiro et al., 2003). Though a specific 

mechanism has not yet been identified in Hemiergis, changes to cis- and/or trans-regulation may 

underlie the attenuation of Shh expression (Shapiro et al., 2003; Young and Tabin, 2017).

Mammal hindlimb reduction
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Sirenians (manatees and dugongs) and cetaceans (dolphins, porpoises, and whales) are 

aquatic mammals that have converged independently on a phenotype that retains a vestigial 

pelvis and no external hind limb elements (Adam, 2009; Bejder and Hall, 2002; Cooper, 2009; 

Foote et al., 2015; Geisler and Uhen, 2005; Senter and Moch, 2015; Shapiro et al., 2006; 

Springer et al., 2004; Thewissen et al., 2001, 2006). Cetacean vestigial pelvic elements likely 

help support genitalia and musculature (Dines et al., 2014; Senter and Moch, 2015). Hand2, an 

activator of Shh (Charité et al., 2000; Fernandez-Teran et al., 2000; Galli et al., 2010; Leal and 

Cohn, 2016; Ros et al., 2003), is not expressed in the hindlimb bud of the spotted dolphin 

(Stenella attenuata) (Thewissen et al., 2006), preventing Shh initiation (Ros et al., 2003; 

Thewissen et al., 2006), and diminishing Fgf8 (Leal and Cohn, 2016; Thewissen et al., 2006) 

expression in turn (Fig. 2). Like the python (Leal and Cohn, 2016), Fgf8 is initially present in the

cetacean hindlimb bud (Richardson and Oelschläger, 2002; Sedmera et al., 1997; Thewissen et 

al., 2006), but is not sustained without Shh expression (Leal and Cohn, 2016; Thewissen et al., 

2006; Zhu et al., 2008). This results in the attenuation of limb outgrowth, regression of the limb 

bud, and a vestigial pelvis (Bejder and Hall, 2002; Cooper, 2009; Leal and Cohn, 2016; Sedmera 

et al., 1997; Thewissen et al., 2006; Zhu et al., 2008).

The molecular origins of sirenian limb reduction have yet to be explored, but their pelvic 

morphology offers some insight. As in G. doryssus fossils and extant populations of G. aculeatus

and P. pungitius (Bell et al., 2006; Chan et al., 2010; Nelson, 1971; Shapiro et al., 2006, 2004; 

Thompson et al., 2018; Xie et al., 2019), the manatee Trichechus manatus latirostris has 

asymmetrical pelvic vestiges: out of 114 skeletal specimens, 93 had larger left-side than right 

side pelvic vestiges, indicative of modified Pitx1 expression in pelvic tissue (Shapiro et al., 

2006).
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Mammal Forelimb Reduction

The monophyletic order Chiroptera contains over 1400 species of bats (Database, 2021;

Lei and Dong, 2016; Simmons et al., 2008).  They are the only mammals capable of powered

flight. Flight evolved early in the bat lineage and was facilitated by structural changes to the

forelimb and pectoral girdle  (Simmons et al.,  2008). As in volant birds, the bat sternum has

evolved a keel to which large pectoral muscles attach (Simmons et al., 2008). The hand bones

are thin and elongated (Hockman et al., 2008; Simmons et al., 2008), and the length and width of

the ulna is reduced relative to the radius, and its distal tip is fused to the radius  (Sears, 2007),

reducing weight without compromising wing function.

In  the  Natal  long-fingered  bat  (Miniopterus  natalensis)  Shh expression  is  spatially

expanded  while  its  initiation  is  delayed  (Hockman  et  al.,  2008) relative  to  mouse.  In

experimental studies,  Shh-knockout mice demonstrate reduced cell proliferation and increased

cell death in forelimb buds (Chiang et al., 2001), resulting in a mutant phenotype similar the bat

wing—a normal radius and a reduced ulna (Ahn and Joyner, 2004; Chiang et al., 2001; Hockman

et al., 2008; Sears, 2007). 

This change in  Shh expression may contribute to expanded Hox expression that further

shrinks the ulna  (Chiang et al., 2001; Hockman et al., 2008; San-Ezquerro and Tickle, 2000).

