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Abstract

This paper deals with the global uniqueness of an inverse problem for the stochastic
plate with structural damping. The key point is the Carleman estimate for the fourth
order stochastic plate operators dyt − ρ∆ytdt+ ∆2ydt. To this aim, a weighted point-
wise identity for a fourth order stochastic plate operator is established, via which we
obtained the desired Carleman estimate for the corresponding stochastic plate equation
with structural damping.
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1 Introduction and main results

In this paper, we study the global uniqueness in an inverse problem for a class of damped
stochastic plate equations by establishing a global Carleman estimate. To begin with, we
introduce some basic spaces used in stochastic framework.

Fix a complete filtered probability space (Ω,F , {Ft}t≥0,P), on which a one-dimensional
standard Brownian motion {B(t)}t≥0 is defined such that lF = {Ft}t≥0 is the natural filtra-
tion generated by B(·), augmented by all the P-null sets in F . Let T > 0 and H be a Banach
space, and let L2

lF(0, T ;H) be the Banach space consisting of all H-valued {Ft}t≥0-adapted
processes X(·) such that lE(|X(·)|2L2(0,T ;H)) < ∞, with the canonical norm; by L∞lF (0, T ;H)

the Banach space consisting of all H-valued {Ft}t≥0-adapted essentially bounded processes;
and by L2

lF(Ω;C([0, T ];H)) the Banach space consisting of all H-valued {Ft}t≥0-adapted
continuous processes X(·) such that lE(|X(·)|2C([0,T ];H)) < ∞. Similarly, one can define

L∞lF (Ω;Cm([0, T ];H)) for any positive integer m.
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Let l > 0, x = (x1, x
′) ∈ lRn, x′ = (x2, · · · , xn) ∈ lRn−1, and G′ ⊂ lRn−1 be a bounded

domain with C4 boundary. Denote G = (0, l) × G′, Q = G × (0, T ), and Σ = Γ × (0, T ),
where Γ is the boundary of G.

We are interesting in the following damped stochastic plate equation:

dyt − ρ∆ytdt+ ∆2ydt =
[
a1y +H(t, x′)R(t, x)

]
dt

+
[
a2y + F (t, x′)R(t, x)

]
dB(t) in Q,

y = ∆y = 0 on Σ,

y(0) = 0, yt(0) = 0 in G.

(1.1)

Here ρ > 0, a1 ∈ L∞lF (0, T ;W 1,∞(G)), a2 ∈ L∞lF (0, T ;W 2,∞(G)), R ∈ C5([0, T ] × G)
are given functions, and H ∈ L2

lF(0, T ;H2(G′)), F ∈ L∞lF (0, T ;H4(G′)) are two unknown
functions. Referring to [19, 33], it is easy to show that (1.1) admits a unique strong solution

y ∈ L2
lF(Ω;C([0, T ];U)) ∩ L2

lF(Ω;C1([0, T ];H2(G) ∩H1
0 (G))).

where
U = {y ∈ H4(G) ∩H1

0 (G)
∣∣∣ ∆y|Γ = 0}

The main purpose of this paper is to study the inverse source problem of the system (1.1),
that is, to determine H and F simultaneously from the boundary observation ∂y

∂ν
|[0,t0]×Γ and

∂∆y
∂ν
|[0,t0]×Γ, where t0 ∈ (0, T ) and ν = ν(x) denotes the unit outer normal vector of G at

x ∈ Γ. More precisely, we study the following problems:

Inverse Source Problem: Let R be given and t0 ∈ (0, T ). Does ∂y
∂ν
|[0,t0]×Γ = ∂∆y

∂ν
|[0,t0]×Γ =

0 imply H(t, x′) = F (t, x′) = 0 in (0, t0)×G′,P-a.s.?

The undamped plate equation (ρ = 0) is presented as a linear model of a rigid vibrating
body in which the potential energy contains curvature-like terms. Energy dissipation is
ignored in this model and the equation has no smoothing effect ([5]). One adds damping
terms to incorporate the loss of energy. Structural damping describes a situation where
higher frequencies are more strongly damped than low frequencies. Structurally damped
beam equations and plate equations have been studied intensively in the deterministic case
(e.g [8, 17, 18, 22]). In such equations, the damping term has “half of the order” of the
leading elastic term, as it was proposed in the seminal paper [5, 20].

It is well known that there are numerous studies on inverse problems for deterministic
partial differential equations (e.g [3, 2, 13, 25]). In this respect, we mention [26, 31] for a study
of an inverse source problem of plate equations, and the identified sources are independent of
spatial variables. Stability estimates for a plate problem were studied in [10, 23], the Lipschitz
stability for a Kirchhoff plate equation was obtained in [30], and inverse source problems
of Euler-Bernoulli plate equations were studied in [1]. However, unlike the deterministic
counterpart, the solution of a stochastic equation cannot have derivatives with respect to
time variable, and the stochastic equation is time-irreversible. For the inverse problems of
stochastic partial differential equations, we refer to [15, 24, 29] for the heat equations and
[16, 28] for the wave equations. In the case of inverse problems for the fourth order stochastic

2



plate equations with structural damping, to the best of our knowledge, there is no references
addressing it. In this paper, we study the global uniqueness problem for stochastic plate
equation with structural damping.

The main result of this paper is the following uniqueness result:

Theorem 1.1 Assume that t0 ∈ (0, T ), and |R(t, x)| 6= 0 for all (t, x) ∈ [0, t0] × G. Let
y ∈ L2

lF(Ω;C([0, T ];U)) ∩ L2
lF(Ω;C1([0, T ];H2(G) ∩H1

0 (G))) satisfies (1.1). If

∂y

∂ν
=
∂∆y

∂ν
= 0 on [0, t0]× Γ, P-a.s., (1.2)

then
H(t, x′) = F (t, x′) = 0 for all (t, x′) ∈ [0, t0]×G′, P-a.s.

Remark 1.1 In this paper, we consider stochastic plate equation with hinged boundary con-
ditions. It would be interesting to consider other kind of boundary conditions for the stochas-
tic plate equation. For example, the boundary conditions in (1.1) is changed to the clamped
boundary conditions y = ∂y

∂ν
= 0 on Σ. The method developed in this paper also can deal with

the inverse source problem in this situation, i.e. if ∆y = ∂∆y
∂ν

= 0 on [0, t0]× Γ,P-a.s., then
H(t, x′) = F (t, x′) = 0 in [0, t0]×G′, P-a.s.

In order to prove Theorem 1.1, the tool we employed is the global Carleman estimate,
which can be regarded as weighted energy estimates. To this aim, we first give the choice of
our weight functions.

Let λ, µ > 0 and ψ(t) ∈ C3(lR) with |ψt| > 0. Write

ξ(t) = λϕ(t), ϕ(t) = eµψ(t), and θ = eξ. (1.3)

Throughout of this paper, C = C(a1, a2, R, T,G) is used to denote a generic positive
constant which may vary from line to line. The global Carleman estimate for (1.1) is the
following:

Theorem 1.2 Let ρ > 0, ψ(t) = −t, and θ, ϕ be given in (1.3). There exists a constant
µ1 > 0 such that for all µ ≥ µ1, one can find two positive constants C and λ1 = λ1(µ), such
that for all y satisfying

dyt − ρ∆ytdt+ ∆2ydt = fdt+ gdB(t) (1.4)

with f ∈ L2
lF(0, T ;L2(G)), g ∈ L2

lF(0, T ;H1(G)) and y = ∆y = 0 on Γ, for all λ ≥ λ1, it
holds that

lE

∫
Q

θ2
[
λ3µ4ϕ3|y|2 + λ2µ3ϕ2|∇y|2 + λµ2ϕ

(
|∆y|2 + |yt|2

)
+µ
(
|∇∆y|2 + |∇yt|2

)]
dxdt

≤ C(ρ)
[
lE

∫
Q

θ2|f |2dxdt+ lE

∫
Q

θ2
(
λµϕ|g|2 + |∇g|2

)
dxdt

+eCλ
(

lE|(y(0), yt(0))|2H3(G)×L2(G) + lE|∇yt(T )|2L2(G)

)]
,

(1.5)
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where

C(ρ) = C
(

1 + ρ2 +
1

ρ2

)
. (1.6)

Remark 1.2 It is obviously that blow-up phenomena for constant C(ρ) could occur when
ρ = 0, which means that the same result cannot be obtained with our method for the undamped
plate equation, even in one-dimensional case. In our forthcoming paper, by adding extra
observational information, we can obtain the global uniqueness of the following stochastic
beam equation:

dyt + yxxxxdt =
[
a1y +H(t)R(t, x)

]
dt+

[
a2y + F (t)R(t, x)

]
dB(t) in (0, 1)× (0, T ),

y(0, t) = y(1, t) = yxx(0, t) = yxx(1, t) = 0 on (0, T ),

y(0) = 0, yt(0) = 0 in (0, 1).

More precisely, by yx(0, t) = yx(1, t) = yxxx(0, t) = yxxx(1, t) = 0 on (0, T ) and y = 0 in
G0 × (0, T ), where G0 be a given nonempty open subset of (0, 1), we can also determine H
and F at the same time. As far as we know, multi-dimensional case (i.e.(1.1) in the case of
ρ = 0) is an unsolved problem.