The Global Control Regions (GCRs), a Hox regulatory sequence, of the little brown bat (Myotis

lucifugus) and the greater horseshoe bat (Rhinolophus ferrumequinum) show conserved changes

to the GCR relative to other mammals  (Ray and Capecchi, 2008).  Transgenic mice possessing

the  R. ferrumequinum GCR demonstrate a proximal expansion of enhancer activity relative to

wildtype mice (Ray and Capecchi, 2008). This increased expression of HoxD12 and HoxD13 in
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proximal tissue is linked to mouse ulnar reduction through suppression of HoxA11 and HoxD11

(Boulet  and  Capecchi,  2004;  Hérault  et  al.,  1997;  Peichel  et  al.,  1997;  Sears,  2007). In

HoxA11/HoxD11 double knockout mice, the outgrowth of the zeugopod is disrupted, resulting in

shorter, abnormal forelimbs  (Boulet and Capecchi,  2004).  This suggests that changes to Hox

gene regulation and expression impact the morphology of the bat ulna  (Boulet and Capecchi,

2004; Sears, 2007). 

Bird Forelimb and Sternal Reduction

The emu, Dromaius novaehollandiae, is a flightless bird with a reduced sternum, 

humerus, radius, ulna, and autopodial elements (Bickley and Logan, 2014; Farlie et al., 2017; 

Kawahata et al., 2019; Maxwell and Larsson, 2007; Smith et al., 2016; Vokes et al., 2008). Wing

morphology is highly variable between and even within individuals (Kawahata et al., 2019; 

Maxwell and Larsson, 2007), suggesting relaxed selective constraint. For example, vestigial 

digits II and/or digit IV are commonly but not always fused to digit III, while digit three is the 

only digit retained across individuals (Farlie et al., 2017; Kawahata et al., 2019; Maxwell and 

Larsson, 2007; Vokes et al., 2008).

The emu wing bud has fewer progenitor cells than the chick wing bud and is about half of

its relative size (Bickley and Logan, 2014). Emu expression of Tbx5 is delayed relative to chick 

(Bickley and Logan, 2014; Minguillon et al., 2005) contra Farlie et al., 2017), reducing 

recruitment of progenitor cells in sternal and forelimb tissues (Bickley and Logan, 2014) . With a

restricted progenitor population, rates of proliferation and outgrowth are reduced (Bickley and 

Logan, 2014; Farlie et al., 2017; Smith et al., 2016) and the emu wings grow 64% slower than in 
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chicken (Faux and Field, 2017). Also, unlike in chick, the emu wing bud emerges after and 

develops more slowly than the hindlimb bud35,128,130. 

Shh expression is also delayed and decreased in the emu forelimb relative to its hindlimb 

and relative to chick (Smith et al., 2016). Msx2 and Gli3, two Shh repressors, are upregulated in 

the emu forelimb relative to its hindlimb (Bakker et al., 2013; Smith et al., 2016). Experimental 

expression of Msx2 in the chick wing bud led to a reduction in length and number of wing 

elements and produces an emu-like wing (Ferrari et al., 1998; Smith et al., 2016). In normal 

chick and mouse development, Gli3 restricts the expression domain of Hand2 (Welscher et al., 

2002a, 2002b), indirectly restricting that of Shh (Smith et al., 2016; Welscher et al., 2002a) (Fig. 

2). Elevated (Bakker et al., 2013) and expanded (Smith et al., 2016) expression of Gli3 in the 

emu wing further restricts Shh relative to the chick. Gremlin1, a gene important for digit 

patterning, is repressed by Gli3 (Kawahata et al., 2019; Vokes et al., 2008) but upregulated and 

maintained by Shh (Litingtung et al., 2002; Panman and Zeller, 2003; Vokes et al., 2008; 

Welscher et al., 2002b; Zúñiga et al., 1999) and Hand2 (Welscher et al., 2002a) (Fig. 2). 

Restriction of Shh and upregulation of Gli3 in the emu wing likely alters Gremlin1 expression 

relative to chick (Farlie et al., 2017; Kawahata et al., 2019; Smith et al., 2016; Vokes et al., 

2008), decreasing digit number in the emu forelimb (Kawahata et al., 2019; Lopez-Rios et al., 

2012; Smith et al., 2016).