Remark 1.3 Although this paper deals with stochastic plate equations with structural damp-
ing, it is easy to know that all results in this paper cover the deterministic case.

Remark 1.4 The Carleman estimate also can be established by decomposing the stochastic
plate operator. Put

w = yt − (a− ib)∆y, a =
ρ

2
, b2 =

4− ρ2

4
,

where i =
√
−1, a > 0, b ∈ lR and a2 + b2 = 1. Therefore, (1.4) can be written equivalently

as the following system{
dw − (a+ ib)∆wdt = fdt+ gdB(t) in Q,

yt − (a− ib)∆y = w in Q.

Then, the global Carleman estimate for the damped plate operator can be proved by using the
Carleman estimate for stochastic complex Ginzburg-Landau operator in an iteration manner.
But this method only work for ρ ∈ (0, 2), so we establish the estimate directly from the
operator itself.

Remark 1.5 The reason why we choose the general weight function in (1.3) instead of
ψ(t) = −t is that other kind choice of ψ(t) can be used to study other inverse problems.
For example, ψ(t) = t is chosen to consider backward uniqueness.

The rest of this paper is organized as follows. In Section 2, we devote to establishing the
global Carleman estimates for structurally damped stochastic plate equation. Finally, we
give the detailed proof of the inverse problem results in Section 3.
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2 Proof of Theorem 1.2

This section is devoted to establishing the global Carleman estimate for the fourth stochastic
plate operator dyt − ρ∆ytdt+ ∆2ydt.

Carleman estimate (1.5) is derived by a weighted identity for a structurally damped
stochastic plate operator. Carleman-type estimates were introduced by T. Carleman in
1939 to prove the unique continuation property for some elliptic equations in [4]. Up to
now, they have become one of the useful tools for studying deterministic partial differential
equations and the related control and inverse problems. The weighted identity method is one
of the the significant ways in establishing global Carleman estimates for deterministic partial
differential equations (see [9, 7] for example). Recently, Carleman estimates for stochastic
partial differential equations are getting more and more attention. We refer to [14, 21, 27]
for stochastic parabolic equation, [32] for stochastic hyperbolic equation, [6] for stochastic
complex Ginzburg-Landau equations, [11, 12] for stochastic Kuramoto-Sivashinsky equation,
[33] for stochastic beam equation and so on. The main idea of this approach is to multiply the
partial differential operator by an appropriate multiplier. Then, the product is transformed
into a sum of divergence terms, energy terms, and some good terms. By integrating this
identity and choosing parameters large enough to absorb the undesired terms, which is the
key idea of Carleman estimates.

2.1 A pointwise weighted identify

Let
Ly = dyt − ρ∆ytdt+ ∆2ydt.

Set z = θy, recalling the definition of θ, it is easy to show that

θLy = dzt − 2ξtztdt+ (ξ2
t − ξtt)zdt− ρ∆ztdt+ ρξt∆zdt+ ∆2zdt = I1dt+ I2 − I3, (2.1)

where 
I1 = −2ξtzt − ρ∆zt + c1µ∆z

I2 = dzt + ∆2zdt+ (ξ2
t − ξtt)zdt+ ρξt∆zdt+ c2µztdt,

I3 = c1µ∆zdt+ c2µztdt.

(2.2)

Here, two auxiliary functions with coefficients c1 and c2 in this weighted identity are
introduced to make sure that the coefficients in front of the energy terms are positive. We
have the following weighted identity, which will play a fundamental role in what follows.

Lemma 2.1 Let c1, c2 are given constants. Assume that y is an H4(lRn)-valued continuous
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semi-martingale. Set θ = eξ and z = θy. Then, one has the following equality:

I1

(
θLy + c1µ∆zdt+ c2µztdt

)
= I2

1dt+ dM +∇ · V +
(

3ξttξ
2
t − ξ2

tt − ξtξttt
)
|z|2dt+

(
ξtt − 2c2µξt

)
|zt|2dt

+
[
− 3ρξtξtt +

ρ

2
ξttt − c1µ(ξ2

t − ξtt)
]
|∇z|2dt+

(
c1µ+ c2ρµ

)
|∇zt|2dt

+
(
ξtt +

ρ2

2
ξtt + c1ρµξt

)
|∆z|2dt− c1µ|∇∆z|2dt+ ξt(dzt)

2 − ρ

2
|∇dzt|2,

(2.3)

where I1 is given by (2.2) and

V = −ρ∇ztdzt +
[
− c1µzt∇zt + (−2ξtzt − ρ∆zt + c1µ∆z)∇∆z + 2ξt∆z∇zt

+(ξ2
t − ξtt)(−ρ∇zt + c1µ∇z)z − 2ρξ2

t zt∇z + c2µ(−ρ∇zt + c1µ∇z)zt

]
dt,

M = (−ξtzt + c1µ∆z)zt −
ρ

2
|∇zt|2 +

ρ

2
|∇∆z|2 −

(
1 +

ρ2

2

)
ξt|∆z|2

−ξt(ξ2
t − ξtt)z2 +

(3ρ

2
ξ2
t −

ρ2

2
ξtt −

c1c2

2
µ2
)
|∇z|2.

(2.4)

Proof. The proof is long, we divide it into several steps.

Step 1. By (2.1) and (2.2), it is easy to see that

I1

(
θLy + I3

)
= I2

1dt+ I1I2, (2.5)

and
I1I2 = I1dzt + I1∆2zdt+ (ξ2

t − ξtt)I1zdt+ ρξtI1∆zdt+ c2µI1ztdt. (2.6)

Now, we compute every term in the right side of the sign of equality in (2.6), respectively.
First, let us compute I1dzt. On the one hand,

(−2ξtzt − ρ∆zt)dzt

= d(−ξtz2
t ) + ξttz

2
t dt+ ξt(dzt)

2 −∇ · (ρ∇ztdzt) + d
(ρ

2
|∇zt|2

)
− ρ

2
|∇dzt|2.

On the other hand,

∆zdzt = d(∆zzt)−∆ztztdt = d(∆zzt)−∇ · (zt∇zt)dt+ |∇zt|2dt.

Combining the above two equalities with (2.2), we find that

I1dzt

= d
(
− ξtz2

t + c1µ∆zzt +
ρ

2
|∇zt|2

)
−∇ · (ρ∇ztdzt + c1µzt∇ztdt)

+ξttz
2
t dt+ c1µ|∇zt|2dt+ ξt(dzt)

2 − ρ

2
|∇dzt|2.

(2.7)
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Step 2. Let us compute “I1∆2zdt”. Notice that

(−ρ∆zt + c1µ∆z)∆2zdt

= ∇ ·
[
(−ρ∆zt + c1µ∆z)∇∆z

]
dt+ d

(ρ
2
|∇∆z|2

)
− c1µ|∇∆z|2dt.

Further,

−2ξtzt∆
2zdt = ∇ · (−2ξtzt∇∆z)dt+ 2ξt∇zt · ∇∆zdt

= ∇ ·
(
− 2ξtzt∇∆z + 2ξt∇zt∆z

)
dt+ d

(
− ξt|∆z|2

)
+ ξtt|∆z|2dt.

Then the second term of (2.6) reads as

I1∆2zdt

= ∇ ·
[
(−2ξtzt − ρ∆zt + c1µ∆z)∇∆z + 2ξt∇zt∆z

]
dt+ d

(ρ
2
|∇∆z|2 − ξt|∆z|2

)
+ξtt|∆z|2dt− c1µ|∇∆z|2dt.

(2.8)

Step 3. Compute “(ξ2
t − ξtt)I1zdt”. First, we have

−2ξt(ξ
2
t − ξtt)ztzdt

= d
[
− ξt(ξ2

t − ξtt)z2
]

+ ξtt(ξ
2
t − ξtt)z2dt+ ξt(2ξtξtt − ξttt)z2dt.

Further,

(ξ2
t − ξtt)(−ρ∆zt + c1µ∆z)zdt

= ∇ ·
[
(ξ2
t − ξtt)(−ρ∇zt + c1µ∇z)z

]
dt+ (ξ2

t − ξtt)
(
ρ∇zt · ∇z − c1µ|∇z|2

)
dt

= ∇ ·
[
(ξ2
t − ξtt)(−ρ∇zt + c1µ∇z)z

]
dt+ d

[ρ
2

(ξ2
t − ξtt)|∇z|2

]
−ρ

2
(2ξtξtt − ξttt)|∇z|2dt− c1µ(ξ2

t − ξtt)|∇z|2dt.

Then, by the definition of I1, we see that

(ξ2
t − ξtt)I1zdt

= ∇ ·
[
(ξ2
t − ξtt)(−ρ∇zt + c1µ∇z)z

]
dt+ d

[
− ξt(ξ2

t − ξtt)z2 +
ρ

2
(ξ2
t − ξtt)|∇z|2

]
+
(

3ξttξ
2
t − ξ2

tt − ξtξttt
)
z2dt−

[ρ
2

(2ξtξtt − ξttt) + c1µ(ξ2
t − ξtt)

]
|∇z|2dt.