A transcription factor associated with cardiac tissue, Nkx2.5, is found in the forelimb of 

early emu embryos (Farlie et al., 2017) but not in the wing buds of chicken, zebra finch, or 

ostrich embryos that possess the typical three-digit wing pattern (Farlie et al., 2017). 

Experimental expression of Nkx2.5 in the chick wing bud results in reduced distal wing elements 

and emu-like wings (Farlie et al., 2017). Therefore, Nkx2.5 likely plays a role in emu forelimb 
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reduction and may be involved in reduction in the kiwi and cassowary (Farlie et al., 2017), two 

species closely related to the emu (Farlie et al., 2017; Faux and Field, 2017; Harshman et al., 

2008; Mitchell et al., 2014; Phillips et al., 2009; Sackton et al., 2019).

The flightless Galápagos cormorant (Phalacrocorax harrisi) has a radius and ulna 

shortened relative to the humerus, perhaps to improve its diving efficiency (Burga et al., 2017; 

Elliott et al., 2013; Halsey et al., 2006; Watanabe et al., 2011). Compared to volant cormorant 

species, the Galápagos cormorant has a deletion of four amino acids in the coding sequence of 

the gene Cux1 (Burga et al., 2017)—the only coding variant revealed in our review. In 

experiments with mouse cell lines, the resultant gene product is less effective in activating Indian

Hedgehog (Ihh) (Burga et al., 2017), the expression of which is needed for the proliferation and 

differentiation of cartilage producing cells (Burga et al., 2017; Kronenberg, 2003; Peckham et 

al., 2003).

Conclusion

Appendage reduction is a major mode of morphological diversification in vertebrates. 

Convergence on this phenotype across vertebrate clades suggests that natural selection 

repeatedly favored appendage reduction and loss. We found that appendage reduction is 

underlain by a mix of shared and unique molecular pathways, depending on taxon and limb 

position.

For example, Pitx1 expression is repeatedly modified within and among stickleback species, 

suggesting parallel evolution within that lineage. On the other hand, altered regulation of Pitx1 

does influence pelvic reduction in the other teleost for which we found data, nor in any of the 

other vertebrate groups surveyed here (except potentially manatee).
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Unlike Pitx1, altered expression of Shh is correlated with limb reduction across vertebrate

clades, including squamates, cetaceans, and emu, suggesting parallel use of the pathway. This 

may because of the central role of Shh in the outgrowth and patterning of the limb. However, the 

specific molecular mechanisms by which Shh is altered vary by taxon and limb type. For 

example, altered Shh expression in pythons results from deletions to the ZRS, whereas attenuated

Shh expression in the cetacean hindlimb is altered by changes to Hand2 expression and the Shh 

expression pattern of the emu forelimb is controlled by changes in Msx2 and Gli3 expression. 

Hox genes were also implicated multiple times, though again the underlying mechanisms 

differed by taxon and limb. For example, in fugu, pelvic reduction stemmed from a lack of 

HoxD9a expression in the pelvic region. In bats, ulnar reductions resulted from alterations in 

HoxA11, HoxD11, HoxD12, and HoxD13 expression. 

Altogether, mixed of shared and unique solutions to the same selective problem is 

perhaps not surprising. Appendage development requires spatially and temporally regulated 

expression of dozens of interacting genes—complexity that creates numerous pathways to 

appendage reduction and therefore non-parallel, many-to-one solutions. However, many of these 

key developmental genes have pleiotropic effects, thereby constraining their evolution, and 

forcing clades into the use of only a handful of labile pathways (i.e., parallel change). Such 

constraint may explain the most salient result in our review: in all cases but one, appendage loss 

resulted not from changes in protein coding DNA but rather changes to enhancer sequences and 

gene expression specific to the limb tissues. The evolutionary importance of regulatory 

mutations is contentious, especially for gain-of-function adaptations (Hoekstra and Coyne, 

2007). However, our findings support the assertion that regulatory changes play a repeated role 
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in loss-of-of-function phenotypes (Hoekstra and Coyne, 2007), in ways that are likely adaptive 

(e.g., Chan et al., 2010). 
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