(2.9)

Step 4. Let us compute “ρξtI1∆zdt”. Notice that

ρξt(−ρ∆zt + c1µ∆z)∆zdt = d
(
− ρ2

2
ξt|∆z|2

)
+
ρ2

2
ξtt|∆z|2dt+ c1ρµξt|∆z|2dt.
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Further,

−2ρξ2
t zt∆zdt = ∇ ·

(
− 2ρξ2

t zt∇z
)
dt+ d

(
ρξ2

t |∇z|2
)
− 2ρξtξtt|∇z|2dt.

Then, one can know that

ρξtI1∆zdt

= ∇ ·
(
− 2ρξ2

t zt∇z
)
dt+ d

(
− ρ2

2
ξt|∆z|2 + ρξ2

t |∇z|2
)

+
(ρ2

2
ξtt + c1ρµξt

)
|∆z|2dt− 2ρξtξtt|∇z|2dt.

(2.10)

Step 5. Now, we compute the last term “c2µI1ztdt” in the right side of the sign of
equality in (2.6). First,

(−ρ∆zt + c1µ∆z)ztdt

= ∇ ·
[
(−ρ∇zt + c1µ∇z)zt

]
dt+ ρ|∇zt|2dt+ d

(
− c1

2
µ|∇z|2

)
.

Then, from the above equality and (2.2), it follows that

c2µI1ztdt

= ∇ ·
[
c2µ(−ρ∇zt + c1µ∇z)zt

]
dt− d

(c1c2

2
µ2|∇z|2

)
+c2ρµ|∇zt|2dt− 2c2µξtz

2
t dt.

(2.11)

Combining (2.6)-(2.11) with (2.5), one can get the desired weighted identity (2.3).

2.2 Proof of Theorem 1.2

This subsection is devoted to proving the Carleman estimate (1.5) by means of the weighted
identity (2.3).

Proof of Theorem 1.2. By ψ(t) = −t, it is easy to check that

ξt = −λµϕ, ξtt = λµ2ϕ, ξttt = −λµ3ϕ, ϕt = −µϕ, ϕtt = µ2ϕ. (2.12)

Integrating (2.3) in Q and taking expectation. Choosing c1 = −ρ, c2 = 2, there exists a
µ0 > 0 such that for all µ ≥ µ0, it holds that

lE

∫
G

M
∣∣∣T
0
dx+ lE

∫
Q

∇ · V dxdt+ lE

∫
Q

(
− λµϕ|dzt|2 −

ρ

2
|∇dzt|2

)
dx

+ClE

∫
Q

(
λ3µ4ϕ3|z|2 + ρλ2µ3ϕ2|∇z|2 + λµ2ϕ|zt|2 + ρ2λµ2ϕ|∆z|2

+ρµ|∇zt|2 + ρµ|∇∆z|2
)
dxdt+ lE

∫
Q

|I1|2dxdt

≤ lE

∫
Q

|I1|2dxdt+ lE

∫
Q

θ2|f |2dxdt.

(2.13)
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In the following, we estimate the terms in the left hand side of inequality (2.13) one by one.
Since ξt, ϕt < 0, it is easy to check that

lE

∫
G

M
∣∣∣T
0
dx

= lE

∫
G

[
(−ξtzt + c1µ∆z)zt −

ρ

2
|∇zt|2 +

ρ

2
|∇∆z|2 − (1 +

ρ2

2
)ξt|∆z|2

−ξt(ξ2
t − ξtt)z2 +

(3ρ

2
ξ2
t −

ρ2

2
ξtt −

c1c2

2
µ2
)
|∇z|2

]∣∣∣∣T
0

dx

≥ −CeCλ(1 + ρ+ ρ2)
(

lE|(y(0), yt(0))|2H3(G)×L2(G) + lE|∇yt(T )|2L2(G)

)
.

(2.14)

Further, by y = ∆y = 0 on Γ and z = θ(t)y, we have that

lE

∫
Q

∇ · V dxdt

= lE

∫
Σ

[
(−ρ∆zt + c1µ∆z)∇∆z + 2ξt∆z∇zt

]
· νdSdt = 0.

(2.15)

By Itô’s formula, one knows that

lE

∫
Q

(
− λµϕ|dzt|2 −

ρ

2
|∇dzt|2

)
dx

≥ −C(1 + ρ)lE

∫
Q

θ2
[
λµϕ(|g|2 + y2) + |∇g|2 + |∇y|2

]
dxdt.

(2.16)

Combining (2.13)-(2.16), it follows that there exists a µ1 > 0 such that for all µ ≥ µ1, one
can find a λ1 = λ1(µ) > 0, so that for any λ ≥ λ1, it holds that

lE

∫
Q

[
λ2µ3ϕ2

(
λµϕz2 + |∇z|2

)
+ λµ2ϕ

(
|∆z|2 + |zt|2

)
+ µ
(
|∇∆z|2 + |∇zt|2

)]
dxdt

≤ C(ρ)
[
lE

∫
Q

θ2
∣∣∣f |2dxdt+ eCλ

(
lE|(y(0), yt(0))|2H3(G)×L2(G) + lE|∇yt(T )|2L2(G)

)
+lE

∫
Q

θ2
(
λµϕ|g|2 + |∇g|2

)
dxdt

]
,

where C(ρ) is given in (1.6). Noting that z = θy, one can get the desired result immediately.

3 Proof of Theorem 1.1

In this section, we will give the proof of global uniqueness result.

Proof of Theorem 1.1. For arbitrary small ε > 0, choose t1 and t2 such that 0 < t0 − ε <
t1 < t2 < t0. Also, let χ ∈ C∞(lR; [0, 1]) satisfy that χ(t) = 1 for t ≤ t1 and χ(t) = 0 for
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t ≥ t2. For any strong solution y of (1.1), put y = Rh. It is easy to check that h satisfies
that

dht − ρ∆htdt+ ∆2hdt =
[
F1(h) +H(t, x′)

]
dt+

[
a2h+ F (t, x′)

]
dB(t) in [0, t0]×G,

h =
∂h

∂ν
= ∆h =

∂∆h

∂ν
= 0 on [0, t0]× Γ,

h(0) = 0, ht(0) = 0 in G,
(3.1)

where

F1(h) = f1h+ f2 · ∇h+ f3ht + f4∆h+ f5 · ∇ht + f6 · ∇∆h− 4
n∑

j,k=1

Rxjxk

R
hxjxk ,

and 
f1 = a1 −

Rtt

R
+
ρ∆Rt

R
− ∆2R

R
, f2 =

2ρ∇Rt

R
− 4∇∆R

R
,

f3 =
ρ∆R− 2Rt

R
, f4 =

ρRt − 2∆R

R
, f5 =

2ρ∇R
R

, f6 = −4∇R
R

.

Differential both sides of (3.1) with respect to x1 and set u = hx1 . Noting that hx1 = ∂h
∂ν

= 0
on ({0} ×G′) ∪ ({l} ×G′), we get that

dut − ρ∆utdt+ ∆2udt =
[
F1(u) + P1(h)

]
dt+

(
a2u+ a2,x1h

)
dB(t) in [0, t0]×G,

u =
∂u

∂ν
= ∆u = 0 on [0, t0]× Γ,

u(0) = 0, ut(0) = 0 in G,

where

P1(h) = f1,x1h+ (f2)x1 · ∇h+ f3,x1ht + f4,x1∆h+ (f5)x1 · ∇ht

+(f6)x1 · ∇∆h− 4
n∑

j,k=1

Rxjxkx1

R
hxjxk .

Set w = χu, we know that w solves

dwt − ρ∆wtdt+ ∆2wdt =
[
E1(u) + F1(w) + χP1(h)

]
dt

+
(
a2w + a2,x1χh

)
dB(t) in [0, t0]×G,

w =
∂w

∂ν
= ∆w = 0 on [0, t0]× Γ,

w(0) = 0, wt(0) = 0 in G,

where

E1(u) = χ′′u+ 2χ′ut − ρχ′∆u− χ′f3u− χ′f5 · ∇u.
10



By means of u = hx1 and h(t, 0, x′) = 0 for (t, x′) ∈ (0, t0)×G′, then we obtain that

χh = χ

∫ x1

0

hx1(t, η, x
′)dη = χ

∫ x1

0

u(t, η, x′)dη =

∫ x1

0

w(t, η, x′)dη, (3.2)

and

χht = χ

∫ x1

0

ut(t, η, x
′)dη =

∫ x1

0

wt(t, η, x
′)dη − χ′

∫ x1

0

u(t, η, x′)dη. (3.3)

Therefore, w satisfies

dwt − ρ∆wtdt+ ∆2wdt =
[
E2(u) + F2(w)

]
dt+

[
a2w

+a2,x1

∫ x1

0

w(t, η, x′)dη
]
dB(t) in [0, t0]×G,

w =
∂w

∂ν
= ∆w = 0 on [0, t0]× Γ,

w(0) = 0, wt(0) = 0 in G,

(3.4)

where

E2(u) = E1(u)− χ′f3,x1

∫ x1

0

u(t, η, x′)dη − χ′(f5)x1 · ∇
∫ x1

0

u(t, η, x′)dη,

F2(w) = F1(w) + f1,x1

∫ x1

0

w(t, η, x′)dη + (f2)x1 · ∇
∫ x1

0

w(t, η, x′)dη

+f3,x1

∫ x1

0

wt(t, η, x
′)dη + f4,x1∆

∫ x1

0

w(t, η, x′)dη

+(f5)x1 · ∇
∫ x1

0

wt(t, η, x
′)dη + (f6)x1 · ∇∆

∫ x1

0

w(t, η, x′)dη

−4
n∑

j,k=1

(Rxjxk

R

)
x1

(∫ x1

0

w(t, η, x′)dη
)
xjxk

.

(3.5)

Applying the Carleman estimate (1.5) in Theorem 1.2 to (3.4), noting that w = ∂w
∂ν

= ∆w = 0
on [0, t0]× Γ and w(t0) = wt(t0) = 0, we have that

lE

∫ t0

0

∫
G

µθ2
[
λ3µ3ϕ3w2 + λ2µ2ϕ2|∇w|2 + λµϕ

(
|∆w|2 + |wt|2

)
+ |∇∆w|2 + |∇wt|2

]
dxdt

≤ ClE

∫ t0

0

∫
G

θ2|E2(u)|2dxdt+ ClE

∫ t0

0

∫
G

θ2|F2(w)|2dxdt

+ClE

∫ t0

0

∫
G

θ2
[
λµϕ

(∣∣∣ ∫ x1

0

w(t, η, x′)dη
∣∣∣2 + w2

)
+
∣∣∣∇∫ x1

0

w(t, η, x′)dη
∣∣∣2 + |∇w|2

]
dxdt.

(3.6)
Since ∣∣∣ ∫ x1

0

w(t, η, x′)dη
∣∣∣2 ≤ l

∫ l

0

|w(t, η, x′)|2dη,
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it is easy to see that∫ t0

0

∫
G

θ2ϕ
∣∣∣ ∫ x1

0

w(t, η, x′)dη
∣∣∣2dxdt ≤ l2

∫ t0

0

∫
G

θ2ϕ|w(t, η, x′)|2dxdt. (3.7)

By means of w(t, 0, x′) = 0, we find that∣∣∣∇ ∫ x1

0

w(t, η, x′)dη
∣∣∣2 =

∣∣∣(w(t, x1, x
′),

∫ x1

0

∇x′w(t, η, x′)dη
)∣∣∣2

=
∣∣∣(w(t, x1, x

′)− w(t, 0, x′),

∫ x1

0

∇x′w(t, η, x′)dη
)∣∣∣2

=
∣∣∣ ∫ x1

0

∇w(t, η, x′)dη
∣∣∣2 ≤ l

∫ l

0

|∇w(t, η, x′)|2dη.

Then,

lE

∫ t0

0

∫
G

θ2
∣∣∣∇ ∫ x1

0

w(t, η, x′)dη
∣∣∣2dxdt ≤ l2lE

∫ t0

0

∫
G

θ2|∇w(t, η, x′)|2dxdt. (3.8)

Substituting (3.7) and (3.8) into (3.6), there exists µ2 > 0 such that for all µ ≥ µ2, it holds
that

lE

∫ t0

0

∫
G

µθ2
[
λ3µ3ϕ3w2 + λ2µ2ϕ2|∇w|2 + λµϕ

(
|∆w|2 + |wt|2

)
+ |∇∆w|2 + |∇wt|2

]
dxdt

≤ ClE

∫ t0

0

∫
G

θ2|E2(u)|2dxdt+ ClE

∫ t0

0

∫
G

θ2|F2(w)|2dxdt.

(3.9)
Similarly with (3.7) and (3.8), one can get that

lE

∫ t0

0

∫
G

θ2
(∣∣∣ ∫ x1

0

wt(t, η, x
′)dη

∣∣∣2 +
∣∣∣∇ ∫ x1

0

wt(t, η, x
′)dη

∣∣∣2)dxdt
≤ l2lE

∫ t0

0

∫
G

θ2
(
|wt(t, η, x′)|2 + |∇wt(t, η, x′)|2

)
dxdt.

(3.10)

By ∣∣∣∆∫ x1

0

w(t, η, x′)dη
∣∣∣2 =

∣∣∣ ∫ x1

0

∆w(t, η, x′)dη + wx1(t, 0, x
′)
∣∣∣2,

and ∣∣∣∇∆

∫ x1

0

w(t, η, x′)dη
∣∣∣2 =

∣∣∣ ∫ x1

0

∇∆w(t, η, x′)dη + n
∣∣∣2,

where n =
(

∆w(t, 0, x′), wx1x2(t, 0, x
′), · · · , wx1xn(t, 0, x′)

)
, and recalling that wx1 = ∂w

∂ν
= 0

on ({0} ×G′) ∪ ({l} ×G′), we have that

lE

∫ t0

0

∫
G

θ2
(∣∣∣∆∫ x1

0

w(t, η, x′)dη
∣∣∣2 +

∣∣∣∇∆

∫ x1

0

w(t, η, x′)dη
∣∣∣2)dxdt

≤ l2lE

∫ t0

0

∫
G

θ2
(
|∆w(t, η, x′)|2 + |∇∆w(t, η, x′)|2

)
dxdt.

(3.11)
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A short calculation shows that
n∑

j,k=1

(∫ x1

0

w(t, η, x′)dη
)
xjxk

=

∫ x1

0

n∑
j,k=1

wxjxk(t, η, x
′)dη.

This imples that

lE

∫ t0

0

∫
G

θ2
∣∣∣ n∑
j,k=1

(∫ x1

0

w(t, η, x′)dη
)
xjxk

∣∣∣2dxdt ≤ l2lE

∫ t0

0

∫
G

θ2
∣∣∣ n∑
j,k=1

wxjxk(t, η, x
′)
∣∣∣2dxdt.

(3.12)
On the other hand, it is easy to see that

lE

∫ t0

0

∫
G

θ2
∣∣∣ n∑
j,k=1

wxjxk

∣∣∣2dxdt ≤ ClE

∫ t0

0

∫
G

θ2

n∑
j,k=1

|wxjxk |
2dxdt

= ClE

∫ t0

0

∫
G

θ2

n∑
j,k=1

[(
wxjwxjxk

)
xk
−
(
wxjwxkxk

)
xj

+ wxjxjwxkxk

]
dxdt

= ClE

∫ t0

0

∫
G

θ2|∆w|2dxdt.

(3.13)

Combing (3.6)-(3.13) with (3.5), we know that there is a µ3 > 0 such that for all µ ≥ µ3,
there exists a λ1(µ3) > 0 so that for all λ ≥ λ1(µ3), it holds that

lE

∫ t0

0

∫
G

µθ2
[
λ3µ3ϕ3w2 + λ2µ2ϕ2|∇w|2 + λµϕ

(
|∆w|2 + |wt|2

)
+ |∇∆w|2 + |∇wt|2

]
dxdt

≤ ClE

∫ t0

0

∫
G

θ2|E2(u)|2dxdt.

(3.14)
By the definition of E2(u) and χ, fix µ = µ3, we see that

lE

∫ t0

0

∫
G

θ2|E2(u)|2dxdt ≤ Ce2λe−µ3t1 lE

∫ t2

t1

∫
G

(
|u|2 + |ut|2 + |∇u|2 + |∆u|2

+
∣∣∣ ∫ x1

0

u(t, η, x′)dη
∣∣∣2 +

∣∣∣ ∫ x1

0

∇u(t, η, x′)dη
∣∣∣2)dxdt

≤ Ce2λe−µ3t1 lE

∫
Q

(
|u|2 + |ut|2 + |∇u|2 + |∆u|2

)
dxdt

= Ce2λe−µ3t1 |(hx1 , ht,x1)|
2
L2
lF(0,T ;H2(G)×L2(G)).

(3.15)

By virtue of (3.11) and (3.15), for all λ ≥ λ1(µ3), this implies that

e2λe−µ3(t0−ε) lE

∫ t0−ε

0

∫
G

(
|w|2 + |wt|2 + |∇w|2 + |∆w|2

)
dxdt

≤ lE

∫ t0−ε

0

∫
G

θ2
(
|w|2 + |wt|2 + |∇w|2 + |∆w|2

)
dxdt

≤ Ce2λe−µ3t1 |(hx1 , ht,x1)|
2
L2
lF(0,T ;H2(G)×L2(G)).
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Therefore, by a simple calculation, the above inequality indicates that

|(w,wt)|2L2
lF(0,t0−ε;H2(G)×L2(G)) ≤ Ce2λ(e−µ3t1−e−µ3(t0−ε))|(hx1 , ht,x1)|

2
L2
lF(0,T ;H2(G)×L2(G)).

Noting that t0 − ε < t1, then e−µ3t1 − e−µ3(t0−ε) < 0. Letting λ→ +∞, it follows that

w(t, x) = 0 in (0, t0 − ε)×G, P-a.s.

Together with equality (3.2) and recalling the definition of χ, implies that

h(t, x) = 0 in (0, t0 − ε)×G, P-a.s.,

which means
y(t, x) = 0 in (0, t0 − ε)×G, P-a.s.

Then, by equation (1.1), we deduce that

H(t, x′) = F (t, x′) = 0 in (0, t0 − ε)×G′, P-a.s.

By the arbitrariness of ε > 0, the proof of Theorem 1.1 is completed.
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